// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use llvm; use llvm::ValueRef; use metadata::csearch; use middle::subst::{Subst,Substs}; use middle::subst::VecPerParamSpace; use middle::subst; use middle::traits; use trans::base::*; use trans::build::*; use trans::callee::*; use trans::callee; use trans::cleanup; use trans::common::*; use trans::datum::*; use trans::expr::{SaveIn, Ignore}; use trans::expr; use trans::glue; use trans::machine; use trans::type_::Type; use trans::type_of::*; use middle::ty::{mod, Ty}; use middle::typeck; use middle::typeck::MethodCall; use util::ppaux::Repr; use std::c_str::ToCStr; use std::rc::Rc; use syntax::abi::{Rust, RustCall}; use syntax::parse::token; use syntax::{ast, ast_map, attr, visit}; use syntax::ast_util::PostExpansionMethod; use syntax::codemap::DUMMY_SP; // drop_glue pointer, size, align. static VTABLE_OFFSET: uint = 3; /** The main "translation" pass for methods. Generates code for non-monomorphized methods only. Other methods will be generated once they are invoked with specific type parameters, see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`. */ pub fn trans_impl(ccx: &CrateContext, name: ast::Ident, impl_items: &[ast::ImplItem], generics: &ast::Generics, id: ast::NodeId) { let _icx = push_ctxt("meth::trans_impl"); let tcx = ccx.tcx(); debug!("trans_impl(name={}, id={})", name.repr(tcx), id); // Both here and below with generic methods, be sure to recurse and look for // items that we need to translate. if !generics.ty_params.is_empty() { let mut v = TransItemVisitor{ ccx: ccx }; for impl_item in impl_items.iter() { match *impl_item { ast::MethodImplItem(ref method) => { visit::walk_method_helper(&mut v, &**method); } ast::TypeImplItem(_) => {} } } return; } for impl_item in impl_items.iter() { match *impl_item { ast::MethodImplItem(ref method) => { if method.pe_generics().ty_params.len() == 0u { let trans_everywhere = attr::requests_inline(method.attrs.as_slice()); for (ref ccx, is_origin) in ccx.maybe_iter(trans_everywhere) { let llfn = get_item_val(ccx, method.id); trans_fn(ccx, method.pe_fn_decl(), method.pe_body(), llfn, ¶m_substs::empty(), method.id, &[]); update_linkage(ccx, llfn, Some(method.id), if is_origin { OriginalTranslation } else { InlinedCopy }); } } let mut v = TransItemVisitor { ccx: ccx, }; visit::walk_method_helper(&mut v, &**method); } ast::TypeImplItem(_) => {} } } } pub fn trans_method_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, method_call: MethodCall, self_expr: Option<&ast::Expr>, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'blk, 'tcx> { let _icx = push_ctxt("meth::trans_method_callee"); let (origin, method_ty) = bcx.tcx().method_map .borrow() .get(&method_call) .map(|method| (method.origin.clone(), method.ty)) .unwrap(); match origin { typeck::MethodStatic(did) | typeck::MethodStaticUnboxedClosure(did) => { Callee { bcx: bcx, data: Fn(callee::trans_fn_ref(bcx, did, MethodCall(method_call))), } } typeck::MethodTypeParam(typeck::MethodParam { ref trait_ref, method_num }) => { let trait_ref = Rc::new(trait_ref.subst(bcx.tcx(), bcx.fcx.param_substs.substs())); let span = bcx.tcx().map.span(method_call.expr_id); debug!("method_call={} trait_ref={}", method_call, trait_ref.repr(bcx.tcx())); let origin = fulfill_obligation(bcx.ccx(), span, (*trait_ref).clone()); debug!("origin = {}", origin.repr(bcx.tcx())); trans_monomorphized_callee(bcx, method_call, trait_ref.def_id, method_num, origin) } typeck::MethodTraitObject(ref mt) => { let self_expr = match self_expr { Some(self_expr) => self_expr, None => { bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id), "self expr wasn't provided for trait object \ callee (trying to call overloaded op?)") } }; trans_trait_callee(bcx, monomorphize_type(bcx, method_ty), mt.real_index, self_expr, arg_cleanup_scope) } } } pub fn trans_static_method_callee(bcx: Block, method_id: ast::DefId, trait_id: ast::DefId, expr_id: ast::NodeId) -> ValueRef { let _icx = push_ctxt("meth::trans_static_method_callee"); let ccx = bcx.ccx(); debug!("trans_static_method_callee(method_id={}, trait_id={}, \ expr_id={})", method_id, ty::item_path_str(bcx.tcx(), trait_id), expr_id); let mname = if method_id.krate == ast::LOCAL_CRATE { match bcx.tcx().map.get(method_id.node) { ast_map::NodeTraitItem(method) => { let ident = match *method { ast::RequiredMethod(ref m) => m.ident, ast::ProvidedMethod(ref m) => m.pe_ident(), ast::TypeTraitItem(_) => { bcx.tcx().sess.bug("trans_static_method_callee() on \ an associated type?!") } }; ident.name } _ => panic!("callee is not a trait method") } } else { csearch::get_item_path(bcx.tcx(), method_id).last().unwrap().name() }; debug!("trans_static_method_callee: method_id={}, expr_id={}, \ name={}", method_id, expr_id, token::get_name(mname)); // Find the substitutions for the fn itself. This includes // type parameters that belong to the trait but also some that // belong to the method: let rcvr_substs = node_id_substs(bcx, ExprId(expr_id)); let subst::SeparateVecsPerParamSpace { types: rcvr_type, selfs: rcvr_self, assocs: rcvr_assoc, fns: rcvr_method } = rcvr_substs.types.split(); // Lookup the precise impl being called. To do that, we need to // create a trait reference identifying the self type and other // input type parameters. To create that trait reference, we have // to pick apart the type parameters to identify just those that // pertain to the trait. This is easiest to explain by example: // // trait Convert { // fn from(n: U) -> Option; // } // ... // let f = as Convert>::from::(...) // // Here, in this call, which I've written with explicit UFCS // notation, the set of type parameters will be: // // rcvr_type: [] <-- nothing declared on the trait itself // rcvr_self: [Vec] <-- the self type // rcvr_method: [String] <-- method type parameter // // So we create a trait reference using the first two, // basically corresponding to ` as Convert>`. // The remaining type parameters (`rcvr_method`) will be used below. let trait_substs = Substs::erased(VecPerParamSpace::new(rcvr_type, rcvr_self, rcvr_assoc, Vec::new())); debug!("trait_substs={}", trait_substs.repr(bcx.tcx())); let trait_ref = Rc::new(ty::TraitRef { def_id: trait_id, substs: trait_substs }); let vtbl = fulfill_obligation(bcx.ccx(), DUMMY_SP, trait_ref); // Now that we know which impl is being used, we can dispatch to // the actual function: match vtbl { traits::VtableImpl(traits::VtableImplData { impl_def_id: impl_did, substs: impl_substs, nested: _ }) => { assert!(impl_substs.types.all(|t| !ty::type_needs_infer(*t))); // Create the substitutions that are in scope. This combines // the type parameters from the impl with those declared earlier. // To see what I mean, consider a possible impl: // // impl Convert for Vec { // fn from(n: U) { ... } // } // // Recall that we matched ` as Convert>`. Trait // resolution will have given us a substitution // containing `impl_substs=[[T=int],[],[]]` (the type // parameters defined on the impl). We combine // that with the `rcvr_method` from before, which tells us // the type parameters from the *method*, to yield // `callee_substs=[[T=int],[],[U=String]]`. let subst::SeparateVecsPerParamSpace { types: impl_type, selfs: impl_self, assocs: impl_assoc, fns: _ } = impl_substs.types.split(); let callee_substs = Substs::erased(VecPerParamSpace::new(impl_type, impl_self, impl_assoc, rcvr_method)); let mth_id = method_with_name(ccx, impl_did, mname); let llfn = trans_fn_ref_with_substs(bcx, mth_id, ExprId(expr_id), callee_substs); let callee_ty = node_id_type(bcx, expr_id); let llty = type_of_fn_from_ty(ccx, callee_ty).ptr_to(); PointerCast(bcx, llfn, llty) } _ => { bcx.tcx().sess.bug( format!("static call to invalid vtable: {}", vtbl.repr(bcx.tcx())).as_slice()); } } } fn method_with_name(ccx: &CrateContext, impl_id: ast::DefId, name: ast::Name) -> ast::DefId { match ccx.impl_method_cache().borrow().get(&(impl_id, name)).cloned() { Some(m) => return m, None => {} } let impl_items = ccx.tcx().impl_items.borrow(); let impl_items = impl_items.get(&impl_id) .expect("could not find impl while translating"); let meth_did = impl_items.iter() .find(|&did| { ty::impl_or_trait_item(ccx.tcx(), did.def_id()).name() == name }).expect("could not find method while \ translating"); ccx.impl_method_cache().borrow_mut().insert((impl_id, name), meth_did.def_id()); meth_did.def_id() } fn trans_monomorphized_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, method_call: MethodCall, trait_id: ast::DefId, n_method: uint, vtable: traits::Vtable<'tcx, ()>) -> Callee<'blk, 'tcx> { let _icx = push_ctxt("meth::trans_monomorphized_callee"); match vtable { traits::VtableImpl(vtable_impl) => { let ccx = bcx.ccx(); let impl_did = vtable_impl.impl_def_id; let mname = match ty::trait_item(ccx.tcx(), trait_id, n_method) { ty::MethodTraitItem(method) => method.name, ty::TypeTraitItem(_) => { bcx.tcx().sess.bug("can't monomorphize an associated \ type") } }; let mth_id = method_with_name(bcx.ccx(), impl_did, mname); // create a concatenated set of substitutions which includes // those from the impl and those from the method: let callee_substs = combine_impl_and_methods_tps( bcx, MethodCall(method_call), vtable_impl.substs); // translate the function let llfn = trans_fn_ref_with_substs(bcx, mth_id, MethodCall(method_call), callee_substs); Callee { bcx: bcx, data: Fn(llfn) } } traits::VtableUnboxedClosure(closure_def_id, substs) => { // The substitutions should have no type parameters remaining // after passing through fulfill_obligation let llfn = trans_fn_ref_with_substs(bcx, closure_def_id, MethodCall(method_call), substs); Callee { bcx: bcx, data: Fn(llfn), } } _ => { bcx.tcx().sess.bug( "vtable_param left in monomorphized function's vtable substs"); } } } fn combine_impl_and_methods_tps<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, node: ExprOrMethodCall, rcvr_substs: subst::Substs<'tcx>) -> subst::Substs<'tcx> { /*! * Creates a concatenated set of substitutions which includes * those from the impl and those from the method. This are * some subtle complications here. Statically, we have a list * of type parameters like `[T0, T1, T2, M1, M2, M3]` where * `Tn` are type parameters that appear on the receiver. For * example, if the receiver is a method parameter `A` with a * bound like `trait` then `Tn` would be `[B,C,D]`. * * The weird part is that the type `A` might now be bound to * any other type, such as `foo`. In that case, the vector * we want is: `[X, M1, M2, M3]`. Therefore, what we do now is * to slice off the method type parameters and append them to * the type parameters from the type that the receiver is * mapped to. */ let ccx = bcx.ccx(); let node_substs = node_id_substs(bcx, node); debug!("rcvr_substs={}", rcvr_substs.repr(ccx.tcx())); debug!("node_substs={}", node_substs.repr(ccx.tcx())); // Break apart the type parameters from the node and type // parameters from the receiver. let node_method = node_substs.types.split().fns; let subst::SeparateVecsPerParamSpace { types: rcvr_type, selfs: rcvr_self, assocs: rcvr_assoc, fns: rcvr_method } = rcvr_substs.types.clone().split(); assert!(rcvr_method.is_empty()); subst::Substs { regions: subst::ErasedRegions, types: subst::VecPerParamSpace::new(rcvr_type, rcvr_self, rcvr_assoc, node_method) } } fn trans_trait_callee<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, method_ty: Ty<'tcx>, n_method: uint, self_expr: &ast::Expr, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'blk, 'tcx> { /*! * Create a method callee where the method is coming from a trait * object (e.g., Box type). In this case, we must pull the fn * pointer out of the vtable that is packaged up with the object. * Objects are represented as a pair, so we first evaluate the self * expression and then extract the self data and vtable out of the * pair. */ let _icx = push_ctxt("meth::trans_trait_callee"); let mut bcx = bcx; // Translate self_datum and take ownership of the value by // converting to an rvalue. let self_datum = unpack_datum!( bcx, expr::trans(bcx, self_expr)); let llval = if ty::type_needs_drop(bcx.tcx(), self_datum.ty) { let self_datum = unpack_datum!( bcx, self_datum.to_rvalue_datum(bcx, "trait_callee")); // Convert to by-ref since `trans_trait_callee_from_llval` wants it // that way. let self_datum = unpack_datum!( bcx, self_datum.to_ref_datum(bcx)); // Arrange cleanup in case something should go wrong before the // actual call occurs. self_datum.add_clean(bcx.fcx, arg_cleanup_scope) } else { // We don't have to do anything about cleanups for &Trait and &mut Trait. assert!(self_datum.kind.is_by_ref()); self_datum.val }; trans_trait_callee_from_llval(bcx, method_ty, n_method, llval) } pub fn trans_trait_callee_from_llval<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, callee_ty: Ty<'tcx>, n_method: uint, llpair: ValueRef) -> Callee<'blk, 'tcx> { /*! * Same as `trans_trait_callee()` above, except that it is given * a by-ref pointer to the object pair. */ let _icx = push_ctxt("meth::trans_trait_callee"); let ccx = bcx.ccx(); // Load the data pointer from the object. debug!("(translating trait callee) loading second index from pair"); let llboxptr = GEPi(bcx, llpair, &[0u, abi::trt_field_box]); let llbox = Load(bcx, llboxptr); let llself = PointerCast(bcx, llbox, Type::i8p(ccx)); // Load the function from the vtable and cast it to the expected type. debug!("(translating trait callee) loading method"); // Replace the self type (&Self or Box) with an opaque pointer. let llcallee_ty = match ty::get(callee_ty).sty { ty::ty_bare_fn(ref f) if f.abi == Rust || f.abi == RustCall => { type_of_rust_fn(ccx, Some(Type::i8p(ccx)), f.sig.inputs.slice_from(1), f.sig.output, f.abi) } _ => { ccx.sess().bug("meth::trans_trait_callee given non-bare-rust-fn"); } }; let llvtable = Load(bcx, PointerCast(bcx, GEPi(bcx, llpair, &[0u, abi::trt_field_vtable]), Type::vtable(ccx).ptr_to().ptr_to())); let mptr = Load(bcx, GEPi(bcx, llvtable, &[0u, n_method + VTABLE_OFFSET])); let mptr = PointerCast(bcx, mptr, llcallee_ty.ptr_to()); return Callee { bcx: bcx, data: TraitItem(MethodData { llfn: mptr, llself: llself, }) }; } /// Creates a returns a dynamic vtable for the given type and vtable origin. /// This is used only for objects. /// /// The `trait_ref` encodes the erased self type. Hence if we are /// making an object `Foo` from a value of type `Foo`, then /// `trait_ref` would map `T:Trait`, but `box_ty` would be /// `Foo`. This `box_ty` is primarily used to encode the destructor. /// This will hopefully change now that DST is underway. pub fn get_vtable<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, box_ty: Ty<'tcx>, trait_ref: Rc>) -> ValueRef { debug!("get_vtable(box_ty={}, trait_ref={})", box_ty.repr(bcx.tcx()), trait_ref.repr(bcx.tcx())); let tcx = bcx.tcx(); let ccx = bcx.ccx(); let _icx = push_ctxt("meth::get_vtable"); // Check the cache. let cache_key = (box_ty, trait_ref.clone()); match ccx.vtables().borrow().get(&cache_key) { Some(&val) => { return val } None => { } } // Not in the cache. Build it. let methods = traits::supertraits(tcx, trait_ref.clone()).flat_map(|trait_ref| { let vtable = fulfill_obligation(bcx.ccx(), DUMMY_SP, trait_ref.clone()); match vtable { traits::VtableBuiltin(_) => { Vec::new().into_iter() } traits::VtableImpl( traits::VtableImplData { impl_def_id: id, substs, nested: _ }) => { emit_vtable_methods(bcx, id, substs).into_iter() } traits::VtableUnboxedClosure(closure_def_id, substs) => { // Look up closure type let self_ty = ty::node_id_to_type(bcx.tcx(), closure_def_id.node); // Apply substitutions from closure param environment. // The substitutions should have no type parameters // remaining after passing through fulfill_obligation let self_ty = self_ty.subst(bcx.tcx(), &substs); let mut llfn = trans_fn_ref_with_substs( bcx, closure_def_id, ExprId(0), substs.clone()); { let unboxed_closures = bcx.tcx() .unboxed_closures .borrow(); let closure_info = unboxed_closures.get(&closure_def_id) .expect("get_vtable(): didn't find \ unboxed closure"); if closure_info.kind == ty::FnOnceUnboxedClosureKind { // Untuple the arguments and create an unboxing shim. let (new_inputs, new_output) = match ty::get(self_ty).sty { ty::ty_unboxed_closure(_, _, ref substs) => { let mut new_inputs = vec![self_ty.clone()]; match ty::get(closure_info.closure_type .sig .inputs[0]).sty { ty::ty_tup(ref elements) => { for element in elements.iter() { new_inputs.push(element.subst(bcx.tcx(), substs)); } } _ => { bcx.tcx().sess.bug("get_vtable(): closure \ type wasn't a tuple") } } (new_inputs, closure_info.closure_type.sig.output.subst(bcx.tcx(), substs)) }, _ => bcx.tcx().sess.bug("get_vtable(): def wasn't an unboxed closure") }; let closure_type = ty::BareFnTy { fn_style: closure_info.closure_type.fn_style, abi: Rust, sig: ty::FnSig { inputs: new_inputs, output: new_output, variadic: false, }, }; debug!("get_vtable(): closure type is {}", closure_type.repr(bcx.tcx())); llfn = trans_unboxing_shim(bcx, llfn, &closure_type, closure_def_id, &substs); } } (vec!(llfn)).into_iter() } traits::VtableParam(..) => { bcx.sess().bug( format!("resolved vtable for {} to bad vtable {} in trans", trait_ref.repr(bcx.tcx()), vtable.repr(bcx.tcx())).as_slice()); } } }); let size_ty = sizing_type_of(ccx, trait_ref.self_ty()); let size = machine::llsize_of_alloc(ccx, size_ty); let ll_size = C_uint(ccx, size); let align = align_of(ccx, trait_ref.self_ty()); let ll_align = C_uint(ccx, align); // Generate a destructor for the vtable. let drop_glue = glue::get_drop_glue(ccx, box_ty); let vtable = make_vtable(ccx, drop_glue, ll_size, ll_align, methods); ccx.vtables().borrow_mut().insert(cache_key, vtable); vtable } /// Helper function to declare and initialize the vtable. pub fn make_vtable>(ccx: &CrateContext, drop_glue: ValueRef, size: ValueRef, align: ValueRef, ptrs: I) -> ValueRef { let _icx = push_ctxt("meth::make_vtable"); let head = vec![drop_glue, size, align]; let components: Vec<_> = head.into_iter().chain(ptrs).collect(); unsafe { let tbl = C_struct(ccx, components.as_slice(), false); let sym = token::gensym("vtable"); let vt_gvar = format!("vtable{}", sym.uint()).with_c_str(|buf| { llvm::LLVMAddGlobal(ccx.llmod(), val_ty(tbl).to_ref(), buf) }); llvm::LLVMSetInitializer(vt_gvar, tbl); llvm::LLVMSetGlobalConstant(vt_gvar, llvm::True); llvm::SetLinkage(vt_gvar, llvm::InternalLinkage); vt_gvar } } fn emit_vtable_methods<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, impl_id: ast::DefId, substs: subst::Substs<'tcx>) -> Vec { let ccx = bcx.ccx(); let tcx = ccx.tcx(); let trt_id = match ty::impl_trait_ref(tcx, impl_id) { Some(t_id) => t_id.def_id, None => ccx.sess().bug("make_impl_vtable: don't know how to \ make a vtable for a type impl!") }; ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trt_id); let trait_item_def_ids = ty::trait_item_def_ids(tcx, trt_id); trait_item_def_ids.iter().flat_map(|method_def_id| { let method_def_id = method_def_id.def_id(); let name = ty::impl_or_trait_item(tcx, method_def_id).name(); // The substitutions we have are on the impl, so we grab // the method type from the impl to substitute into. let m_id = method_with_name(ccx, impl_id, name); let ti = ty::impl_or_trait_item(tcx, m_id); match ti { ty::MethodTraitItem(m) => { debug!("(making impl vtable) emitting method {} at subst {}", m.repr(tcx), substs.repr(tcx)); if m.generics.has_type_params(subst::FnSpace) || ty::type_has_self(ty::mk_bare_fn(tcx, m.fty.clone())) { debug!("(making impl vtable) method has self or type \ params: {}", token::get_name(name)); Some(C_null(Type::nil(ccx).ptr_to())).into_iter() } else { let mut fn_ref = trans_fn_ref_with_substs( bcx, m_id, ExprId(0), substs.clone()); if m.explicit_self == ty::ByValueExplicitSelfCategory { fn_ref = trans_unboxing_shim(bcx, fn_ref, &m.fty, m_id, &substs); } Some(fn_ref).into_iter() } } ty::TypeTraitItem(_) => { None.into_iter() } } }).collect() } pub fn trans_trait_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, datum: Datum<'tcx, Expr>, id: ast::NodeId, trait_ref: Rc>, dest: expr::Dest) -> Block<'blk, 'tcx> { /*! * Generates the code to convert from a pointer (`Box`, `&T`, etc) * into an object (`Box`, `&Trait`, etc). This means creating a * pair where the first word is the vtable and the second word is * the pointer. */ let mut bcx = bcx; let _icx = push_ctxt("meth::trans_trait_cast"); let lldest = match dest { Ignore => { return datum.clean(bcx, "trait_trait_cast", id); } SaveIn(dest) => dest }; debug!("trans_trait_cast: trait_ref={}", trait_ref.repr(bcx.tcx())); let datum_ty = datum.ty; let llbox_ty = type_of(bcx.ccx(), datum_ty); // Store the pointer into the first half of pair. let llboxdest = GEPi(bcx, lldest, &[0u, abi::trt_field_box]); let llboxdest = PointerCast(bcx, llboxdest, llbox_ty.ptr_to()); bcx = datum.store_to(bcx, llboxdest); // Store the vtable into the second half of pair. let vtable = get_vtable(bcx, datum_ty, trait_ref); let llvtabledest = GEPi(bcx, lldest, &[0u, abi::trt_field_vtable]); let llvtabledest = PointerCast(bcx, llvtabledest, val_ty(vtable).ptr_to()); Store(bcx, vtable, llvtabledest); bcx }