// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] // FIXME: remove this after snapshot, and Results are handled #![allow(unused_must_use)] use metadata::common as c; use metadata::cstore as cstore; use driver::session::Session; use metadata::decoder; use middle::def; use metadata::encoder as e; use middle::region; use metadata::tydecode; use metadata::tydecode::{DefIdSource, NominalType, TypeWithId, TypeParameter}; use metadata::tydecode::{RegionParameter}; use metadata::tyencode; use middle::mem_categorization::Typer; use middle::subst; use middle::subst::VecPerParamSpace; use middle::typeck::{MethodCall, MethodCallee, MethodOrigin}; use middle::{ty, typeck}; use util::ppaux::ty_to_string; use syntax::{ast, ast_map, ast_util, codemap, fold}; use syntax::ast_util::PostExpansionMethod; use syntax::codemap::Span; use syntax::fold::Folder; use syntax::parse::token; use syntax::ptr::P; use syntax; use libc; use std::io::Seek; use std::mem; use std::gc::GC; use std::rc::Rc; use rbml::io::SeekableMemWriter; use rbml::{reader, writer}; use rbml; use serialize; use serialize::{Decodable, Decoder, DecoderHelpers, Encodable}; use serialize::{EncoderHelpers}; #[cfg(test)] use syntax::parse; #[cfg(test)] use syntax::print::pprust; struct DecodeContext<'a, 'b, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, cdata: &'b cstore::crate_metadata, from_id_range: ast_util::IdRange, to_id_range: ast_util::IdRange } trait tr { fn tr(&self, dcx: &DecodeContext) -> Self; } trait tr_intern { fn tr_intern(&self, dcx: &DecodeContext) -> ast::DefId; } pub type Encoder<'a> = writer::Encoder<'a, SeekableMemWriter>; // ______________________________________________________________________ // Top-level methods. pub fn encode_inlined_item(ecx: &e::EncodeContext, rbml_w: &mut Encoder, ii: e::InlinedItemRef) { let id = match ii { e::IIItemRef(i) => i.id, e::IIForeignRef(i) => i.id, e::IITraitItemRef(_, &ast::ProvidedMethod(ref m)) => m.id, e::IITraitItemRef(_, &ast::RequiredMethod(ref m)) => m.id, e::IITraitItemRef(_, &ast::TypeTraitItem(ref ti)) => ti.id, e::IIImplItemRef(_, &ast::MethodImplItem(ref m)) => m.id, e::IIImplItemRef(_, &ast::TypeImplItem(ref ti)) => ti.id, }; debug!("> Encoding inlined item: {} ({})", ecx.tcx.map.path_to_string(id), rbml_w.writer.tell()); // Folding could be avoided with a smarter encoder. let ii = simplify_ast(ii); let id_range = ast_util::compute_id_range_for_inlined_item(&ii); rbml_w.start_tag(c::tag_ast as uint); id_range.encode(rbml_w); encode_ast(rbml_w, &ii); encode_side_tables_for_ii(ecx, rbml_w, &ii); rbml_w.end_tag(); debug!("< Encoded inlined fn: {} ({})", ecx.tcx.map.path_to_string(id), rbml_w.writer.tell()); } impl<'a, 'b, 'c, 'tcx> ast_map::FoldOps for &'a DecodeContext<'b, 'c, 'tcx> { fn new_id(&self, id: ast::NodeId) -> ast::NodeId { if id == ast::DUMMY_NODE_ID { // Used by ast_map to map the NodeInlinedParent. self.tcx.sess.next_node_id() } else { self.tr_id(id) } } fn new_def_id(&self, def_id: ast::DefId) -> ast::DefId { self.tr_def_id(def_id) } fn new_span(&self, span: Span) -> Span { self.tr_span(span) } } pub fn decode_inlined_item<'tcx>(cdata: &cstore::crate_metadata, tcx: &ty::ctxt<'tcx>, path: Vec, par_doc: rbml::Doc) -> Result<&'tcx ast::InlinedItem, Vec> { match par_doc.opt_child(c::tag_ast) { None => Err(path), Some(ast_doc) => { let mut path_as_str = None; debug!("> Decoding inlined fn: {}::?", { // Do an Option dance to use the path after it is moved below. let s = ast_map::path_to_string(ast_map::Values(path.iter())); path_as_str = Some(s); path_as_str.as_ref().map(|x| x.as_slice()) }); let mut ast_dsr = reader::Decoder::new(ast_doc); let from_id_range = Decodable::decode(&mut ast_dsr).unwrap(); let to_id_range = reserve_id_range(&tcx.sess, from_id_range); let dcx = &DecodeContext { cdata: cdata, tcx: tcx, from_id_range: from_id_range, to_id_range: to_id_range }; let raw_ii = decode_ast(ast_doc); let ii = ast_map::map_decoded_item(&dcx.tcx.map, path, raw_ii, dcx); let ident = match *ii { ast::IIItem(ref i) => i.ident, ast::IIForeign(ref i) => i.ident, ast::IITraitItem(_, ref ti) => { match *ti { ast::ProvidedMethod(ref m) => m.pe_ident(), ast::RequiredMethod(ref ty_m) => ty_m.ident, ast::TypeTraitItem(ref ti) => ti.ident, } }, ast::IIImplItem(_, ref m) => { match *m { ast::MethodImplItem(ref m) => m.pe_ident(), ast::TypeImplItem(ref ti) => ti.ident, } } }; debug!("Fn named: {}", token::get_ident(ident)); debug!("< Decoded inlined fn: {}::{}", path_as_str.unwrap(), token::get_ident(ident)); region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, ii); decode_side_tables(dcx, ast_doc); match *ii { ast::IIItem(ref i) => { debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<", syntax::print::pprust::item_to_string(&**i)); } _ => { } } Ok(ii) } } } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST fn reserve_id_range(sess: &Session, from_id_range: ast_util::IdRange) -> ast_util::IdRange { // Handle the case of an empty range: if from_id_range.empty() { return from_id_range; } let cnt = from_id_range.max - from_id_range.min; let to_id_min = sess.reserve_node_ids(cnt); let to_id_max = to_id_min + cnt; ast_util::IdRange { min: to_id_min, max: to_id_max } } impl<'a, 'b, 'tcx> DecodeContext<'a, 'b, 'tcx> { pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId { /*! * Translates an internal id, meaning a node id that is known * to refer to some part of the item currently being inlined, * such as a local variable or argument. All naked node-ids * that appear in types have this property, since if something * might refer to an external item we would use a def-id to * allow for the possibility that the item resides in another * crate. */ // from_id_range should be non-empty assert!(!self.from_id_range.empty()); (id - self.from_id_range.min + self.to_id_range.min) } pub fn tr_def_id(&self, did: ast::DefId) -> ast::DefId { /*! * Translates an EXTERNAL def-id, converting the crate number * from the one used in the encoded data to the current crate * numbers.. By external, I mean that it be translated to a * reference to the item in its original crate, as opposed to * being translated to a reference to the inlined version of * the item. This is typically, but not always, what you * want, because most def-ids refer to external things like * types or other fns that may or may not be inlined. Note * that even when the inlined function is referencing itself * recursively, we would want `tr_def_id` for that * reference--- conceptually the function calls the original, * non-inlined version, and trans deals with linking that * recursive call to the inlined copy. * * However, there are a *few* cases where def-ids are used but * we know that the thing being referenced is in fact *internal* * to the item being inlined. In those cases, you should use * `tr_intern_def_id()` below. */ decoder::translate_def_id(self.cdata, did) } pub fn tr_intern_def_id(&self, did: ast::DefId) -> ast::DefId { /*! * Translates an INTERNAL def-id, meaning a def-id that is * known to refer to some part of the item currently being * inlined. In that case, we want to convert the def-id to * refer to the current crate and to the new, inlined node-id. */ assert_eq!(did.krate, ast::LOCAL_CRATE); ast::DefId { krate: ast::LOCAL_CRATE, node: self.tr_id(did.node) } } pub fn tr_span(&self, _span: Span) -> Span { codemap::DUMMY_SP // FIXME (#1972): handle span properly } } impl tr_intern for ast::DefId { fn tr_intern(&self, dcx: &DecodeContext) -> ast::DefId { dcx.tr_intern_def_id(*self) } } impl tr for ast::DefId { fn tr(&self, dcx: &DecodeContext) -> ast::DefId { dcx.tr_def_id(*self) } } impl tr for Option { fn tr(&self, dcx: &DecodeContext) -> Option { self.map(|d| dcx.tr_def_id(d)) } } impl tr for Span { fn tr(&self, dcx: &DecodeContext) -> Span { dcx.tr_span(*self) } } trait def_id_encoder_helpers { fn emit_def_id(&mut self, did: ast::DefId); } impl, E> def_id_encoder_helpers for S { fn emit_def_id(&mut self, did: ast::DefId) { did.encode(self).ok().unwrap() } } trait def_id_decoder_helpers { fn read_def_id(&mut self, dcx: &DecodeContext) -> ast::DefId; fn read_def_id_nodcx(&mut self, cdata: &cstore::crate_metadata) -> ast::DefId; } impl, E> def_id_decoder_helpers for D { fn read_def_id(&mut self, dcx: &DecodeContext) -> ast::DefId { let did: ast::DefId = Decodable::decode(self).ok().unwrap(); did.tr(dcx) } fn read_def_id_nodcx(&mut self, cdata: &cstore::crate_metadata) -> ast::DefId { let did: ast::DefId = Decodable::decode(self).ok().unwrap(); decoder::translate_def_id(cdata, did) } } // ______________________________________________________________________ // Encoding and decoding the AST itself // // The hard work is done by an autogenerated module astencode_gen. To // regenerate astencode_gen, run src/etc/gen-astencode. It will // replace astencode_gen with a dummy file and regenerate its // contents. If you get compile errors, the dummy file // remains---resolve the errors and then rerun astencode_gen. // Annoying, I know, but hopefully only temporary. // // When decoding, we have to renumber the AST so that the node ids that // appear within are disjoint from the node ids in our existing ASTs. // We also have to adjust the spans: for now we just insert a dummy span, // but eventually we should add entries to the local codemap as required. fn encode_ast(rbml_w: &mut Encoder, item: &ast::InlinedItem) { rbml_w.start_tag(c::tag_tree as uint); item.encode(rbml_w); rbml_w.end_tag(); } struct NestedItemsDropper; impl Folder for NestedItemsDropper { fn fold_block(&mut self, blk: P) -> P { blk.and_then(|ast::Block {id, stmts, expr, rules, span, ..}| { let stmts_sans_items = stmts.into_iter().filter_map(|stmt| { let use_stmt = match stmt.node { ast::StmtExpr(_, _) | ast::StmtSemi(_, _) => true, ast::StmtDecl(ref decl, _) => { match decl.node { ast::DeclLocal(_) => true, ast::DeclItem(_) => false, } } ast::StmtMac(..) => fail!("unexpanded macro in astencode") }; if use_stmt { Some(stmt) } else { None } }).collect(); let blk_sans_items = P(ast::Block { view_items: Vec::new(), // I don't know if we need the view_items // here, but it doesn't break tests! stmts: stmts_sans_items, expr: expr, id: id, rules: rules, span: span, }); fold::noop_fold_block(blk_sans_items, self) }) } } // Produces a simplified copy of the AST which does not include things // that we do not need to or do not want to export. For example, we // do not include any nested items: if these nested items are to be // inlined, their AST will be exported separately (this only makes // sense because, in Rust, nested items are independent except for // their visibility). // // As it happens, trans relies on the fact that we do not export // nested items, as otherwise it would get confused when translating // inlined items. fn simplify_ast(ii: e::InlinedItemRef) -> ast::InlinedItem { let mut fld = NestedItemsDropper; match ii { // HACK we're not dropping items. e::IIItemRef(i) => { ast::IIItem(fold::noop_fold_item(P(i.clone()), &mut fld) .expect_one("expected one item")) } e::IITraitItemRef(d, ti) => { ast::IITraitItem(d, match *ti { ast::ProvidedMethod(ref m) => { ast::ProvidedMethod( fold::noop_fold_method(m.clone(), &mut fld) .expect_one("noop_fold_method must produce \ exactly one method")) } ast::RequiredMethod(ref ty_m) => { ast::RequiredMethod( fold::noop_fold_type_method(ty_m.clone(), &mut fld)) } ast::TypeTraitItem(ref associated_type) => { ast::TypeTraitItem( P(fold::noop_fold_associated_type( (**associated_type).clone(), &mut fld))) } }) } e::IIImplItemRef(d, m) => { ast::IIImplItem(d, match *m { ast::MethodImplItem(ref m) => { ast::MethodImplItem( fold::noop_fold_method(m.clone(), &mut fld) .expect_one("noop_fold_method must produce \ exactly one method")) } ast::TypeImplItem(ref td) => { ast::TypeImplItem( P(fold::noop_fold_typedef((**td).clone(), &mut fld))) } }) } e::IIForeignRef(i) => { ast::IIForeign(fold::noop_fold_foreign_item(P(i.clone()), &mut fld)) } } } fn decode_ast(par_doc: rbml::Doc) -> ast::InlinedItem { let chi_doc = par_doc.get(c::tag_tree as uint); let mut d = reader::Decoder::new(chi_doc); Decodable::decode(&mut d).unwrap() } // ______________________________________________________________________ // Encoding and decoding of ast::def fn decode_def(dcx: &DecodeContext, doc: rbml::Doc) -> def::Def { let mut dsr = reader::Decoder::new(doc); let def: def::Def = Decodable::decode(&mut dsr).unwrap(); def.tr(dcx) } impl tr for def::Def { fn tr(&self, dcx: &DecodeContext) -> def::Def { match *self { def::DefFn(did, p) => def::DefFn(did.tr(dcx), p), def::DefStaticMethod(did, wrapped_did2, p) => { def::DefStaticMethod(did.tr(dcx), match wrapped_did2 { def::FromTrait(did2) => { def::FromTrait(did2.tr(dcx)) } def::FromImpl(did2) => { def::FromImpl(did2.tr(dcx)) } }, p) } def::DefMethod(did0, did1) => { def::DefMethod(did0.tr(dcx), did1.map(|did1| did1.tr(dcx))) } def::DefSelfTy(nid) => { def::DefSelfTy(dcx.tr_id(nid)) } def::DefMod(did) => { def::DefMod(did.tr(dcx)) } def::DefForeignMod(did) => { def::DefForeignMod(did.tr(dcx)) } def::DefStatic(did, m) => { def::DefStatic(did.tr(dcx), m) } def::DefLocal(nid) => { def::DefLocal(dcx.tr_id(nid)) } def::DefVariant(e_did, v_did, is_s) => { def::DefVariant(e_did.tr(dcx), v_did.tr(dcx), is_s) }, def::DefTrait(did) => def::DefTrait(did.tr(dcx)), def::DefTy(did, is_enum) => def::DefTy(did.tr(dcx), is_enum), def::DefAssociatedTy(did) => def::DefAssociatedTy(did.tr(dcx)), def::DefPrimTy(p) => def::DefPrimTy(p), def::DefTyParam(s, did, v) => def::DefTyParam(s, did.tr(dcx), v), def::DefUse(did) => def::DefUse(did.tr(dcx)), def::DefUpvar(nid1, def, depth, nid2, nid3) => { def::DefUpvar(dcx.tr_id(nid1), box(GC) (*def).tr(dcx), depth, dcx.tr_id(nid2), dcx.tr_id(nid3)) } def::DefStruct(did) => def::DefStruct(did.tr(dcx)), def::DefRegion(nid) => def::DefRegion(dcx.tr_id(nid)), def::DefTyParamBinder(nid) => { def::DefTyParamBinder(dcx.tr_id(nid)) } def::DefLabel(nid) => def::DefLabel(dcx.tr_id(nid)) } } } // ______________________________________________________________________ // Encoding and decoding of ancillary information impl tr for ty::Region { fn tr(&self, dcx: &DecodeContext) -> ty::Region { match *self { ty::ReLateBound(id, br) => { ty::ReLateBound(dcx.tr_id(id), br.tr(dcx)) } ty::ReEarlyBound(id, space, index, ident) => { ty::ReEarlyBound(dcx.tr_id(id), space, index, ident) } ty::ReScope(id) => { ty::ReScope(dcx.tr_id(id)) } ty::ReEmpty | ty::ReStatic | ty::ReInfer(..) => { *self } ty::ReFree(ref fr) => { ty::ReFree(ty::FreeRegion {scope_id: dcx.tr_id(fr.scope_id), bound_region: fr.bound_region.tr(dcx)}) } } } } impl tr for ty::BoundRegion { fn tr(&self, dcx: &DecodeContext) -> ty::BoundRegion { match *self { ty::BrAnon(_) | ty::BrFresh(_) => *self, ty::BrNamed(id, ident) => ty::BrNamed(dcx.tr_def_id(id), ident), } } } impl tr for ty::TraitStore { fn tr(&self, dcx: &DecodeContext) -> ty::TraitStore { match *self { ty::RegionTraitStore(r, m) => { ty::RegionTraitStore(r.tr(dcx), m) } ty::UniqTraitStore => ty::UniqTraitStore } } } // ______________________________________________________________________ // Encoding and decoding of freevar information fn encode_freevar_entry(rbml_w: &mut Encoder, fv: &ty::Freevar) { (*fv).encode(rbml_w).unwrap(); } fn encode_capture_mode(rbml_w: &mut Encoder, cm: ast::CaptureClause) { cm.encode(rbml_w).unwrap(); } trait rbml_decoder_helper { fn read_freevar_entry(&mut self, dcx: &DecodeContext) -> ty::Freevar; fn read_capture_mode(&mut self) -> ast::CaptureClause; } impl<'a> rbml_decoder_helper for reader::Decoder<'a> { fn read_freevar_entry(&mut self, dcx: &DecodeContext) -> ty::Freevar { let fv: ty::Freevar = Decodable::decode(self).unwrap(); fv.tr(dcx) } fn read_capture_mode(&mut self) -> ast::CaptureClause { let cm: ast::CaptureClause = Decodable::decode(self).unwrap(); cm } } impl tr for ty::Freevar { fn tr(&self, dcx: &DecodeContext) -> ty::Freevar { ty::Freevar { def: self.def.tr(dcx), span: self.span.tr(dcx), } } } impl tr for ty::UpvarBorrow { fn tr(&self, dcx: &DecodeContext) -> ty::UpvarBorrow { ty::UpvarBorrow { kind: self.kind, region: self.region.tr(dcx) } } } // ______________________________________________________________________ // Encoding and decoding of MethodCallee trait read_method_callee_helper { fn read_method_callee(&mut self, dcx: &DecodeContext) -> (typeck::ExprAdjustment, MethodCallee); } fn encode_method_callee(ecx: &e::EncodeContext, rbml_w: &mut Encoder, adjustment: typeck::ExprAdjustment, method: &MethodCallee) { use serialize::Encoder; rbml_w.emit_struct("MethodCallee", 4, |rbml_w| { rbml_w.emit_struct_field("adjustment", 0u, |rbml_w| { adjustment.encode(rbml_w) }); rbml_w.emit_struct_field("origin", 1u, |rbml_w| { Ok(rbml_w.emit_method_origin(ecx, &method.origin)) }); rbml_w.emit_struct_field("ty", 2u, |rbml_w| { Ok(rbml_w.emit_ty(ecx, method.ty)) }); rbml_w.emit_struct_field("substs", 3u, |rbml_w| { Ok(rbml_w.emit_substs(ecx, &method.substs)) }) }).unwrap(); } impl<'a> read_method_callee_helper for reader::Decoder<'a> { fn read_method_callee(&mut self, dcx: &DecodeContext) -> (typeck::ExprAdjustment, MethodCallee) { self.read_struct("MethodCallee", 4, |this| { let adjustment = this.read_struct_field("adjustment", 0, |this| { Decodable::decode(this) }).unwrap(); Ok((adjustment, MethodCallee { origin: this.read_struct_field("origin", 1, |this| { Ok(this.read_method_origin(dcx)) }).unwrap(), ty: this.read_struct_field("ty", 2, |this| { Ok(this.read_ty(dcx)) }).unwrap(), substs: this.read_struct_field("substs", 3, |this| { Ok(this.read_substs(dcx)) }).unwrap() })) }).unwrap() } } impl tr for MethodOrigin { fn tr(&self, dcx: &DecodeContext) -> MethodOrigin { match *self { typeck::MethodStatic(did) => typeck::MethodStatic(did.tr(dcx)), typeck::MethodStaticUnboxedClosure(did) => { typeck::MethodStaticUnboxedClosure(did.tr(dcx)) } typeck::MethodParam(ref mp) => { typeck::MethodParam( typeck::MethodParam { // def-id is already translated when we read it out trait_ref: mp.trait_ref.clone(), method_num: mp.method_num, } ) } typeck::MethodObject(ref mo) => { typeck::MethodObject( typeck::MethodObject { trait_ref: mo.trait_ref.clone(), .. *mo } ) } } } } // ______________________________________________________________________ // Encoding and decoding vtable_res pub fn encode_vtable_res(ecx: &e::EncodeContext, rbml_w: &mut Encoder, dr: &typeck::vtable_res) { // can't autogenerate this code because automatic code of // ty::t doesn't work, and there is no way (atm) to have // hand-written encoding routines combine with auto-generated // ones. perhaps we should fix this. encode_vec_per_param_space( rbml_w, dr, |rbml_w, param_tables| encode_vtable_param_res(ecx, rbml_w, param_tables)) } pub fn encode_vtable_param_res(ecx: &e::EncodeContext, rbml_w: &mut Encoder, param_tables: &typeck::vtable_param_res) { rbml_w.emit_from_vec(param_tables.as_slice(), |rbml_w, vtable_origin| { Ok(encode_vtable_origin(ecx, rbml_w, vtable_origin)) }).unwrap() } pub fn encode_unboxed_closure_kind(ebml_w: &mut Encoder, kind: ty::UnboxedClosureKind) { use serialize::Encoder; ebml_w.emit_enum("UnboxedClosureKind", |ebml_w| { match kind { ty::FnUnboxedClosureKind => { ebml_w.emit_enum_variant("FnUnboxedClosureKind", 0, 3, |_| { Ok(()) }) } ty::FnMutUnboxedClosureKind => { ebml_w.emit_enum_variant("FnMutUnboxedClosureKind", 1, 3, |_| { Ok(()) }) } ty::FnOnceUnboxedClosureKind => { ebml_w.emit_enum_variant("FnOnceUnboxedClosureKind", 2, 3, |_| { Ok(()) }) } } }).unwrap() } pub fn encode_vtable_origin(ecx: &e::EncodeContext, rbml_w: &mut Encoder, vtable_origin: &typeck::vtable_origin) { use serialize::Encoder; rbml_w.emit_enum("vtable_origin", |rbml_w| { match *vtable_origin { typeck::vtable_static(def_id, ref substs, ref vtable_res) => { rbml_w.emit_enum_variant("vtable_static", 0u, 3u, |rbml_w| { rbml_w.emit_enum_variant_arg(0u, |rbml_w| { Ok(rbml_w.emit_def_id(def_id)) }); rbml_w.emit_enum_variant_arg(1u, |rbml_w| { Ok(rbml_w.emit_substs(ecx, substs)) }); rbml_w.emit_enum_variant_arg(2u, |rbml_w| { Ok(encode_vtable_res(ecx, rbml_w, vtable_res)) }) }) } typeck::vtable_param(pn, bn) => { rbml_w.emit_enum_variant("vtable_param", 1u, 3u, |rbml_w| { rbml_w.emit_enum_variant_arg(0u, |rbml_w| { pn.encode(rbml_w) }); rbml_w.emit_enum_variant_arg(1u, |rbml_w| { rbml_w.emit_uint(bn) }) }) } typeck::vtable_unboxed_closure(def_id) => { rbml_w.emit_enum_variant("vtable_unboxed_closure", 2u, 1u, |rbml_w| { rbml_w.emit_enum_variant_arg(0u, |rbml_w| { Ok(rbml_w.emit_def_id(def_id)) }) }) } typeck::vtable_error => { rbml_w.emit_enum_variant("vtable_error", 3u, 3u, |_rbml_w| { Ok(()) }) } } }).unwrap() } pub trait vtable_decoder_helpers { fn read_vec_per_param_space(&mut self, f: |&mut Self| -> T) -> VecPerParamSpace; fn read_vtable_res_with_key(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> (typeck::ExprAdjustment, typeck::vtable_res); fn read_vtable_res(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> typeck::vtable_res; fn read_vtable_param_res(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> typeck::vtable_param_res; fn read_vtable_origin(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> typeck::vtable_origin; } impl<'a> vtable_decoder_helpers for reader::Decoder<'a> { fn read_vec_per_param_space(&mut self, f: |&mut reader::Decoder<'a>| -> T) -> VecPerParamSpace { let types = self.read_to_vec(|this| Ok(f(this))).unwrap(); let selfs = self.read_to_vec(|this| Ok(f(this))).unwrap(); let fns = self.read_to_vec(|this| Ok(f(this))).unwrap(); VecPerParamSpace::new(types, selfs, fns) } fn read_vtable_res_with_key(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> (typeck::ExprAdjustment, typeck::vtable_res) { self.read_struct("VtableWithKey", 2, |this| { let adjustment = this.read_struct_field("adjustment", 0, |this| { Decodable::decode(this) }).unwrap(); Ok((adjustment, this.read_struct_field("vtable_res", 1, |this| { Ok(this.read_vtable_res(tcx, cdata)) }).unwrap())) }).unwrap() } fn read_vtable_res(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> typeck::vtable_res { self.read_vec_per_param_space( |this| this.read_vtable_param_res(tcx, cdata)) } fn read_vtable_param_res(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> typeck::vtable_param_res { self.read_to_vec(|this| Ok(this.read_vtable_origin(tcx, cdata))) .unwrap().into_iter().collect() } fn read_vtable_origin(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> typeck::vtable_origin { self.read_enum("vtable_origin", |this| { this.read_enum_variant(["vtable_static", "vtable_param", "vtable_error", "vtable_unboxed_closure"], |this, i| { Ok(match i { 0 => { typeck::vtable_static( this.read_enum_variant_arg(0u, |this| { Ok(this.read_def_id_nodcx(cdata)) }).unwrap(), this.read_enum_variant_arg(1u, |this| { Ok(this.read_substs_nodcx(tcx, cdata)) }).unwrap(), this.read_enum_variant_arg(2u, |this| { Ok(this.read_vtable_res(tcx, cdata)) }).unwrap() ) } 1 => { typeck::vtable_param( this.read_enum_variant_arg(0u, |this| { Decodable::decode(this) }).unwrap(), this.read_enum_variant_arg(1u, |this| { this.read_uint() }).unwrap() ) } 2 => { typeck::vtable_unboxed_closure( this.read_enum_variant_arg(0u, |this| { Ok(this.read_def_id_nodcx(cdata)) }).unwrap() ) } 3 => { typeck::vtable_error } _ => fail!("bad enum variant") }) }) }).unwrap() } } // ___________________________________________________________________________ // fn encode_vec_per_param_space(rbml_w: &mut Encoder, v: &subst::VecPerParamSpace, f: |&mut Encoder, &T|) { for &space in subst::ParamSpace::all().iter() { rbml_w.emit_from_vec(v.get_slice(space), |rbml_w, n| Ok(f(rbml_w, n))).unwrap(); } } // ______________________________________________________________________ // Encoding and decoding the side tables trait get_ty_str_ctxt<'tcx> { fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a, 'tcx>; } impl<'a, 'tcx> get_ty_str_ctxt<'tcx> for e::EncodeContext<'a, 'tcx> { fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a, 'tcx> { tyencode::ctxt { diag: self.tcx.sess.diagnostic(), ds: e::def_to_string, tcx: self.tcx, abbrevs: &self.type_abbrevs } } } trait rbml_writer_helpers { fn emit_closure_type(&mut self, ecx: &e::EncodeContext, closure_type: &ty::ClosureTy); fn emit_method_origin(&mut self, ecx: &e::EncodeContext, method_origin: &typeck::MethodOrigin); fn emit_ty(&mut self, ecx: &e::EncodeContext, ty: ty::t); fn emit_tys(&mut self, ecx: &e::EncodeContext, tys: &[ty::t]); fn emit_type_param_def(&mut self, ecx: &e::EncodeContext, type_param_def: &ty::TypeParameterDef); fn emit_trait_ref(&mut self, ecx: &e::EncodeContext, ty: &ty::TraitRef); fn emit_polytype(&mut self, ecx: &e::EncodeContext, pty: ty::Polytype); fn emit_substs(&mut self, ecx: &e::EncodeContext, substs: &subst::Substs); fn emit_existential_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::ExistentialBounds); fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds); fn emit_auto_adjustment(&mut self, ecx: &e::EncodeContext, adj: &ty::AutoAdjustment); fn emit_autoref(&mut self, ecx: &e::EncodeContext, autoref: &ty::AutoRef); fn emit_auto_deref_ref(&mut self, ecx: &e::EncodeContext, auto_deref_ref: &ty::AutoDerefRef); fn emit_unsize_kind(&mut self, ecx: &e::EncodeContext, uk: &ty::UnsizeKind); } impl<'a> rbml_writer_helpers for Encoder<'a> { fn emit_closure_type(&mut self, ecx: &e::EncodeContext, closure_type: &ty::ClosureTy) { self.emit_opaque(|this| { Ok(e::write_closure_type(ecx, this, closure_type)) }); } fn emit_method_origin(&mut self, ecx: &e::EncodeContext, method_origin: &typeck::MethodOrigin) { use serialize::Encoder; self.emit_enum("MethodOrigin", |this| { match *method_origin { typeck::MethodStatic(def_id) => { this.emit_enum_variant("MethodStatic", 0, 1, |this| { Ok(this.emit_def_id(def_id)) }) } typeck::MethodStaticUnboxedClosure(def_id) => { this.emit_enum_variant("MethodStaticUnboxedClosure", 1, 1, |this| { Ok(this.emit_def_id(def_id)) }) } typeck::MethodParam(ref p) => { this.emit_enum_variant("MethodParam", 2, 1, |this| { this.emit_struct("MethodParam", 2, |this| { try!(this.emit_struct_field("trait_ref", 0, |this| { Ok(this.emit_trait_ref(ecx, &*p.trait_ref)) })); try!(this.emit_struct_field("method_num", 0, |this| { this.emit_uint(p.method_num) })); Ok(()) }) }) } typeck::MethodObject(ref o) => { this.emit_enum_variant("MethodObject", 3, 1, |this| { this.emit_struct("MethodObject", 2, |this| { try!(this.emit_struct_field("trait_ref", 0, |this| { Ok(this.emit_trait_ref(ecx, &*o.trait_ref)) })); try!(this.emit_struct_field("object_trait_id", 0, |this| { Ok(this.emit_def_id(o.object_trait_id)) })); try!(this.emit_struct_field("method_num", 0, |this| { this.emit_uint(o.method_num) })); try!(this.emit_struct_field("real_index", 0, |this| { this.emit_uint(o.real_index) })); Ok(()) }) }) } } }); } fn emit_ty(&mut self, ecx: &e::EncodeContext, ty: ty::t) { self.emit_opaque(|this| Ok(e::write_type(ecx, this, ty))); } fn emit_tys(&mut self, ecx: &e::EncodeContext, tys: &[ty::t]) { self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty))); } fn emit_trait_ref(&mut self, ecx: &e::EncodeContext, trait_ref: &ty::TraitRef) { self.emit_opaque(|this| Ok(e::write_trait_ref(ecx, this, trait_ref))); } fn emit_type_param_def(&mut self, ecx: &e::EncodeContext, type_param_def: &ty::TypeParameterDef) { self.emit_opaque(|this| { Ok(tyencode::enc_type_param_def(this.writer, &ecx.ty_str_ctxt(), type_param_def)) }); } fn emit_polytype(&mut self, ecx: &e::EncodeContext, pty: ty::Polytype) { use serialize::Encoder; self.emit_struct("Polytype", 2, |this| { this.emit_struct_field("generics", 0, |this| { this.emit_struct("Generics", 2, |this| { this.emit_struct_field("types", 0, |this| { Ok(encode_vec_per_param_space( this, &pty.generics.types, |this, def| this.emit_type_param_def(ecx, def))) }); this.emit_struct_field("regions", 1, |this| { Ok(encode_vec_per_param_space( this, &pty.generics.regions, |this, def| def.encode(this).unwrap())) }) }) }); this.emit_struct_field("ty", 1, |this| { Ok(this.emit_ty(ecx, pty.ty)) }) }); } fn emit_existential_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::ExistentialBounds) { self.emit_opaque(|this| Ok(tyencode::enc_existential_bounds(this.writer, &ecx.ty_str_ctxt(), bounds))); } fn emit_builtin_bounds(&mut self, ecx: &e::EncodeContext, bounds: &ty::BuiltinBounds) { self.emit_opaque(|this| Ok(tyencode::enc_builtin_bounds(this.writer, &ecx.ty_str_ctxt(), bounds))); } fn emit_substs(&mut self, ecx: &e::EncodeContext, substs: &subst::Substs) { self.emit_opaque(|this| Ok(tyencode::enc_substs(this.writer, &ecx.ty_str_ctxt(), substs))); } fn emit_auto_adjustment(&mut self, ecx: &e::EncodeContext, adj: &ty::AutoAdjustment) { use serialize::Encoder; self.emit_enum("AutoAdjustment", |this| { match *adj { ty::AutoAddEnv(store) => { this.emit_enum_variant("AutoAddEnv", 0, 1, |this| { this.emit_enum_variant_arg(0, |this| store.encode(this)) }) } ty::AutoDerefRef(ref auto_deref_ref) => { this.emit_enum_variant("AutoDerefRef", 1, 1, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_auto_deref_ref(ecx, auto_deref_ref))) }) } } }); } fn emit_autoref(&mut self, ecx: &e::EncodeContext, autoref: &ty::AutoRef) { use serialize::Encoder; self.emit_enum("AutoRef", |this| { match autoref { &ty::AutoPtr(r, m, None) => { this.emit_enum_variant("AutoPtr", 0, 3, |this| { this.emit_enum_variant_arg(0, |this| r.encode(this)); this.emit_enum_variant_arg(1, |this| m.encode(this)); this.emit_enum_variant_arg(2, |this| this.emit_option(|this| this.emit_option_none())) }) } &ty::AutoPtr(r, m, Some(box ref a)) => { this.emit_enum_variant("AutoPtr", 0, 3, |this| { this.emit_enum_variant_arg(0, |this| r.encode(this)); this.emit_enum_variant_arg(1, |this| m.encode(this)); this.emit_enum_variant_arg(2, |this| this.emit_option( |this| this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a))))) }) } &ty::AutoUnsize(ref uk) => { this.emit_enum_variant("AutoUnsize", 1, 1, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_unsize_kind(ecx, uk))) }) } &ty::AutoUnsizeUniq(ref uk) => { this.emit_enum_variant("AutoUnsizeUniq", 2, 1, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_unsize_kind(ecx, uk))) }) } &ty::AutoUnsafe(m, None) => { this.emit_enum_variant("AutoUnsafe", 3, 2, |this| { this.emit_enum_variant_arg(0, |this| m.encode(this)); this.emit_enum_variant_arg(1, |this| this.emit_option(|this| this.emit_option_none())) }) } &ty::AutoUnsafe(m, Some(box ref a)) => { this.emit_enum_variant("AutoUnsafe", 3, 2, |this| { this.emit_enum_variant_arg(0, |this| m.encode(this)); this.emit_enum_variant_arg(1, |this| this.emit_option( |this| this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a))))) }) } } }); } fn emit_auto_deref_ref(&mut self, ecx: &e::EncodeContext, auto_deref_ref: &ty::AutoDerefRef) { use serialize::Encoder; self.emit_struct("AutoDerefRef", 2, |this| { this.emit_struct_field("autoderefs", 0, |this| auto_deref_ref.autoderefs.encode(this)); this.emit_struct_field("autoref", 1, |this| { this.emit_option(|this| { match auto_deref_ref.autoref { None => this.emit_option_none(), Some(ref a) => this.emit_option_some(|this| Ok(this.emit_autoref(ecx, a))), } }) }) }); } fn emit_unsize_kind(&mut self, ecx: &e::EncodeContext, uk: &ty::UnsizeKind) { use serialize::Encoder; self.emit_enum("UnsizeKind", |this| { match *uk { ty::UnsizeLength(len) => { this.emit_enum_variant("UnsizeLength", 0, 1, |this| { this.emit_enum_variant_arg(0, |this| len.encode(this)) }) } ty::UnsizeStruct(box ref uk, idx) => { this.emit_enum_variant("UnsizeStruct", 1, 2, |this| { this.emit_enum_variant_arg(0, |this| Ok(this.emit_unsize_kind(ecx, uk))); this.emit_enum_variant_arg(1, |this| idx.encode(this)) }) } ty::UnsizeVtable(ty::TyTrait { def_id: def_id, bounds: ref b, substs: ref substs }, self_ty) => { this.emit_enum_variant("UnsizeVtable", 2, 4, |this| { this.emit_enum_variant_arg( 0, |this| Ok(this.emit_existential_bounds(ecx, b))); this.emit_enum_variant_arg(1, |this| def_id.encode(this)); this.emit_enum_variant_arg(2, |this| Ok(this.emit_ty(ecx, self_ty))); this.emit_enum_variant_arg(3, |this| Ok(this.emit_substs(ecx, substs))) }) } } }); } } trait write_tag_and_id { fn tag(&mut self, tag_id: c::astencode_tag, f: |&mut Self|); fn id(&mut self, id: ast::NodeId); } impl<'a> write_tag_and_id for Encoder<'a> { fn tag(&mut self, tag_id: c::astencode_tag, f: |&mut Encoder<'a>|) { self.start_tag(tag_id as uint); f(self); self.end_tag(); } fn id(&mut self, id: ast::NodeId) { self.wr_tagged_u64(c::tag_table_id as uint, id as u64); } } struct SideTableEncodingIdVisitor<'a,'b:'a> { ecx_ptr: *const libc::c_void, new_rbml_w: &'a mut Encoder<'b>, } impl<'a,'b> ast_util::IdVisitingOperation for SideTableEncodingIdVisitor<'a,'b> { fn visit_id(&self, id: ast::NodeId) { // Note: this will cause a copy of rbml_w, which is bad as // it is mutable. But I believe it's harmless since we generate // balanced EBML. // // FIXME(pcwalton): Don't copy this way. let mut new_rbml_w = unsafe { self.new_rbml_w.unsafe_clone() }; // See above let ecx: &e::EncodeContext = unsafe { mem::transmute(self.ecx_ptr) }; encode_side_tables_for_id(ecx, &mut new_rbml_w, id) } } fn encode_side_tables_for_ii(ecx: &e::EncodeContext, rbml_w: &mut Encoder, ii: &ast::InlinedItem) { rbml_w.start_tag(c::tag_table as uint); let mut new_rbml_w = unsafe { rbml_w.unsafe_clone() }; // Because the ast visitor uses @IdVisitingOperation, I can't pass in // ecx directly, but /I/ know that it'll be fine since the lifetime is // tied to the CrateContext that lives throughout this entire section. ast_util::visit_ids_for_inlined_item(ii, &SideTableEncodingIdVisitor { ecx_ptr: unsafe { mem::transmute(ecx) }, new_rbml_w: &mut new_rbml_w, }); rbml_w.end_tag(); } fn encode_side_tables_for_id(ecx: &e::EncodeContext, rbml_w: &mut Encoder, id: ast::NodeId) { let tcx = ecx.tcx; debug!("Encoding side tables for id {}", id); for def in tcx.def_map.borrow().find(&id).iter() { rbml_w.tag(c::tag_table_def, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| (*def).encode(rbml_w).unwrap()); }) } for &ty in tcx.node_types.borrow().find(&(id as uint)).iter() { rbml_w.tag(c::tag_table_node_type, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_ty(ecx, *ty); }) }) } for &item_substs in tcx.item_substs.borrow().find(&id).iter() { rbml_w.tag(c::tag_table_item_subst, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_substs(ecx, &item_substs.substs); }) }) } for &fv in tcx.freevars.borrow().find(&id).iter() { rbml_w.tag(c::tag_table_freevars, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_from_vec(fv.as_slice(), |rbml_w, fv_entry| { Ok(encode_freevar_entry(rbml_w, fv_entry)) }); }) }); for freevar in fv.iter() { match tcx.capture_mode(id) { ast::CaptureByRef => { rbml_w.tag(c::tag_table_upvar_borrow_map, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { let var_id = freevar.def.def_id().node; let upvar_id = ty::UpvarId { var_id: var_id, closure_expr_id: id }; let upvar_borrow = tcx.upvar_borrow_map.borrow() .get_copy(&upvar_id); var_id.encode(rbml_w); upvar_borrow.encode(rbml_w); }) }) } _ => {} } } } for &cm in tcx.capture_modes.borrow().find(&id).iter() { rbml_w.tag(c::tag_table_capture_modes, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { encode_capture_mode(rbml_w, *cm); }) }) } let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id }; for &pty in tcx.tcache.borrow().find(&lid).iter() { rbml_w.tag(c::tag_table_tcache, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_polytype(ecx, pty.clone()); }) }) } for &type_param_def in tcx.ty_param_defs.borrow().find(&id).iter() { rbml_w.tag(c::tag_table_param_defs, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_type_param_def(ecx, type_param_def) }) }) } let method_call = MethodCall::expr(id); for &method in tcx.method_map.borrow().find(&method_call).iter() { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { encode_method_callee(ecx, rbml_w, method_call.adjustment, method) }) }) } for &trait_ref in tcx.object_cast_map.borrow().find(&id).iter() { rbml_w.tag(c::tag_table_object_cast_map, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_trait_ref(ecx, &**trait_ref); }) }) } for &adjustment in tcx.adjustments.borrow().find(&id).iter() { match *adjustment { _ if ty::adjust_is_object(adjustment) => { let method_call = MethodCall::autoobject(id); for &method in tcx.method_map.borrow().find(&method_call).iter() { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { encode_method_callee(ecx, rbml_w, method_call.adjustment, method) }) }) } } ty::AutoDerefRef(ref adj) => { assert!(!ty::adjust_is_object(adjustment)); for autoderef in range(0, adj.autoderefs) { let method_call = MethodCall::autoderef(id, autoderef); for &method in tcx.method_map.borrow().find(&method_call).iter() { rbml_w.tag(c::tag_table_method_map, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { encode_method_callee(ecx, rbml_w, method_call.adjustment, method) }) }) } } } _ => { assert!(!ty::adjust_is_object(adjustment)); } } rbml_w.tag(c::tag_table_adjustments, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_auto_adjustment(ecx, adjustment); }) }) } for unboxed_closure in tcx.unboxed_closures .borrow() .find(&ast_util::local_def(id)) .iter() { rbml_w.tag(c::tag_table_unboxed_closures, |rbml_w| { rbml_w.id(id); rbml_w.tag(c::tag_table_val, |rbml_w| { rbml_w.emit_closure_type(ecx, &unboxed_closure.closure_type); encode_unboxed_closure_kind(rbml_w, unboxed_closure.kind) }) }) } } trait doc_decoder_helpers { fn as_int(&self) -> int; fn opt_child(&self, tag: c::astencode_tag) -> Option; } impl<'a> doc_decoder_helpers for rbml::Doc<'a> { fn as_int(&self) -> int { reader::doc_as_u64(*self) as int } fn opt_child(&self, tag: c::astencode_tag) -> Option> { reader::maybe_get_doc(*self, tag as uint) } } trait rbml_decoder_decoder_helpers { fn read_method_origin(&mut self, dcx: &DecodeContext) -> typeck::MethodOrigin; fn read_ty(&mut self, dcx: &DecodeContext) -> ty::t; fn read_tys(&mut self, dcx: &DecodeContext) -> Vec; fn read_trait_ref(&mut self, dcx: &DecodeContext) -> Rc; fn read_type_param_def(&mut self, dcx: &DecodeContext) -> ty::TypeParameterDef; fn read_polytype(&mut self, dcx: &DecodeContext) -> ty::Polytype; fn read_existential_bounds(&mut self, dcx: &DecodeContext) -> ty::ExistentialBounds; fn read_substs(&mut self, dcx: &DecodeContext) -> subst::Substs; fn read_auto_adjustment(&mut self, dcx: &DecodeContext) -> ty::AutoAdjustment; fn read_unboxed_closure(&mut self, dcx: &DecodeContext) -> ty::UnboxedClosure; fn read_auto_deref_ref(&mut self, dcx: &DecodeContext) -> ty::AutoDerefRef; fn read_autoref(&mut self, dcx: &DecodeContext) -> ty::AutoRef; fn read_unsize_kind(&mut self, dcx: &DecodeContext) -> ty::UnsizeKind; fn convert_def_id(&mut self, dcx: &DecodeContext, source: DefIdSource, did: ast::DefId) -> ast::DefId; // Versions of the type reading functions that don't need the full // DecodeContext. fn read_ty_nodcx(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> ty::t; fn read_tys_nodcx(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> Vec; fn read_substs_nodcx(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> subst::Substs; } impl<'a> rbml_decoder_decoder_helpers for reader::Decoder<'a> { fn read_ty_nodcx(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> ty::t { self.read_opaque(|_, doc| { Ok(tydecode::parse_ty_data( doc.data, cdata.cnum, doc.start, tcx, |_, id| decoder::translate_def_id(cdata, id))) }).unwrap() } fn read_tys_nodcx(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> Vec { self.read_to_vec(|this| Ok(this.read_ty_nodcx(tcx, cdata)) ) .unwrap() .into_iter() .collect() } fn read_substs_nodcx(&mut self, tcx: &ty::ctxt, cdata: &cstore::crate_metadata) -> subst::Substs { self.read_opaque(|_, doc| { Ok(tydecode::parse_substs_data( doc.data, cdata.cnum, doc.start, tcx, |_, id| decoder::translate_def_id(cdata, id))) }).unwrap() } fn read_method_origin(&mut self, dcx: &DecodeContext) -> typeck::MethodOrigin { self.read_enum("MethodOrigin", |this| { let variants = ["MethodStatic", "MethodStaticUnboxedClosure", "MethodParam", "MethodObject"]; this.read_enum_variant(variants, |this, i| { Ok(match i { 0 => { let def_id = this.read_def_id(dcx); typeck::MethodStatic(def_id) } 1 => { let def_id = this.read_def_id(dcx); typeck::MethodStaticUnboxedClosure(def_id) } 2 => { this.read_struct("MethodParam", 2, |this| { Ok(typeck::MethodParam( typeck::MethodParam { trait_ref: { this.read_struct_field("trait_ref", 0, |this| { Ok(this.read_trait_ref(dcx)) }).unwrap() }, method_num: { this.read_struct_field("method_num", 1, |this| { this.read_uint() }).unwrap() } })) }).unwrap() } 3 => { this.read_struct("MethodObject", 2, |this| { Ok(typeck::MethodObject( typeck::MethodObject { trait_ref: { this.read_struct_field("trait_ref", 0, |this| { Ok(this.read_trait_ref(dcx)) }).unwrap() }, object_trait_id: { this.read_struct_field("object_trait_id", 1, |this| { Ok(this.read_def_id(dcx)) }).unwrap() }, method_num: { this.read_struct_field("method_num", 2, |this| { this.read_uint() }).unwrap() }, real_index: { this.read_struct_field("real_index", 3, |this| { this.read_uint() }).unwrap() }, })) }).unwrap() } _ => fail!("..") }) }) }).unwrap() } fn read_ty(&mut self, dcx: &DecodeContext) -> ty::t { // Note: regions types embed local node ids. In principle, we // should translate these node ids into the new decode // context. However, we do not bother, because region types // are not used during trans. return self.read_opaque(|this, doc| { debug!("read_ty({})", type_string(doc)); let ty = tydecode::parse_ty_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a)); Ok(ty) }).unwrap(); fn type_string(doc: rbml::Doc) -> String { let mut str = String::new(); for i in range(doc.start, doc.end) { str.push_char(doc.data[i] as char); } str } } fn read_tys(&mut self, dcx: &DecodeContext) -> Vec { self.read_to_vec(|this| Ok(this.read_ty(dcx))).unwrap().into_iter().collect() } fn read_trait_ref(&mut self, dcx: &DecodeContext) -> Rc { Rc::new(self.read_opaque(|this, doc| { let ty = tydecode::parse_trait_ref_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a)); Ok(ty) }).unwrap()) } fn read_type_param_def(&mut self, dcx: &DecodeContext) -> ty::TypeParameterDef { self.read_opaque(|this, doc| { Ok(tydecode::parse_type_param_def_data( doc.data, doc.start, dcx.cdata.cnum, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_polytype(&mut self, dcx: &DecodeContext) -> ty::Polytype { self.read_struct("Polytype", 2, |this| { Ok(ty::Polytype { generics: this.read_struct_field("generics", 0, |this| { this.read_struct("Generics", 2, |this| { Ok(ty::Generics { types: this.read_struct_field("types", 0, |this| { Ok(this.read_vec_per_param_space( |this| this.read_type_param_def(dcx))) }).unwrap(), regions: this.read_struct_field("regions", 1, |this| { Ok(this.read_vec_per_param_space( |this| Decodable::decode(this).unwrap())) }).unwrap() }) }) }).unwrap(), ty: this.read_struct_field("ty", 1, |this| { Ok(this.read_ty(dcx)) }).unwrap() }) }).unwrap() } fn read_existential_bounds(&mut self, dcx: &DecodeContext) -> ty::ExistentialBounds { self.read_opaque(|this, doc| { Ok(tydecode::parse_existential_bounds_data(doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_substs(&mut self, dcx: &DecodeContext) -> subst::Substs { self.read_opaque(|this, doc| { Ok(tydecode::parse_substs_data(doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap() } fn read_auto_adjustment(&mut self, dcx: &DecodeContext) -> ty::AutoAdjustment { self.read_enum("AutoAdjustment", |this| { let variants = ["AutoAddEnv", "AutoDerefRef"]; this.read_enum_variant(variants, |this, i| { Ok(match i { 0 => { let store: ty::TraitStore = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); ty::AutoAddEnv(store.tr(dcx)) } 1 => { let auto_deref_ref: ty::AutoDerefRef = this.read_enum_variant_arg(0, |this| Ok(this.read_auto_deref_ref(dcx))).unwrap(); ty::AutoDerefRef(auto_deref_ref) } _ => fail!("bad enum variant for ty::AutoAdjustment") }) }) }).unwrap() } fn read_auto_deref_ref(&mut self, dcx: &DecodeContext) -> ty::AutoDerefRef { self.read_struct("AutoDerefRef", 2, |this| { Ok(ty::AutoDerefRef { autoderefs: this.read_struct_field("autoderefs", 0, |this| { Decodable::decode(this) }).unwrap(), autoref: this.read_struct_field("autoref", 1, |this| { this.read_option(|this, b| { if b { Ok(Some(this.read_autoref(dcx))) } else { Ok(None) } }) }).unwrap(), }) }).unwrap() } fn read_autoref(&mut self, dcx: &DecodeContext) -> ty::AutoRef { self.read_enum("AutoRef", |this| { let variants = ["AutoPtr", "AutoUnsize", "AutoUnsizeUniq", "AutoUnsafe"]; this.read_enum_variant(variants, |this, i| { Ok(match i { 0 => { let r: ty::Region = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); let m: ast::Mutability = this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap(); let a: Option> = this.read_enum_variant_arg(2, |this| this.read_option(|this, b| { if b { Ok(Some(box this.read_autoref(dcx))) } else { Ok(None) } })).unwrap(); ty::AutoPtr(r.tr(dcx), m, a) } 1 => { let uk: ty::UnsizeKind = this.read_enum_variant_arg(0, |this| Ok(this.read_unsize_kind(dcx))).unwrap(); ty::AutoUnsize(uk) } 2 => { let uk: ty::UnsizeKind = this.read_enum_variant_arg(0, |this| Ok(this.read_unsize_kind(dcx))).unwrap(); ty::AutoUnsizeUniq(uk) } 3 => { let m: ast::Mutability = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); let a: Option> = this.read_enum_variant_arg(1, |this| this.read_option(|this, b| { if b { Ok(Some(box this.read_autoref(dcx))) } else { Ok(None) } })).unwrap(); ty::AutoUnsafe(m, a) } _ => fail!("bad enum variant for ty::AutoRef") }) }) }).unwrap() } fn read_unsize_kind(&mut self, dcx: &DecodeContext) -> ty::UnsizeKind { self.read_enum("UnsizeKind", |this| { let variants = ["UnsizeLength", "UnsizeStruct", "UnsizeVtable"]; this.read_enum_variant(variants, |this, i| { Ok(match i { 0 => { let len: uint = this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap(); ty::UnsizeLength(len) } 1 => { let uk: ty::UnsizeKind = this.read_enum_variant_arg(0, |this| Ok(this.read_unsize_kind(dcx))).unwrap(); let idx: uint = this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap(); ty::UnsizeStruct(box uk, idx) } 2 => { let b = this.read_enum_variant_arg( 0, |this| Ok(this.read_existential_bounds(dcx))).unwrap(); let def_id: ast::DefId = this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap(); let self_ty = this.read_enum_variant_arg(2, |this| Ok(this.read_ty(dcx))).unwrap(); let substs = this.read_enum_variant_arg(3, |this| Ok(this.read_substs(dcx))).unwrap(); let ty_trait = ty::TyTrait { def_id: def_id.tr(dcx), bounds: b, substs: substs }; ty::UnsizeVtable(ty_trait, self_ty) } _ => fail!("bad enum variant for ty::UnsizeKind") }) }) }).unwrap() } fn read_unboxed_closure(&mut self, dcx: &DecodeContext) -> ty::UnboxedClosure { let closure_type = self.read_opaque(|this, doc| { Ok(tydecode::parse_ty_closure_data( doc.data, dcx.cdata.cnum, doc.start, dcx.tcx, |s, a| this.convert_def_id(dcx, s, a))) }).unwrap(); let variants = [ "FnUnboxedClosureKind", "FnMutUnboxedClosureKind", "FnOnceUnboxedClosureKind" ]; let kind = self.read_enum_variant(variants, |_, i| { Ok(match i { 0 => ty::FnUnboxedClosureKind, 1 => ty::FnMutUnboxedClosureKind, 2 => ty::FnOnceUnboxedClosureKind, _ => fail!("bad enum variant for ty::UnboxedClosureKind"), }) }).unwrap(); ty::UnboxedClosure { closure_type: closure_type, kind: kind, } } fn convert_def_id(&mut self, dcx: &DecodeContext, source: tydecode::DefIdSource, did: ast::DefId) -> ast::DefId { /*! * Converts a def-id that appears in a type. The correct * translation will depend on what kind of def-id this is. * This is a subtle point: type definitions are not * inlined into the current crate, so if the def-id names * a nominal type or type alias, then it should be * translated to refer to the source crate. * * However, *type parameters* are cloned along with the function * they are attached to. So we should translate those def-ids * to refer to the new, cloned copy of the type parameter. * We only see references to free type parameters in the body of * an inlined function. In such cases, we need the def-id to * be a local id so that the TypeContents code is able to lookup * the relevant info in the ty_param_defs table. * * *Region parameters*, unfortunately, are another kettle of fish. * In such cases, def_id's can appear in types to distinguish * shadowed bound regions and so forth. It doesn't actually * matter so much what we do to these, since regions are erased * at trans time, but it's good to keep them consistent just in * case. We translate them with `tr_def_id()` which will map * the crate numbers back to the original source crate. * * It'd be really nice to refactor the type repr to not include * def-ids so that all these distinctions were unnecessary. */ let r = match source { NominalType | TypeWithId | RegionParameter => dcx.tr_def_id(did), TypeParameter => dcx.tr_intern_def_id(did) }; debug!("convert_def_id(source={:?}, did={:?})={:?}", source, did, r); return r; } } fn decode_side_tables(dcx: &DecodeContext, ast_doc: rbml::Doc) { let tbl_doc = ast_doc.get(c::tag_table as uint); reader::docs(tbl_doc, |tag, entry_doc| { let id0 = entry_doc.get(c::tag_table_id as uint).as_int(); let id = dcx.tr_id(id0 as ast::NodeId); debug!(">> Side table document with tag 0x{:x} \ found for id {} (orig {})", tag, id, id0); match c::astencode_tag::from_uint(tag) { None => { dcx.tcx.sess.bug( format!("unknown tag found in side tables: {:x}", tag).as_slice()); } Some(value) => { let val_doc = entry_doc.get(c::tag_table_val as uint); let mut val_dsr = reader::Decoder::new(val_doc); let val_dsr = &mut val_dsr; match value { c::tag_table_def => { let def = decode_def(dcx, val_doc); dcx.tcx.def_map.borrow_mut().insert(id, def); } c::tag_table_node_type => { let ty = val_dsr.read_ty(dcx); debug!("inserting ty for node {:?}: {}", id, ty_to_string(dcx.tcx, ty)); dcx.tcx.node_types.borrow_mut().insert(id as uint, ty); } c::tag_table_item_subst => { let item_substs = ty::ItemSubsts { substs: val_dsr.read_substs(dcx) }; dcx.tcx.item_substs.borrow_mut().insert( id, item_substs); } c::tag_table_freevars => { let fv_info = val_dsr.read_to_vec(|val_dsr| { Ok(val_dsr.read_freevar_entry(dcx)) }).unwrap().into_iter().collect(); dcx.tcx.freevars.borrow_mut().insert(id, fv_info); } c::tag_table_upvar_borrow_map => { let var_id: ast::NodeId = Decodable::decode(val_dsr).unwrap(); let upvar_id = ty::UpvarId { var_id: dcx.tr_id(var_id), closure_expr_id: id }; let ub: ty::UpvarBorrow = Decodable::decode(val_dsr).unwrap(); dcx.tcx.upvar_borrow_map.borrow_mut().insert(upvar_id, ub.tr(dcx)); } c::tag_table_capture_modes => { let capture_mode = val_dsr.read_capture_mode(); dcx.tcx .capture_modes .borrow_mut() .insert(id, capture_mode); } c::tag_table_tcache => { let pty = val_dsr.read_polytype(dcx); let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id }; dcx.tcx.tcache.borrow_mut().insert(lid, pty); } c::tag_table_param_defs => { let bounds = val_dsr.read_type_param_def(dcx); dcx.tcx.ty_param_defs.borrow_mut().insert(id, bounds); } c::tag_table_method_map => { let (adjustment, method) = val_dsr.read_method_callee(dcx); let method_call = MethodCall { expr_id: id, adjustment: adjustment }; dcx.tcx.method_map.borrow_mut().insert(method_call, method); } c::tag_table_object_cast_map => { let trait_ref = val_dsr.read_trait_ref(dcx); dcx.tcx.object_cast_map.borrow_mut() .insert(id, trait_ref); } c::tag_table_adjustments => { let adj: ty::AutoAdjustment = val_dsr.read_auto_adjustment(dcx); dcx.tcx.adjustments.borrow_mut().insert(id, adj); } c::tag_table_unboxed_closures => { let unboxed_closure = val_dsr.read_unboxed_closure(dcx); dcx.tcx .unboxed_closures .borrow_mut() .insert(ast_util::local_def(id), unboxed_closure); } _ => { dcx.tcx.sess.bug( format!("unknown tag found in side tables: {:x}", tag).as_slice()); } } } } debug!(">< Side table doc loaded"); true }); } // ______________________________________________________________________ // Testing of astencode_gen #[cfg(test)] fn encode_item_ast(rbml_w: &mut Encoder, item: &ast::Item) { rbml_w.start_tag(c::tag_tree as uint); (*item).encode(rbml_w); rbml_w.end_tag(); } #[cfg(test)] fn decode_item_ast(par_doc: rbml::Doc) -> ast::Item { let chi_doc = par_doc.get(c::tag_tree as uint); let mut d = reader::Decoder::new(chi_doc); Decodable::decode(&mut d).unwrap() } #[cfg(test)] trait fake_ext_ctxt { fn cfg(&self) -> ast::CrateConfig; fn parse_sess<'a>(&'a self) -> &'a parse::ParseSess; fn call_site(&self) -> Span; fn ident_of(&self, st: &str) -> ast::Ident; } #[cfg(test)] impl fake_ext_ctxt for parse::ParseSess { fn cfg(&self) -> ast::CrateConfig { Vec::new() } fn parse_sess<'a>(&'a self) -> &'a parse::ParseSess { self } fn call_site(&self) -> Span { codemap::Span { lo: codemap::BytePos(0), hi: codemap::BytePos(0), expn_info: None } } fn ident_of(&self, st: &str) -> ast::Ident { token::str_to_ident(st) } } #[cfg(test)] fn mk_ctxt() -> parse::ParseSess { parse::new_parse_sess() } #[cfg(test)] fn roundtrip(in_item: Option>) { let in_item = in_item.unwrap(); let mut wr = SeekableMemWriter::new(); encode_item_ast(&mut writer::Encoder::new(&mut wr), &*in_item); let rbml_doc = rbml::Doc::new(wr.get_ref()); let out_item = decode_item_ast(rbml_doc); assert!(*in_item == out_item); } #[test] fn test_basic() { let cx = mk_ctxt(); roundtrip(quote_item!(&cx, fn foo() {} )); } /* NOTE: When there's a snapshot, update this (yay quasiquoter!) #[test] fn test_smalltalk() { let cx = mk_ctxt(); roundtrip(quote_item!(&cx, fn foo() -> int { 3 + 4 } // first smalltalk program ever executed. )); } */ #[test] fn test_more() { let cx = mk_ctxt(); roundtrip(quote_item!(&cx, fn foo(x: uint, y: uint) -> uint { let z = x + y; return z; } )); } #[test] fn test_simplification() { let cx = mk_ctxt(); let item = quote_item!(&cx, fn new_int_alist() -> alist { fn eq_int(a: int, b: int) -> bool { a == b } return alist {eq_fn: eq_int, data: Vec::new()}; } ).unwrap(); let item_in = e::IIItemRef(&*item); let item_out = simplify_ast(item_in); let item_exp = ast::IIItem(quote_item!(&cx, fn new_int_alist() -> alist { return alist {eq_fn: eq_int, data: Vec::new()}; } ).unwrap()); match (item_out, item_exp) { (ast::IIItem(item_out), ast::IIItem(item_exp)) => { assert!(pprust::item_to_string(&*item_out) == pprust::item_to_string(&*item_exp)); } _ => fail!() } }