// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Numeric traits and functions for generic mathematics //! //! These are implemented for the primitive numeric types in `std::{u8, u16, //! u32, u64, uint, i8, i16, i32, i64, int, f32, f64, float}`. #![allow(missing_doc)] use clone::Clone; use cmp::{Eq, Ord}; use kinds::Copy; use mem::size_of; use ops::{Add, Sub, Mul, Div, Rem, Neg}; use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr}; use option::{Option, Some, None}; /// The base trait for numeric types pub trait Num: Eq + Zero + One + Neg + Add + Sub + Mul + Div + Rem {} /// Simultaneous division and remainder #[inline] pub fn div_rem + Rem>(x: T, y: T) -> (T, T) { (x / y, x % y) } /// Defines an additive identity element for `Self`. /// /// # Deriving /// /// This trait can be automatically be derived using `#[deriving(Zero)]` /// attribute. If you choose to use this, make sure that the laws outlined in /// the documentation for `Zero::zero` still hold. pub trait Zero: Add { /// Returns the additive identity element of `Self`, `0`. /// /// # Laws /// /// ~~~notrust /// a + 0 = a ∀ a ∈ Self /// 0 + a = a ∀ a ∈ Self /// ~~~ /// /// # Purity /// /// This function should return the same result at all times regardless of /// external mutable state, for example values stored in TLS or in /// `static mut`s. // FIXME (#5527): This should be an associated constant fn zero() -> Self; /// Returns `true` if `self` is equal to the additive identity. fn is_zero(&self) -> bool; } /// Returns the additive identity, `0`. #[inline(always)] pub fn zero() -> T { Zero::zero() } /// Defines a multiplicative identity element for `Self`. pub trait One: Mul { /// Returns the multiplicative identity element of `Self`, `1`. /// /// # Laws /// /// ~~~notrust /// a * 1 = a ∀ a ∈ Self /// 1 * a = a ∀ a ∈ Self /// ~~~ /// /// # Purity /// /// This function should return the same result at all times regardless of /// external mutable state, for example values stored in TLS or in /// `static mut`s. // FIXME (#5527): This should be an associated constant fn one() -> Self; } /// Returns the multiplicative identity, `1`. #[inline(always)] pub fn one() -> T { One::one() } /// Useful functions for signed numbers (i.e. numbers that can be negative). pub trait Signed: Num + Neg { /// Computes the absolute value. /// /// For float, f32, and f64, `NaN` will be returned if the number is `NaN`. fn abs(&self) -> Self; /// The positive difference of two numbers. /// /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference /// between `self` and `other` is returned. fn abs_sub(&self, other: &Self) -> Self; /// Returns the sign of the number. /// /// For `float`, `f32`, `f64`: /// * `1.0` if the number is positive, `+0.0` or `INFINITY` /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// * `NaN` if the number is `NaN` /// /// For `int`: /// * `0` if the number is zero /// * `1` if the number is positive /// * `-1` if the number is negative fn signum(&self) -> Self; /// Returns true if the number is positive and false if the number is zero or negative. fn is_positive(&self) -> bool; /// Returns true if the number is negative and false if the number is zero or positive. fn is_negative(&self) -> bool; } /// Computes the absolute value. /// /// For float, f32, and f64, `NaN` will be returned if the number is `NaN` #[inline(always)] pub fn abs(value: T) -> T { value.abs() } /// The positive difference of two numbers. /// /// Returns `zero` if the number is less than or equal to `other`, /// otherwise the difference between `self` and `other` is returned. #[inline(always)] pub fn abs_sub(x: T, y: T) -> T { x.abs_sub(&y) } /// Returns the sign of the number. /// /// For float, f32, f64: /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` /// /// For int: /// - `0` if the number is zero /// - `1` if the number is positive /// - `-1` if the number is negative #[inline(always)] pub fn signum(value: T) -> T { value.signum() } /// A trait for values which cannot be negative pub trait Unsigned: Num {} /// Raises a value to the power of exp, using exponentiation by squaring. /// /// # Example /// /// ```rust /// use std::num; /// /// assert_eq!(num::pow(2, 4), 16); /// ``` #[inline] pub fn pow>(mut base: T, mut exp: uint) -> T { if exp == 1 { base } else { let mut acc = one::(); while exp > 0 { if (exp & 1) == 1 { acc = acc * base; } base = base * base; exp = exp >> 1; } acc } } /// Numbers which have upper and lower bounds pub trait Bounded { // FIXME (#5527): These should be associated constants /// returns the smallest finite number this type can represent fn min_value() -> Self; /// returns the largest finite number this type can represent fn max_value() -> Self; } /// Numbers with a fixed binary representation. pub trait Bitwise: Bounded + Not + BitAnd + BitOr + BitXor + Shl + Shr { /// Returns the number of ones in the binary representation of the number. /// /// # Example /// /// ```rust /// use std::num::Bitwise; /// /// let n = 0b01001100u8; /// assert_eq!(n.count_ones(), 3); /// ``` fn count_ones(&self) -> Self; /// Returns the number of zeros in the binary representation of the number. /// /// # Example /// /// ```rust /// use std::num::Bitwise; /// /// let n = 0b01001100u8; /// assert_eq!(n.count_zeros(), 5); /// ``` #[inline] fn count_zeros(&self) -> Self { (!*self).count_ones() } /// Returns the number of leading zeros in the in the binary representation /// of the number. /// /// # Example /// /// ```rust /// use std::num::Bitwise; /// /// let n = 0b0101000u16; /// assert_eq!(n.leading_zeros(), 10); /// ``` fn leading_zeros(&self) -> Self; /// Returns the number of trailing zeros in the in the binary representation /// of the number. /// /// # Example /// /// ```rust /// use std::num::Bitwise; /// /// let n = 0b0101000u16; /// assert_eq!(n.trailing_zeros(), 3); /// ``` fn trailing_zeros(&self) -> Self; } /// Specifies the available operations common to all of Rust's core numeric primitives. /// These may not always make sense from a purely mathematical point of view, but /// may be useful for systems programming. pub trait Primitive: Copy + Clone + Num + NumCast + Ord + Bounded {} /// A collection of traits relevant to primitive signed and unsigned integers pub trait Int: Primitive + Bitwise + CheckedAdd + CheckedSub + CheckedMul + CheckedDiv {} /// Returns the smallest power of 2 greater than or equal to `n`. #[inline] pub fn next_power_of_two(n: T) -> T { let halfbits: T = cast(size_of::() * 4).unwrap(); let mut tmp: T = n - one(); let mut shift: T = one(); while shift <= halfbits { tmp = tmp | (tmp >> shift); shift = shift << one(); } tmp + one() } // Returns `true` iff `n == 2^k` for some k. #[inline] pub fn is_power_of_two(n: T) -> bool { (n - one()) & n == zero() } /// Returns the smallest power of 2 greater than or equal to `n`. If the next /// power of two is greater than the type's maximum value, `None` is returned, /// otherwise the power of 2 is wrapped in `Some`. #[inline] pub fn checked_next_power_of_two(n: T) -> Option { let halfbits: T = cast(size_of::() * 4).unwrap(); let mut tmp: T = n - one(); let mut shift: T = one(); while shift <= halfbits { tmp = tmp | (tmp >> shift); shift = shift << one(); } tmp.checked_add(&one()) } /// A generic trait for converting a value to a number. pub trait ToPrimitive { /// Converts the value of `self` to an `int`. #[inline] fn to_int(&self) -> Option { self.to_i64().and_then(|x| x.to_int()) } /// Converts the value of `self` to an `i8`. #[inline] fn to_i8(&self) -> Option { self.to_i64().and_then(|x| x.to_i8()) } /// Converts the value of `self` to an `i16`. #[inline] fn to_i16(&self) -> Option { self.to_i64().and_then(|x| x.to_i16()) } /// Converts the value of `self` to an `i32`. #[inline] fn to_i32(&self) -> Option { self.to_i64().and_then(|x| x.to_i32()) } /// Converts the value of `self` to an `i64`. fn to_i64(&self) -> Option; /// Converts the value of `self` to an `uint`. #[inline] fn to_uint(&self) -> Option { self.to_u64().and_then(|x| x.to_uint()) } /// Converts the value of `self` to an `u8`. #[inline] fn to_u8(&self) -> Option { self.to_u64().and_then(|x| x.to_u8()) } /// Converts the value of `self` to an `u16`. #[inline] fn to_u16(&self) -> Option { self.to_u64().and_then(|x| x.to_u16()) } /// Converts the value of `self` to an `u32`. #[inline] fn to_u32(&self) -> Option { self.to_u64().and_then(|x| x.to_u32()) } /// Converts the value of `self` to an `u64`. #[inline] fn to_u64(&self) -> Option; /// Converts the value of `self` to an `f32`. #[inline] fn to_f32(&self) -> Option { self.to_f64().and_then(|x| x.to_f32()) } /// Converts the value of `self` to an `f64`. #[inline] fn to_f64(&self) -> Option { self.to_i64().and_then(|x| x.to_f64()) } } macro_rules! impl_to_primitive_int_to_int( ($SrcT:ty, $DstT:ty) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some(*self as $DstT) } else { let n = *self as i64; let min_value: $DstT = Bounded::min_value(); let max_value: $DstT = Bounded::max_value(); if min_value as i64 <= n && n <= max_value as i64 { Some(*self as $DstT) } else { None } } } ) ) macro_rules! impl_to_primitive_int_to_uint( ($SrcT:ty, $DstT:ty) => ( { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= *self && *self as u64 <= max_value as u64 { Some(*self as $DstT) } else { None } } ) ) macro_rules! impl_to_primitive_int( ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_int(&self) -> Option { impl_to_primitive_int_to_int!($T, int) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_int_to_int!($T, i8) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_int_to_int!($T, i16) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_int_to_int!($T, i32) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_int_to_int!($T, i64) } #[inline] fn to_uint(&self) -> Option { impl_to_primitive_int_to_uint!($T, uint) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_int_to_uint!($T, u8) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_int_to_uint!($T, u16) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_int_to_uint!($T, u32) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_int_to_uint!($T, u64) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) ) impl_to_primitive_int!(int) impl_to_primitive_int!(i8) impl_to_primitive_int!(i16) impl_to_primitive_int!(i32) impl_to_primitive_int!(i64) macro_rules! impl_to_primitive_uint_to_int( ($DstT:ty) => ( { let max_value: $DstT = Bounded::max_value(); if *self as u64 <= max_value as u64 { Some(*self as $DstT) } else { None } } ) ) macro_rules! impl_to_primitive_uint_to_uint( ($SrcT:ty, $DstT:ty) => ( { if size_of::<$SrcT>() <= size_of::<$DstT>() { Some(*self as $DstT) } else { let zero: $SrcT = Zero::zero(); let max_value: $DstT = Bounded::max_value(); if zero <= *self && *self as u64 <= max_value as u64 { Some(*self as $DstT) } else { None } } } ) ) macro_rules! impl_to_primitive_uint( ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_int(&self) -> Option { impl_to_primitive_uint_to_int!(int) } #[inline] fn to_i8(&self) -> Option { impl_to_primitive_uint_to_int!(i8) } #[inline] fn to_i16(&self) -> Option { impl_to_primitive_uint_to_int!(i16) } #[inline] fn to_i32(&self) -> Option { impl_to_primitive_uint_to_int!(i32) } #[inline] fn to_i64(&self) -> Option { impl_to_primitive_uint_to_int!(i64) } #[inline] fn to_uint(&self) -> Option { impl_to_primitive_uint_to_uint!($T, uint) } #[inline] fn to_u8(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u8) } #[inline] fn to_u16(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u16) } #[inline] fn to_u32(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u32) } #[inline] fn to_u64(&self) -> Option { impl_to_primitive_uint_to_uint!($T, u64) } #[inline] fn to_f32(&self) -> Option { Some(*self as f32) } #[inline] fn to_f64(&self) -> Option { Some(*self as f64) } } ) ) impl_to_primitive_uint!(uint) impl_to_primitive_uint!(u8) impl_to_primitive_uint!(u16) impl_to_primitive_uint!(u32) impl_to_primitive_uint!(u64) macro_rules! impl_to_primitive_float_to_float( ($SrcT:ty, $DstT:ty) => ( if size_of::<$SrcT>() <= size_of::<$DstT>() { Some(*self as $DstT) } else { let n = *self as f64; let max_value: $SrcT = Bounded::max_value(); if -max_value as f64 <= n && n <= max_value as f64 { Some(*self as $DstT) } else { None } } ) ) macro_rules! impl_to_primitive_float( ($T:ty) => ( impl ToPrimitive for $T { #[inline] fn to_int(&self) -> Option { Some(*self as int) } #[inline] fn to_i8(&self) -> Option { Some(*self as i8) } #[inline] fn to_i16(&self) -> Option { Some(*self as i16) } #[inline] fn to_i32(&self) -> Option { Some(*self as i32) } #[inline] fn to_i64(&self) -> Option { Some(*self as i64) } #[inline] fn to_uint(&self) -> Option { Some(*self as uint) } #[inline] fn to_u8(&self) -> Option { Some(*self as u8) } #[inline] fn to_u16(&self) -> Option { Some(*self as u16) } #[inline] fn to_u32(&self) -> Option { Some(*self as u32) } #[inline] fn to_u64(&self) -> Option { Some(*self as u64) } #[inline] fn to_f32(&self) -> Option { impl_to_primitive_float_to_float!($T, f32) } #[inline] fn to_f64(&self) -> Option { impl_to_primitive_float_to_float!($T, f64) } } ) ) impl_to_primitive_float!(f32) impl_to_primitive_float!(f64) /// A generic trait for converting a number to a value. pub trait FromPrimitive { /// Convert an `int` to return an optional value of this type. If the /// value cannot be represented by this value, the `None` is returned. #[inline] fn from_int(n: int) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i8(n: i8) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i16(n: i16) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_i32(n: i32) -> Option { FromPrimitive::from_i64(n as i64) } /// Convert an `i64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_i64(n: i64) -> Option; /// Convert an `uint` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_uint(n: uint) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u8` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u8(n: u8) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u16` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u16(n: u16) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_u32(n: u32) -> Option { FromPrimitive::from_u64(n as u64) } /// Convert an `u64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. fn from_u64(n: u64) -> Option; /// Convert a `f32` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f32(n: f32) -> Option { FromPrimitive::from_f64(n as f64) } /// Convert a `f64` to return an optional value of this type. If the /// type cannot be represented by this value, the `None` is returned. #[inline] fn from_f64(n: f64) -> Option { FromPrimitive::from_i64(n as i64) } } /// A utility function that just calls `FromPrimitive::from_int`. pub fn from_int(n: int) -> Option { FromPrimitive::from_int(n) } /// A utility function that just calls `FromPrimitive::from_i8`. pub fn from_i8(n: i8) -> Option { FromPrimitive::from_i8(n) } /// A utility function that just calls `FromPrimitive::from_i16`. pub fn from_i16(n: i16) -> Option { FromPrimitive::from_i16(n) } /// A utility function that just calls `FromPrimitive::from_i32`. pub fn from_i32(n: i32) -> Option { FromPrimitive::from_i32(n) } /// A utility function that just calls `FromPrimitive::from_i64`. pub fn from_i64(n: i64) -> Option { FromPrimitive::from_i64(n) } /// A utility function that just calls `FromPrimitive::from_uint`. pub fn from_uint(n: uint) -> Option { FromPrimitive::from_uint(n) } /// A utility function that just calls `FromPrimitive::from_u8`. pub fn from_u8(n: u8) -> Option { FromPrimitive::from_u8(n) } /// A utility function that just calls `FromPrimitive::from_u16`. pub fn from_u16(n: u16) -> Option { FromPrimitive::from_u16(n) } /// A utility function that just calls `FromPrimitive::from_u32`. pub fn from_u32(n: u32) -> Option { FromPrimitive::from_u32(n) } /// A utility function that just calls `FromPrimitive::from_u64`. pub fn from_u64(n: u64) -> Option { FromPrimitive::from_u64(n) } /// A utility function that just calls `FromPrimitive::from_f32`. pub fn from_f32(n: f32) -> Option { FromPrimitive::from_f32(n) } /// A utility function that just calls `FromPrimitive::from_f64`. pub fn from_f64(n: f64) -> Option { FromPrimitive::from_f64(n) } macro_rules! impl_from_primitive( ($T:ty, $to_ty:expr) => ( impl FromPrimitive for $T { #[inline] fn from_int(n: int) -> Option<$T> { $to_ty } #[inline] fn from_i8(n: i8) -> Option<$T> { $to_ty } #[inline] fn from_i16(n: i16) -> Option<$T> { $to_ty } #[inline] fn from_i32(n: i32) -> Option<$T> { $to_ty } #[inline] fn from_i64(n: i64) -> Option<$T> { $to_ty } #[inline] fn from_uint(n: uint) -> Option<$T> { $to_ty } #[inline] fn from_u8(n: u8) -> Option<$T> { $to_ty } #[inline] fn from_u16(n: u16) -> Option<$T> { $to_ty } #[inline] fn from_u32(n: u32) -> Option<$T> { $to_ty } #[inline] fn from_u64(n: u64) -> Option<$T> { $to_ty } #[inline] fn from_f32(n: f32) -> Option<$T> { $to_ty } #[inline] fn from_f64(n: f64) -> Option<$T> { $to_ty } } ) ) impl_from_primitive!(int, n.to_int()) impl_from_primitive!(i8, n.to_i8()) impl_from_primitive!(i16, n.to_i16()) impl_from_primitive!(i32, n.to_i32()) impl_from_primitive!(i64, n.to_i64()) impl_from_primitive!(uint, n.to_uint()) impl_from_primitive!(u8, n.to_u8()) impl_from_primitive!(u16, n.to_u16()) impl_from_primitive!(u32, n.to_u32()) impl_from_primitive!(u64, n.to_u64()) impl_from_primitive!(f32, n.to_f32()) impl_from_primitive!(f64, n.to_f64()) /// Cast from one machine scalar to another. /// /// # Example /// /// ``` /// use std::num; /// /// let twenty: f32 = num::cast(0x14).unwrap(); /// assert_eq!(twenty, 20f32); /// ``` /// #[inline] pub fn cast(n: T) -> Option { NumCast::from(n) } /// An interface for casting between machine scalars. pub trait NumCast: ToPrimitive { /// Creates a number from another value that can be converted into a primitive via the /// `ToPrimitive` trait. fn from(n: T) -> Option; } macro_rules! impl_num_cast( ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline] fn from(n: N) -> Option<$T> { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } } ) ) impl_num_cast!(u8, to_u8) impl_num_cast!(u16, to_u16) impl_num_cast!(u32, to_u32) impl_num_cast!(u64, to_u64) impl_num_cast!(uint, to_uint) impl_num_cast!(i8, to_i8) impl_num_cast!(i16, to_i16) impl_num_cast!(i32, to_i32) impl_num_cast!(i64, to_i64) impl_num_cast!(int, to_int) impl_num_cast!(f32, to_f32) impl_num_cast!(f64, to_f64) /// Saturating math operations pub trait Saturating { /// Saturating addition operator. /// Returns a+b, saturating at the numeric bounds instead of overflowing. fn saturating_add(self, v: Self) -> Self; /// Saturating subtraction operator. /// Returns a-b, saturating at the numeric bounds instead of overflowing. fn saturating_sub(self, v: Self) -> Self; } impl Saturating for T { #[inline] fn saturating_add(self, v: T) -> T { match self.checked_add(&v) { Some(x) => x, None => if v >= Zero::zero() { Bounded::max_value() } else { Bounded::min_value() } } } #[inline] fn saturating_sub(self, v: T) -> T { match self.checked_sub(&v) { Some(x) => x, None => if v >= Zero::zero() { Bounded::min_value() } else { Bounded::max_value() } } } } /// Performs addition that returns `None` instead of wrapping around on overflow. pub trait CheckedAdd: Add { /// Adds two numbers, checking for overflow. If overflow happens, `None` is returned. fn checked_add(&self, v: &Self) -> Option; } /// Performs subtraction that returns `None` instead of wrapping around on underflow. pub trait CheckedSub: Sub { /// Subtracts two numbers, checking for underflow. If underflow happens, `None` is returned. fn checked_sub(&self, v: &Self) -> Option; } /// Performs multiplication that returns `None` instead of wrapping around on underflow or /// overflow. pub trait CheckedMul: Mul { /// Multiplies two numbers, checking for underflow or overflow. If underflow or overflow /// happens, `None` is returned. fn checked_mul(&self, v: &Self) -> Option; } /// Performs division that returns `None` instead of wrapping around on underflow or overflow. pub trait CheckedDiv: Div { /// Divides two numbers, checking for underflow or overflow. If underflow or overflow happens, /// `None` is returned. fn checked_div(&self, v: &Self) -> Option; } /// Helper function for testing numeric operations #[cfg(test)] pub fn test_num(ten: T, two: T) { assert_eq!(ten.add(&two), cast(12).unwrap()); assert_eq!(ten.sub(&two), cast(8).unwrap()); assert_eq!(ten.mul(&two), cast(20).unwrap()); assert_eq!(ten.div(&two), cast(5).unwrap()); assert_eq!(ten.rem(&two), cast(0).unwrap()); assert_eq!(ten.add(&two), ten + two); assert_eq!(ten.sub(&two), ten - two); assert_eq!(ten.mul(&two), ten * two); assert_eq!(ten.div(&two), ten / two); assert_eq!(ten.rem(&two), ten % two); } /// Used for representing the classification of floating point numbers #[deriving(Eq, Show)] pub enum FPCategory { /// "Not a Number", often obtained by dividing by zero FPNaN, /// Positive or negative infinity FPInfinite , /// Positive or negative zero FPZero, /// De-normalized floating point representation (less precise than `FPNormal`) FPSubnormal, /// A regular floating point number FPNormal, } /// Operations on primitive floating point numbers. // FIXME(#5527): In a future version of Rust, many of these functions will // become constants. // // FIXME(#8888): Several of these functions have a parameter named // `unused_self`. Removing it requires #8888 to be fixed. pub trait Float: Signed + Primitive { /// Returns the NaN value. fn nan() -> Self; /// Returns the infinite value. fn infinity() -> Self; /// Returns the negative infinite value. fn neg_infinity() -> Self; /// Returns -0.0. fn neg_zero() -> Self; /// Returns true if this value is NaN and false otherwise. fn is_nan(self) -> bool; /// Returns true if this value is positive infinity or negative infinity and /// false otherwise. fn is_infinite(self) -> bool; /// Returns true if this number is neither infinite nor NaN. fn is_finite(self) -> bool; /// Returns true if this number is neither zero, infinite, denormal, or NaN. fn is_normal(self) -> bool; /// Returns the category that this number falls into. fn classify(self) -> FPCategory; // FIXME (#5527): These should be associated constants /// Returns the number of binary digits of mantissa that this type supports. fn mantissa_digits(unused_self: Option) -> uint; /// Returns the number of base-10 digits of precision that this type supports. fn digits(unused_self: Option) -> uint; /// Returns the difference between 1.0 and the smallest representable number larger than 1.0. fn epsilon() -> Self; /// Returns the minimum binary exponent that this type can represent. fn min_exp(unused_self: Option) -> int; /// Returns the maximum binary exponent that this type can represent. fn max_exp(unused_self: Option) -> int; /// Returns the minimum base-10 exponent that this type can represent. fn min_10_exp(unused_self: Option) -> int; /// Returns the maximum base-10 exponent that this type can represent. fn max_10_exp(unused_self: Option) -> int; /// Returns the smallest normalized positive number that this type can represent. fn min_pos_value(unused_self: Option) -> Self; /// Returns the mantissa, exponent and sign as integers, respectively. fn integer_decode(self) -> (u64, i16, i8); /// Return the largest integer less than or equal to a number. fn floor(self) -> Self; /// Return the smallest integer greater than or equal to a number. fn ceil(self) -> Self; /// Return the nearest integer to a number. Round half-way cases away from /// `0.0`. fn round(self) -> Self; /// Return the integer part of a number. fn trunc(self) -> Self; /// Return the fractional part of a number. fn fract(self) -> Self; /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error. This produces a more accurate result with better performance than /// a separate multiplication operation followed by an add. fn mul_add(self, a: Self, b: Self) -> Self; /// Take the reciprocal (inverse) of a number, `1/x`. fn recip(self) -> Self; /// Raise a number to an integer power. /// /// Using this function is generally faster than using `powf` fn powi(self, n: i32) -> Self; /// Raise a number to a floating point power. fn powf(self, n: Self) -> Self; /// sqrt(2.0). fn sqrt2() -> Self; /// 1.0 / sqrt(2.0). fn frac_1_sqrt2() -> Self; /// Take the square root of a number. fn sqrt(self) -> Self; /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`. fn rsqrt(self) -> Self; // FIXME (#5527): These should be associated constants /// Archimedes' constant. fn pi() -> Self; /// 2.0 * pi. fn two_pi() -> Self; /// pi / 2.0. fn frac_pi_2() -> Self; /// pi / 3.0. fn frac_pi_3() -> Self; /// pi / 4.0. fn frac_pi_4() -> Self; /// pi / 6.0. fn frac_pi_6() -> Self; /// pi / 8.0. fn frac_pi_8() -> Self; /// 1.0 / pi. fn frac_1_pi() -> Self; /// 2.0 / pi. fn frac_2_pi() -> Self; /// 2.0 / sqrt(pi). fn frac_2_sqrtpi() -> Self; /// Euler's number. fn e() -> Self; /// log2(e). fn log2_e() -> Self; /// log10(e). fn log10_e() -> Self; /// ln(2.0). fn ln_2() -> Self; /// ln(10.0). fn ln_10() -> Self; /// Returns `e^(self)`, (the exponential function). fn exp(self) -> Self; /// Returns 2 raised to the power of the number, `2^(self)`. fn exp2(self) -> Self; /// Returns the natural logarithm of the number. fn ln(self) -> Self; /// Returns the logarithm of the number with respect to an arbitrary base. fn log(self, base: Self) -> Self; /// Returns the base 2 logarithm of the number. fn log2(self) -> Self; /// Returns the base 10 logarithm of the number. fn log10(self) -> Self; /// Convert radians to degrees. fn to_degrees(self) -> Self; /// Convert degrees to radians. fn to_radians(self) -> Self; }