// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for random number generation //! //! The key functions are `random()` and `Rng::gen()`. These are polymorphic //! and so can be used to generate any type that implements `Rand`. Type inference //! means that often a simple call to `rand::random()` or `rng.gen()` will //! suffice, but sometimes an annotation is required, e.g. `rand::random::()`. //! //! See the `distributions` submodule for sampling random numbers from //! distributions like normal and exponential. //! //! # Thread-local RNG //! //! There is built-in support for a RNG associated with each thread stored //! in thread-local storage. This RNG can be accessed via `thread_rng`, or //! used implicitly via `random`. This RNG is normally randomly seeded //! from an operating-system source of randomness, e.g. `/dev/urandom` on //! Unix systems, and will automatically reseed itself from this source //! after generating 32 KiB of random data. //! //! # Cryptographic security //! //! An application that requires an entropy source for cryptographic purposes //! must use `OsRng`, which reads randomness from the source that the operating //! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows). //! The other random number generators provided by this module are not suitable //! for such purposes. //! //! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`. //! This module uses `/dev/urandom` for the following reasons: //! //! - On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block. //! This does not mean that `/dev/random` provides better output than //! `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom //! number generator (CSPRNG) based on entropy pool for random number generation, //! so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases. //! However, this means that `/dev/urandom` can yield somewhat predictable randomness //! if the entropy pool is very small, such as immediately after first booting. //! Linux 3.17 added the `getrandom(2)` system call which solves the issue: it blocks if entropy //! pool is not initialized yet, but it does not block once initialized. //! `OsRng` tries to use `getrandom(2)` if available, and use `/dev/urandom` fallback if not. //! If an application does not have `getrandom` and likely to be run soon after first booting, //! or on a system with very few entropy sources, one should consider using `/dev/random` via //! `ReaderRng`. //! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no difference //! between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random` //! and `/dev/urandom` may block once if the CSPRNG has not seeded yet.) #![unstable(feature = "rand")] use prelude::v1::*; use cell::RefCell; use io; use mem; use rc::Rc; #[cfg(target_pointer_width = "32")] use core_rand::IsaacRng as IsaacWordRng; #[cfg(target_pointer_width = "64")] use core_rand::Isaac64Rng as IsaacWordRng; pub use core_rand::{Rand, Rng, SeedableRng}; pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng}; pub use core_rand::reseeding; pub use rand::os::OsRng; pub mod os; pub mod reader; /// The standard RNG. This is designed to be efficient on the current /// platform. #[derive(Copy, Clone)] pub struct StdRng { rng: IsaacWordRng, } impl StdRng { /// Create a randomly seeded instance of `StdRng`. /// /// This is a very expensive operation as it has to read /// randomness from the operating system and use this in an /// expensive seeding operation. If one is only generating a small /// number of random numbers, or doesn't need the utmost speed for /// generating each number, `thread_rng` and/or `random` may be more /// appropriate. /// /// Reading the randomness from the OS may fail, and any error is /// propagated via the `IoResult` return value. pub fn new() -> io::Result { OsRng::new().map(|mut r| StdRng { rng: r.gen() }) } } impl Rng for StdRng { #[inline] fn next_u32(&mut self) -> u32 { self.rng.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.rng.next_u64() } } impl<'a> SeedableRng<&'a [usize]> for StdRng { fn reseed(&mut self, seed: &'a [usize]) { // the internal RNG can just be seeded from the above // randomness. self.rng.reseed(unsafe {mem::transmute(seed)}) } fn from_seed(seed: &'a [usize]) -> StdRng { StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) } } } /// Controls how the thread-local RNG is reseeded. struct ThreadRngReseeder; impl reseeding::Reseeder for ThreadRngReseeder { fn reseed(&mut self, rng: &mut StdRng) { *rng = match StdRng::new() { Ok(r) => r, Err(e) => panic!("could not reseed thread_rng: {}", e) } } } const THREAD_RNG_RESEED_THRESHOLD: usize = 32_768; type ThreadRngInner = reseeding::ReseedingRng; /// The thread-local RNG. #[derive(Clone)] pub struct ThreadRng { rng: Rc>, } /// Retrieve the lazily-initialized thread-local random number /// generator, seeded by the system. Intended to be used in method /// chaining style, e.g. `thread_rng().gen::()`. /// /// The RNG provided will reseed itself from the operating system /// after generating a certain amount of randomness. /// /// The internal RNG used is platform and architecture dependent, even /// if the operating system random number generator is rigged to give /// the same sequence always. If absolute consistency is required, /// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`. pub fn thread_rng() -> ThreadRng { // used to make space in TLS for a random number generator thread_local!(static THREAD_RNG_KEY: Rc> = { let r = match StdRng::new() { Ok(r) => r, Err(e) => panic!("could not initialize thread_rng: {}", e) }; let rng = reseeding::ReseedingRng::new(r, THREAD_RNG_RESEED_THRESHOLD, ThreadRngReseeder); Rc::new(RefCell::new(rng)) }); ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) } } impl Rng for ThreadRng { fn next_u32(&mut self) -> u32 { self.rng.borrow_mut().next_u32() } fn next_u64(&mut self) -> u64 { self.rng.borrow_mut().next_u64() } #[inline] fn fill_bytes(&mut self, bytes: &mut [u8]) { self.rng.borrow_mut().fill_bytes(bytes) } }