// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![crate_name = "rustc_resolve"] #![experimental] #![crate_type = "dylib"] #![crate_type = "rlib"] #![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png", html_favicon_url = "http://www.rust-lang.org/favicon.ico", html_root_url = "http://doc.rust-lang.org/nightly/")] #![feature(globs, phase, slicing_syntax)] #![feature(rustc_diagnostic_macros)] #[phase(plugin, link)] extern crate log; #[phase(plugin, link)] extern crate syntax; extern crate rustc; use self::PatternBindingMode::*; use self::Namespace::*; use self::NamespaceError::*; use self::NamespaceResult::*; use self::NameDefinition::*; use self::ImportDirectiveSubclass::*; use self::ReducedGraphParent::*; use self::ResolveResult::*; use self::FallbackSuggestion::*; use self::TypeParameters::*; use self::RibKind::*; use self::MethodSort::*; use self::UseLexicalScopeFlag::*; use self::ModulePrefixResult::*; use self::NameSearchType::*; use self::BareIdentifierPatternResolution::*; use self::DuplicateCheckingMode::*; use self::ParentLink::*; use self::ModuleKind::*; use self::TraitReferenceType::*; use self::FallbackChecks::*; use rustc::session::Session; use rustc::lint; use rustc::metadata::csearch; use rustc::metadata::decoder::{DefLike, DlDef, DlField, DlImpl}; use rustc::middle::def::*; use rustc::middle::lang_items::LanguageItems; use rustc::middle::pat_util::pat_bindings; use rustc::middle::privacy::*; use rustc::middle::subst::{ParamSpace, FnSpace, TypeSpace}; use rustc::middle::ty::{CaptureModeMap, Freevar, FreevarMap, TraitMap}; use rustc::util::nodemap::{NodeMap, NodeSet, DefIdSet, FnvHashMap}; use rustc::util::lev_distance::lev_distance; use syntax::ast::{Arm, BindByRef, BindByValue, BindingMode, Block, Crate, CrateNum}; use syntax::ast::{DeclItem, DefId, Expr, ExprAgain, ExprBreak, ExprField}; use syntax::ast::{ExprClosure, ExprForLoop, ExprLoop, ExprWhile, ExprMethodCall}; use syntax::ast::{ExprPath, ExprStruct, FnDecl}; use syntax::ast::{ForeignItem, ForeignItemFn, ForeignItemStatic, Generics}; use syntax::ast::{Ident, ImplItem, Item, ItemConst, ItemEnum, ItemFn}; use syntax::ast::{ItemForeignMod, ItemImpl, ItemMac, ItemMod, ItemStatic}; use syntax::ast::{ItemStruct, ItemTrait, ItemTy, Local}; use syntax::ast::{MethodImplItem, Mod, Name, NamedField, NodeId}; use syntax::ast::{Pat, PatEnum, PatIdent, PatLit}; use syntax::ast::{PatRange, PatStruct, Path, PathListIdent, PathListMod}; use syntax::ast::{PolyTraitRef, PrimTy, Public, SelfExplicit, SelfStatic}; use syntax::ast::{RegionTyParamBound, StmtDecl, StructField}; use syntax::ast::{StructVariantKind, TraitRef, TraitTyParamBound}; use syntax::ast::{TupleVariantKind, Ty, TyBool, TyChar, TyClosure, TyF32}; use syntax::ast::{TyF64, TyFloat, TyI, TyI8, TyI16, TyI32, TyI64, TyInt, TyObjectSum}; use syntax::ast::{TyParam, TyParamBound, TyPath, TyPtr, TyPolyTraitRef, TyQPath}; use syntax::ast::{TyRptr, TyStr, TyU, TyU8, TyU16, TyU32, TyU64, TyUint}; use syntax::ast::{TypeImplItem, UnnamedField}; use syntax::ast::{Variant, ViewItem, ViewItemExternCrate}; use syntax::ast::{ViewItemUse, ViewPathGlob, ViewPathList, ViewPathSimple}; use syntax::ast::{Visibility}; use syntax::ast; use syntax::ast_util::{mod, PostExpansionMethod, local_def, walk_pat}; use syntax::attr::AttrMetaMethods; use syntax::ext::mtwt; use syntax::parse::token::{mod, special_names, special_idents}; use syntax::codemap::{Span, DUMMY_SP, Pos}; use syntax::owned_slice::OwnedSlice; use syntax::visit::{mod, Visitor}; use std::collections::{HashMap, HashSet}; use std::collections::hash_map::Entry::{Occupied, Vacant}; use std::cell::{Cell, RefCell}; use std::mem::replace; use std::rc::{Rc, Weak}; use std::uint; mod check_unused; mod record_exports; #[deriving(Copy)] struct BindingInfo { span: Span, binding_mode: BindingMode, } // Map from the name in a pattern to its binding mode. type BindingMap = HashMap; #[deriving(Copy, PartialEq)] enum PatternBindingMode { RefutableMode, LocalIrrefutableMode, ArgumentIrrefutableMode, } #[deriving(Copy, PartialEq, Eq, Hash, Show)] enum Namespace { TypeNS, ValueNS } #[deriving(Copy, PartialEq)] enum NamespaceError { NoError, ModuleError, TypeError, ValueError } /// A NamespaceResult represents the result of resolving an import in /// a particular namespace. The result is either definitely-resolved, /// definitely- unresolved, or unknown. #[deriving(Clone)] enum NamespaceResult { /// Means that resolve hasn't gathered enough information yet to determine /// whether the name is bound in this namespace. (That is, it hasn't /// resolved all `use` directives yet.) UnknownResult, /// Means that resolve has determined that the name is definitely /// not bound in the namespace. UnboundResult, /// Means that resolve has determined that the name is bound in the Module /// argument, and specified by the NameBindings argument. BoundResult(Rc, Rc) } impl NamespaceResult { fn is_unknown(&self) -> bool { match *self { UnknownResult => true, _ => false } } fn is_unbound(&self) -> bool { match *self { UnboundResult => true, _ => false } } } enum NameDefinition { NoNameDefinition, //< The name was unbound. ChildNameDefinition(Def, LastPrivate), //< The name identifies an immediate child. ImportNameDefinition(Def, LastPrivate) //< The name identifies an import. } impl<'a, 'v> Visitor<'v> for Resolver<'a> { fn visit_item(&mut self, item: &Item) { self.resolve_item(item); } fn visit_arm(&mut self, arm: &Arm) { self.resolve_arm(arm); } fn visit_block(&mut self, block: &Block) { self.resolve_block(block); } fn visit_expr(&mut self, expr: &Expr) { self.resolve_expr(expr); } fn visit_local(&mut self, local: &Local) { self.resolve_local(local); } fn visit_ty(&mut self, ty: &Ty) { self.resolve_type(ty); } } /// Contains data for specific types of import directives. #[deriving(Copy)] enum ImportDirectiveSubclass { SingleImport(Name /* target */, Name /* source */), GlobImport } /// The context that we thread through while building the reduced graph. #[deriving(Clone)] enum ReducedGraphParent { ModuleReducedGraphParent(Rc) } impl ReducedGraphParent { fn module(&self) -> Rc { match *self { ModuleReducedGraphParent(ref m) => { m.clone() } } } } type ErrorMessage = Option<(Span, String)>; enum ResolveResult { Failed(ErrorMessage), // Failed to resolve the name, optional helpful error message. Indeterminate, // Couldn't determine due to unresolved globs. Success(T) // Successfully resolved the import. } impl ResolveResult { fn indeterminate(&self) -> bool { match *self { Indeterminate => true, _ => false } } } enum FallbackSuggestion { NoSuggestion, Field, Method, TraitItem, StaticMethod(String), TraitMethod(String), } #[deriving(Copy)] enum TypeParameters<'a> { NoTypeParameters, HasTypeParameters( // Type parameters. &'a Generics, // Identifies the things that these parameters // were declared on (type, fn, etc) ParamSpace, // ID of the enclosing item. NodeId, // The kind of the rib used for type parameters. RibKind) } // The rib kind controls the translation of local // definitions (`DefLocal`) to upvars (`DefUpvar`). #[deriving(Copy, Show)] enum RibKind { // No translation needs to be applied. NormalRibKind, // We passed through a closure scope at the given node ID. // Translate upvars as appropriate. ClosureRibKind(NodeId /* func id */, NodeId /* body id if proc or unboxed */), // We passed through an impl or trait and are now in one of its // methods. Allow references to ty params that impl or trait // binds. Disallow any other upvars (including other ty params that are // upvars). // parent; method itself MethodRibKind(NodeId, MethodSort), // We passed through an item scope. Disallow upvars. ItemRibKind, // We're in a constant item. Can't refer to dynamic stuff. ConstantItemRibKind } // Methods can be required or provided. RequiredMethod methods only occur in traits. #[deriving(Copy, Show)] enum MethodSort { RequiredMethod, ProvidedMethod(NodeId) } #[deriving(Copy)] enum UseLexicalScopeFlag { DontUseLexicalScope, UseLexicalScope } enum ModulePrefixResult { NoPrefixFound, PrefixFound(Rc, uint) } #[deriving(Copy, PartialEq)] enum NameSearchType { /// We're doing a name search in order to resolve a `use` directive. ImportSearch, /// We're doing a name search in order to resolve a path type, a path /// expression, or a path pattern. PathSearch, } #[deriving(Copy)] enum BareIdentifierPatternResolution { FoundStructOrEnumVariant(Def, LastPrivate), FoundConst(Def, LastPrivate), BareIdentifierPatternUnresolved } // Specifies how duplicates should be handled when adding a child item if // another item exists with the same name in some namespace. #[deriving(Copy, PartialEq)] enum DuplicateCheckingMode { ForbidDuplicateModules, ForbidDuplicateTypesAndModules, ForbidDuplicateValues, ForbidDuplicateTypesAndValues, OverwriteDuplicates } /// One local scope. #[deriving(Show)] struct Rib { bindings: HashMap, kind: RibKind, } impl Rib { fn new(kind: RibKind) -> Rib { Rib { bindings: HashMap::new(), kind: kind } } } /// One import directive. struct ImportDirective { module_path: Vec, subclass: ImportDirectiveSubclass, span: Span, id: NodeId, is_public: bool, // see note in ImportResolution about how to use this shadowable: bool, } impl ImportDirective { fn new(module_path: Vec , subclass: ImportDirectiveSubclass, span: Span, id: NodeId, is_public: bool, shadowable: bool) -> ImportDirective { ImportDirective { module_path: module_path, subclass: subclass, span: span, id: id, is_public: is_public, shadowable: shadowable, } } } /// The item that an import resolves to. #[deriving(Clone)] struct Target { target_module: Rc, bindings: Rc, shadowable: bool, } impl Target { fn new(target_module: Rc, bindings: Rc, shadowable: bool) -> Target { Target { target_module: target_module, bindings: bindings, shadowable: shadowable, } } } /// An ImportResolution represents a particular `use` directive. struct ImportResolution { /// Whether this resolution came from a `use` or a `pub use`. Note that this /// should *not* be used whenever resolution is being performed, this is /// only looked at for glob imports statements currently. Privacy testing /// occurs during a later phase of compilation. is_public: bool, // The number of outstanding references to this name. When this reaches // zero, outside modules can count on the targets being correct. Before // then, all bets are off; future imports could override this name. outstanding_references: uint, /// The value that this `use` directive names, if there is one. value_target: Option, /// The source node of the `use` directive leading to the value target /// being non-none value_id: NodeId, /// The type that this `use` directive names, if there is one. type_target: Option, /// The source node of the `use` directive leading to the type target /// being non-none type_id: NodeId, } impl ImportResolution { fn new(id: NodeId, is_public: bool) -> ImportResolution { ImportResolution { type_id: id, value_id: id, outstanding_references: 0, value_target: None, type_target: None, is_public: is_public, } } fn target_for_namespace(&self, namespace: Namespace) -> Option { match namespace { TypeNS => self.type_target.clone(), ValueNS => self.value_target.clone(), } } fn id(&self, namespace: Namespace) -> NodeId { match namespace { TypeNS => self.type_id, ValueNS => self.value_id, } } } /// The link from a module up to its nearest parent node. #[deriving(Clone)] enum ParentLink { NoParentLink, ModuleParentLink(Weak, Name), BlockParentLink(Weak, NodeId) } /// The type of module this is. #[deriving(Copy, PartialEq)] enum ModuleKind { NormalModuleKind, TraitModuleKind, ImplModuleKind, EnumModuleKind, AnonymousModuleKind, } /// One node in the tree of modules. struct Module { parent_link: ParentLink, def_id: Cell>, kind: Cell, is_public: bool, children: RefCell>>, imports: RefCell>, // The external module children of this node that were declared with // `extern crate`. external_module_children: RefCell>>, // The anonymous children of this node. Anonymous children are pseudo- // modules that are implicitly created around items contained within // blocks. // // For example, if we have this: // // fn f() { // fn g() { // ... // } // } // // There will be an anonymous module created around `g` with the ID of the // entry block for `f`. anonymous_children: RefCell>>, // The status of resolving each import in this module. import_resolutions: RefCell>, // The number of unresolved globs that this module exports. glob_count: Cell, // The index of the import we're resolving. resolved_import_count: Cell, // Whether this module is populated. If not populated, any attempt to // access the children must be preceded with a // `populate_module_if_necessary` call. populated: Cell, } impl Module { fn new(parent_link: ParentLink, def_id: Option, kind: ModuleKind, external: bool, is_public: bool) -> Module { Module { parent_link: parent_link, def_id: Cell::new(def_id), kind: Cell::new(kind), is_public: is_public, children: RefCell::new(HashMap::new()), imports: RefCell::new(Vec::new()), external_module_children: RefCell::new(HashMap::new()), anonymous_children: RefCell::new(NodeMap::new()), import_resolutions: RefCell::new(HashMap::new()), glob_count: Cell::new(0), resolved_import_count: Cell::new(0), populated: Cell::new(!external), } } fn all_imports_resolved(&self) -> bool { self.imports.borrow().len() == self.resolved_import_count.get() } } bitflags! { #[deriving(Show)] flags DefModifiers: u8 { const PUBLIC = 0b0000_0001, const IMPORTABLE = 0b0000_0010, } } // Records a possibly-private type definition. #[deriving(Clone)] struct TypeNsDef { modifiers: DefModifiers, // see note in ImportResolution about how to use this module_def: Option>, type_def: Option, type_span: Option } // Records a possibly-private value definition. #[deriving(Clone, Copy, Show)] struct ValueNsDef { modifiers: DefModifiers, // see note in ImportResolution about how to use this def: Def, value_span: Option, } // Records the definitions (at most one for each namespace) that a name is // bound to. struct NameBindings { type_def: RefCell>, //< Meaning in type namespace. value_def: RefCell>, //< Meaning in value namespace. } /// Ways in which a trait can be referenced #[deriving(Copy)] enum TraitReferenceType { TraitImplementation, // impl SomeTrait for T { ... } TraitDerivation, // trait T : SomeTrait { ... } TraitBoundingTypeParameter, // fn f() { ... } TraitObject, // Box SomeTrait> TraitQPath, // :: } impl NameBindings { fn new() -> NameBindings { NameBindings { type_def: RefCell::new(None), value_def: RefCell::new(None), } } /// Creates a new module in this set of name bindings. fn define_module(&self, parent_link: ParentLink, def_id: Option, kind: ModuleKind, external: bool, is_public: bool, sp: Span) { // Merges the module with the existing type def or creates a new one. let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE; let module_ = Rc::new(Module::new(parent_link, def_id, kind, external, is_public)); let type_def = self.type_def.borrow().clone(); match type_def { None => { *self.type_def.borrow_mut() = Some(TypeNsDef { modifiers: modifiers, module_def: Some(module_), type_def: None, type_span: Some(sp) }); } Some(type_def) => { *self.type_def.borrow_mut() = Some(TypeNsDef { modifiers: modifiers, module_def: Some(module_), type_span: Some(sp), type_def: type_def.type_def }); } } } /// Sets the kind of the module, creating a new one if necessary. fn set_module_kind(&self, parent_link: ParentLink, def_id: Option, kind: ModuleKind, external: bool, is_public: bool, _sp: Span) { let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE; let type_def = self.type_def.borrow().clone(); match type_def { None => { let module = Module::new(parent_link, def_id, kind, external, is_public); *self.type_def.borrow_mut() = Some(TypeNsDef { modifiers: modifiers, module_def: Some(Rc::new(module)), type_def: None, type_span: None, }); } Some(type_def) => { match type_def.module_def { None => { let module = Module::new(parent_link, def_id, kind, external, is_public); *self.type_def.borrow_mut() = Some(TypeNsDef { modifiers: modifiers, module_def: Some(Rc::new(module)), type_def: type_def.type_def, type_span: None, }); } Some(module_def) => module_def.kind.set(kind), } } } } /// Records a type definition. fn define_type(&self, def: Def, sp: Span, modifiers: DefModifiers) { debug!("defining type for def {} with modifiers {}", def, modifiers); // Merges the type with the existing type def or creates a new one. let type_def = self.type_def.borrow().clone(); match type_def { None => { *self.type_def.borrow_mut() = Some(TypeNsDef { module_def: None, type_def: Some(def), type_span: Some(sp), modifiers: modifiers, }); } Some(type_def) => { *self.type_def.borrow_mut() = Some(TypeNsDef { module_def: type_def.module_def, type_def: Some(def), type_span: Some(sp), modifiers: modifiers, }); } } } /// Records a value definition. fn define_value(&self, def: Def, sp: Span, modifiers: DefModifiers) { debug!("defining value for def {} with modifiers {}", def, modifiers); *self.value_def.borrow_mut() = Some(ValueNsDef { def: def, value_span: Some(sp), modifiers: modifiers, }); } /// Returns the module node if applicable. fn get_module_if_available(&self) -> Option> { match *self.type_def.borrow() { Some(ref type_def) => type_def.module_def.clone(), None => None } } /// Returns the module node. Panics if this node does not have a module /// definition. fn get_module(&self) -> Rc { match self.get_module_if_available() { None => { panic!("get_module called on a node with no module \ definition!") } Some(module_def) => module_def } } fn defined_in_namespace(&self, namespace: Namespace) -> bool { match namespace { TypeNS => return self.type_def.borrow().is_some(), ValueNS => return self.value_def.borrow().is_some() } } fn defined_in_public_namespace(&self, namespace: Namespace) -> bool { self.defined_in_namespace_with(namespace, PUBLIC) } fn defined_in_namespace_with(&self, namespace: Namespace, modifiers: DefModifiers) -> bool { match namespace { TypeNS => match *self.type_def.borrow() { Some(ref def) => def.modifiers.contains(modifiers), None => false }, ValueNS => match *self.value_def.borrow() { Some(ref def) => def.modifiers.contains(modifiers), None => false } } } fn def_for_namespace(&self, namespace: Namespace) -> Option { match namespace { TypeNS => { match *self.type_def.borrow() { None => None, Some(ref type_def) => { match type_def.type_def { Some(type_def) => Some(type_def), None => { match type_def.module_def { Some(ref module) => { match module.def_id.get() { Some(did) => Some(DefMod(did)), None => None, } } None => None, } } } } } } ValueNS => { match *self.value_def.borrow() { None => None, Some(value_def) => Some(value_def.def) } } } } fn span_for_namespace(&self, namespace: Namespace) -> Option { if self.defined_in_namespace(namespace) { match namespace { TypeNS => { match *self.type_def.borrow() { None => None, Some(ref type_def) => type_def.type_span } } ValueNS => { match *self.value_def.borrow() { None => None, Some(ref value_def) => value_def.value_span } } } } else { None } } } /// Interns the names of the primitive types. struct PrimitiveTypeTable { primitive_types: HashMap, } impl PrimitiveTypeTable { fn new() -> PrimitiveTypeTable { let mut table = PrimitiveTypeTable { primitive_types: HashMap::new() }; table.intern("bool", TyBool); table.intern("char", TyChar); table.intern("f32", TyFloat(TyF32)); table.intern("f64", TyFloat(TyF64)); table.intern("int", TyInt(TyI)); table.intern("i8", TyInt(TyI8)); table.intern("i16", TyInt(TyI16)); table.intern("i32", TyInt(TyI32)); table.intern("i64", TyInt(TyI64)); table.intern("str", TyStr); table.intern("uint", TyUint(TyU)); table.intern("u8", TyUint(TyU8)); table.intern("u16", TyUint(TyU16)); table.intern("u32", TyUint(TyU32)); table.intern("u64", TyUint(TyU64)); table } fn intern(&mut self, string: &str, primitive_type: PrimTy) { self.primitive_types.insert(token::intern(string), primitive_type); } } fn namespace_error_to_string(ns: NamespaceError) -> &'static str { match ns { NoError => "", ModuleError | TypeError => "type or module", ValueError => "value", } } /// The main resolver class. struct Resolver<'a> { session: &'a Session, graph_root: NameBindings, trait_item_map: FnvHashMap<(Name, DefId), TraitItemKind>, structs: FnvHashMap>, // The number of imports that are currently unresolved. unresolved_imports: uint, // The module that represents the current item scope. current_module: Rc, // The current set of local scopes, for values. // FIXME #4948: Reuse ribs to avoid allocation. value_ribs: Vec, // The current set of local scopes, for types. type_ribs: Vec, // The current set of local scopes, for labels. label_ribs: Vec, // The trait that the current context can refer to. current_trait_ref: Option<(DefId, TraitRef)>, // The current self type if inside an impl (used for better errors). current_self_type: Option, // The ident for the keyword "self". self_name: Name, // The ident for the non-keyword "Self". type_self_name: Name, // The idents for the primitive types. primitive_type_table: PrimitiveTypeTable, def_map: DefMap, freevars: RefCell, freevars_seen: RefCell>, capture_mode_map: CaptureModeMap, export_map: ExportMap, trait_map: TraitMap, external_exports: ExternalExports, last_private: LastPrivateMap, // Whether or not to print error messages. Can be set to true // when getting additional info for error message suggestions, // so as to avoid printing duplicate errors emit_errors: bool, used_imports: HashSet<(NodeId, Namespace)>, used_crates: HashSet, } struct BuildReducedGraphVisitor<'a, 'b:'a> { resolver: &'a mut Resolver<'b>, parent: ReducedGraphParent } impl<'a, 'b, 'v> Visitor<'v> for BuildReducedGraphVisitor<'a, 'b> { fn visit_item(&mut self, item: &Item) { let p = self.resolver.build_reduced_graph_for_item(item, self.parent.clone()); let old_parent = replace(&mut self.parent, p); visit::walk_item(self, item); self.parent = old_parent; } fn visit_foreign_item(&mut self, foreign_item: &ForeignItem) { let parent = self.parent.clone(); self.resolver.build_reduced_graph_for_foreign_item(foreign_item, parent.clone(), |r| { let mut v = BuildReducedGraphVisitor { resolver: r, parent: parent.clone() }; visit::walk_foreign_item(&mut v, foreign_item); }) } fn visit_view_item(&mut self, view_item: &ViewItem) { self.resolver.build_reduced_graph_for_view_item(view_item, self.parent.clone()); } fn visit_block(&mut self, block: &Block) { let np = self.resolver.build_reduced_graph_for_block(block, self.parent.clone()); let old_parent = replace(&mut self.parent, np); visit::walk_block(self, block); self.parent = old_parent; } } #[deriving(PartialEq)] enum FallbackChecks { Everything, OnlyTraitAndStatics } impl<'a> Resolver<'a> { fn new(session: &'a Session, crate_span: Span) -> Resolver<'a> { let graph_root = NameBindings::new(); graph_root.define_module(NoParentLink, Some(DefId { krate: 0, node: 0 }), NormalModuleKind, false, true, crate_span); let current_module = graph_root.get_module(); Resolver { session: session, // The outermost module has def ID 0; this is not reflected in the // AST. graph_root: graph_root, trait_item_map: FnvHashMap::new(), structs: FnvHashMap::new(), unresolved_imports: 0, current_module: current_module, value_ribs: Vec::new(), type_ribs: Vec::new(), label_ribs: Vec::new(), current_trait_ref: None, current_self_type: None, self_name: special_names::self_, type_self_name: special_names::type_self, primitive_type_table: PrimitiveTypeTable::new(), def_map: RefCell::new(NodeMap::new()), freevars: RefCell::new(NodeMap::new()), freevars_seen: RefCell::new(NodeMap::new()), capture_mode_map: NodeMap::new(), export_map: NodeMap::new(), trait_map: NodeMap::new(), used_imports: HashSet::new(), used_crates: HashSet::new(), external_exports: DefIdSet::new(), last_private: NodeMap::new(), emit_errors: true, } } // // Reduced graph building // // Here we build the "reduced graph": the graph of the module tree without // any imports resolved. // /// Constructs the reduced graph for the entire crate. fn build_reduced_graph(&mut self, krate: &ast::Crate) { let parent = ModuleReducedGraphParent(self.graph_root.get_module()); let mut visitor = BuildReducedGraphVisitor { resolver: self, parent: parent }; visit::walk_crate(&mut visitor, krate); } /// Adds a new child item to the module definition of the parent node and /// returns its corresponding name bindings as well as the current parent. /// Or, if we're inside a block, creates (or reuses) an anonymous module /// corresponding to the innermost block ID and returns the name bindings /// as well as the newly-created parent. /// /// # Panics /// /// Panics if this node does not have a module definition and we are not inside /// a block. fn add_child(&self, name: Name, reduced_graph_parent: ReducedGraphParent, duplicate_checking_mode: DuplicateCheckingMode, // For printing errors sp: Span) -> Rc { // If this is the immediate descendant of a module, then we add the // child name directly. Otherwise, we create or reuse an anonymous // module and add the child to that. let module_ = reduced_graph_parent.module(); self.check_for_conflicts_between_external_crates_and_items(&*module_, name, sp); // Add or reuse the child. let child = module_.children.borrow().get(&name).cloned(); match child { None => { let child = Rc::new(NameBindings::new()); module_.children.borrow_mut().insert(name, child.clone()); child } Some(child) => { // Enforce the duplicate checking mode: // // * If we're requesting duplicate module checking, check that // there isn't a module in the module with the same name. // // * If we're requesting duplicate type checking, check that // there isn't a type in the module with the same name. // // * If we're requesting duplicate value checking, check that // there isn't a value in the module with the same name. // // * If we're requesting duplicate type checking and duplicate // value checking, check that there isn't a duplicate type // and a duplicate value with the same name. // // * If no duplicate checking was requested at all, do // nothing. let mut duplicate_type = NoError; let ns = match duplicate_checking_mode { ForbidDuplicateModules => { if child.get_module_if_available().is_some() { duplicate_type = ModuleError; } Some(TypeNS) } ForbidDuplicateTypesAndModules => { match child.def_for_namespace(TypeNS) { None => {} Some(_) if child.get_module_if_available() .map(|m| m.kind.get()) == Some(ImplModuleKind) => {} Some(_) => duplicate_type = TypeError } Some(TypeNS) } ForbidDuplicateValues => { if child.defined_in_namespace(ValueNS) { duplicate_type = ValueError; } Some(ValueNS) } ForbidDuplicateTypesAndValues => { let mut n = None; match child.def_for_namespace(TypeNS) { Some(DefMod(_)) | None => {} Some(_) => { n = Some(TypeNS); duplicate_type = TypeError; } }; if child.defined_in_namespace(ValueNS) { duplicate_type = ValueError; n = Some(ValueNS); } n } OverwriteDuplicates => None }; if duplicate_type != NoError { // Return an error here by looking up the namespace that // had the duplicate. let ns = ns.unwrap(); self.resolve_error(sp, format!("duplicate definition of {} `{}`", namespace_error_to_string(duplicate_type), token::get_name(name))[]); { let r = child.span_for_namespace(ns); for sp in r.iter() { self.session.span_note(*sp, format!("first definition of {} `{}` here", namespace_error_to_string(duplicate_type), token::get_name(name))[]); } } } child } } } fn block_needs_anonymous_module(&mut self, block: &Block) -> bool { // If the block has view items, we need an anonymous module. if block.view_items.len() > 0 { return true; } // Check each statement. for statement in block.stmts.iter() { match statement.node { StmtDecl(ref declaration, _) => { match declaration.node { DeclItem(_) => { return true; } _ => { // Keep searching. } } } _ => { // Keep searching. } } } // If we found neither view items nor items, we don't need to create // an anonymous module. return false; } fn get_parent_link(&mut self, parent: ReducedGraphParent, name: Name) -> ParentLink { match parent { ModuleReducedGraphParent(module_) => { return ModuleParentLink(module_.downgrade(), name); } } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(&mut self, item: &Item, parent: ReducedGraphParent) -> ReducedGraphParent { let name = item.ident.name; let sp = item.span; let is_public = item.vis == ast::Public; let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE; match item.node { ItemMod(..) => { let name_bindings = self.add_child(name, parent.clone(), ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(parent, name); let def_id = DefId { krate: 0, node: item.id }; name_bindings.define_module(parent_link, Some(def_id), NormalModuleKind, false, item.vis == ast::Public, sp); ModuleReducedGraphParent(name_bindings.get_module()) } ItemForeignMod(..) => parent, // These items live in the value namespace. ItemStatic(_, m, _) => { let name_bindings = self.add_child(name, parent.clone(), ForbidDuplicateValues, sp); let mutbl = m == ast::MutMutable; name_bindings.define_value (DefStatic(local_def(item.id), mutbl), sp, modifiers); parent } ItemConst(_, _) => { self.add_child(name, parent.clone(), ForbidDuplicateValues, sp) .define_value(DefConst(local_def(item.id)), sp, modifiers); parent } ItemFn(_, _, _, _, _) => { let name_bindings = self.add_child(name, parent.clone(), ForbidDuplicateValues, sp); let def = DefFn(local_def(item.id), false); name_bindings.define_value(def, sp, modifiers); parent } // These items live in the type namespace. ItemTy(..) => { let name_bindings = self.add_child(name, parent.clone(), ForbidDuplicateTypesAndModules, sp); name_bindings.define_type (DefTy(local_def(item.id), false), sp, modifiers); parent } ItemEnum(ref enum_definition, _) => { let name_bindings = self.add_child(name, parent.clone(), ForbidDuplicateTypesAndModules, sp); name_bindings.define_type (DefTy(local_def(item.id), true), sp, modifiers); let parent_link = self.get_parent_link(parent.clone(), name); // We want to make sure the module type is EnumModuleKind // even if there's already an ImplModuleKind module defined, // since that's how we prevent duplicate enum definitions name_bindings.set_module_kind(parent_link, Some(local_def(item.id)), EnumModuleKind, false, is_public, sp); for variant in (*enum_definition).variants.iter() { self.build_reduced_graph_for_variant( &**variant, local_def(item.id), ModuleReducedGraphParent(name_bindings.get_module())); } parent } // These items live in both the type and value namespaces. ItemStruct(ref struct_def, _) => { // Adding to both Type and Value namespaces or just Type? let (forbid, ctor_id) = match struct_def.ctor_id { Some(ctor_id) => (ForbidDuplicateTypesAndValues, Some(ctor_id)), None => (ForbidDuplicateTypesAndModules, None) }; let name_bindings = self.add_child(name, parent.clone(), forbid, sp); // Define a name in the type namespace. name_bindings.define_type(DefTy(local_def(item.id), false), sp, modifiers); // If this is a newtype or unit-like struct, define a name // in the value namespace as well match ctor_id { Some(cid) => { name_bindings.define_value(DefStruct(local_def(cid)), sp, modifiers); } None => {} } // Record the def ID and fields of this struct. let named_fields = struct_def.fields.iter().filter_map(|f| { match f.node.kind { NamedField(ident, _) => Some(ident.name), UnnamedField(_) => None } }).collect(); self.structs.insert(local_def(item.id), named_fields); parent } ItemImpl(_, _, None, ref ty, ref impl_items) => { // If this implements an anonymous trait, then add all the // methods within to a new module, if the type was defined // within this module. let mod_name = match ty.node { TyPath(ref path, _) if path.segments.len() == 1 => { // FIXME(18446) we should distinguish between the name of // a trait and the name of an impl of that trait. Some(path.segments.last().unwrap().identifier.name) } TyObjectSum(ref lhs_ty, _) => { match lhs_ty.node { TyPath(ref path, _) if path.segments.len() == 1 => { Some(path.segments.last().unwrap().identifier.name) } _ => { None } } } _ => { None } }; match mod_name { None => { self.resolve_error(ty.span, "inherent implementations may \ only be implemented in the same \ module as the type they are \ implemented for") } Some(mod_name) => { // Create the module and add all methods. let parent_opt = parent.module().children.borrow() .get(&mod_name).cloned(); let new_parent = match parent_opt { // It already exists Some(ref child) if child.get_module_if_available() .is_some() && (child.get_module().kind.get() == ImplModuleKind || child.get_module().kind.get() == TraitModuleKind) => { ModuleReducedGraphParent(child.get_module()) } Some(ref child) if child.get_module_if_available() .is_some() && child.get_module().kind.get() == EnumModuleKind => { ModuleReducedGraphParent(child.get_module()) } // Create the module _ => { let name_bindings = self.add_child(mod_name, parent.clone(), ForbidDuplicateModules, sp); let parent_link = self.get_parent_link(parent.clone(), name); let def_id = local_def(item.id); let ns = TypeNS; let is_public = !name_bindings.defined_in_namespace(ns) || name_bindings.defined_in_public_namespace(ns); name_bindings.define_module(parent_link, Some(def_id), ImplModuleKind, false, is_public, sp); ModuleReducedGraphParent( name_bindings.get_module()) } }; // For each implementation item... for impl_item in impl_items.iter() { match *impl_item { MethodImplItem(ref method) => { // Add the method to the module. let name = method.pe_ident().name; let method_name_bindings = self.add_child(name, new_parent.clone(), ForbidDuplicateValues, method.span); let def = match method.pe_explicit_self() .node { SelfStatic => { // Static methods become // `DefStaticMethod`s. DefStaticMethod(local_def(method.id), FromImpl(local_def(item.id))) } _ => { // Non-static methods become // `DefMethod`s. DefMethod(local_def(method.id), None, FromImpl(local_def(item.id))) } }; // NB: not IMPORTABLE let modifiers = if method.pe_vis() == ast::Public { PUBLIC } else { DefModifiers::empty() }; method_name_bindings.define_value( def, method.span, modifiers); } TypeImplItem(ref typedef) => { // Add the typedef to the module. let name = typedef.ident.name; let typedef_name_bindings = self.add_child( name, new_parent.clone(), ForbidDuplicateTypesAndModules, typedef.span); let def = DefAssociatedTy(local_def( typedef.id)); // NB: not IMPORTABLE let modifiers = if typedef.vis == ast::Public { PUBLIC } else { DefModifiers::empty() }; typedef_name_bindings.define_type( def, typedef.span, modifiers); } } } } } parent } ItemImpl(_, _, Some(_), _, _) => parent, ItemTrait(_, _, _, _, ref items) => { let name_bindings = self.add_child(name, parent.clone(), ForbidDuplicateTypesAndModules, sp); // Add all the items within to a new module. let parent_link = self.get_parent_link(parent.clone(), name); name_bindings.define_module(parent_link, Some(local_def(item.id)), TraitModuleKind, false, item.vis == ast::Public, sp); let module_parent = ModuleReducedGraphParent(name_bindings. get_module()); let def_id = local_def(item.id); // Add the names of all the items to the trait info. for trait_item in items.iter() { let (name, kind) = match *trait_item { ast::RequiredMethod(_) | ast::ProvidedMethod(_) => { let ty_m = ast_util::trait_item_to_ty_method(trait_item); let name = ty_m.ident.name; // Add it as a name in the trait module. let (def, static_flag) = match ty_m.explicit_self .node { SelfStatic => { // Static methods become `DefStaticMethod`s. (DefStaticMethod( local_def(ty_m.id), FromTrait(local_def(item.id))), StaticMethodTraitItemKind) } _ => { // Non-static methods become `DefMethod`s. (DefMethod(local_def(ty_m.id), Some(local_def(item.id)), FromTrait(local_def(item.id))), NonstaticMethodTraitItemKind) } }; let method_name_bindings = self.add_child(name, module_parent.clone(), ForbidDuplicateTypesAndValues, ty_m.span); // NB: not IMPORTABLE method_name_bindings.define_value(def, ty_m.span, PUBLIC); (name, static_flag) } ast::TypeTraitItem(ref associated_type) => { let def = DefAssociatedTy(local_def( associated_type.ty_param.id)); let name_bindings = self.add_child(associated_type.ty_param.ident.name, module_parent.clone(), ForbidDuplicateTypesAndValues, associated_type.ty_param.span); // NB: not IMPORTABLE name_bindings.define_type(def, associated_type.ty_param.span, PUBLIC); (associated_type.ty_param.ident.name, TypeTraitItemKind) } }; self.trait_item_map.insert((name, def_id), kind); } name_bindings.define_type(DefTrait(def_id), sp, modifiers); parent } ItemMac(..) => parent } } // Constructs the reduced graph for one variant. Variants exist in the // type and value namespaces. fn build_reduced_graph_for_variant(&mut self, variant: &Variant, item_id: DefId, parent: ReducedGraphParent) { let name = variant.node.name.name; let is_exported = match variant.node.kind { TupleVariantKind(_) => false, StructVariantKind(_) => { // Not adding fields for variants as they are not accessed with a self receiver self.structs.insert(local_def(variant.node.id), Vec::new()); true } }; let child = self.add_child(name, parent, ForbidDuplicateTypesAndValues, variant.span); // variants are always treated as importable to allow them to be glob // used child.define_value(DefVariant(item_id, local_def(variant.node.id), is_exported), variant.span, PUBLIC | IMPORTABLE); child.define_type(DefVariant(item_id, local_def(variant.node.id), is_exported), variant.span, PUBLIC | IMPORTABLE); } /// Constructs the reduced graph for one 'view item'. View items consist /// of imports and use directives. fn build_reduced_graph_for_view_item(&mut self, view_item: &ViewItem, parent: ReducedGraphParent) { match view_item.node { ViewItemUse(ref view_path) => { // Extract and intern the module part of the path. For // globs and lists, the path is found directly in the AST; // for simple paths we have to munge the path a little. let module_path = match view_path.node { ViewPathSimple(_, ref full_path, _) => { full_path.segments .init() .iter().map(|ident| ident.identifier.name) .collect() } ViewPathGlob(ref module_ident_path, _) | ViewPathList(ref module_ident_path, _, _) => { module_ident_path.segments .iter().map(|ident| ident.identifier.name).collect() } }; // Build up the import directives. let module_ = parent.module(); let is_public = view_item.vis == ast::Public; let shadowable = view_item.attrs .iter() .any(|attr| { attr.name() == token::get_name( special_idents::prelude_import.name) }); match view_path.node { ViewPathSimple(binding, ref full_path, id) => { let source_name = full_path.segments.last().unwrap().identifier.name; if token::get_name(source_name).get() == "mod" { self.resolve_error(view_path.span, "`mod` imports are only allowed within a { } list"); } let subclass = SingleImport(binding.name, source_name); self.build_import_directive(&*module_, module_path, subclass, view_path.span, id, is_public, shadowable); } ViewPathList(_, ref source_items, _) => { // Make sure there's at most one `mod` import in the list. let mod_spans = source_items.iter().filter_map(|item| match item.node { PathListMod { .. } => Some(item.span), _ => None }).collect::>(); if mod_spans.len() > 1 { self.resolve_error(mod_spans[0], "`mod` import can only appear once in the list"); for other_span in mod_spans.iter().skip(1) { self.session.span_note(*other_span, "another `mod` import appears here"); } } for source_item in source_items.iter() { let (module_path, name) = match source_item.node { PathListIdent { name, .. } => (module_path.clone(), name.name), PathListMod { .. } => { let name = match module_path.last() { Some(name) => *name, None => { self.resolve_error(source_item.span, "`mod` import can only appear in an import list \ with a non-empty prefix"); continue; } }; let module_path = module_path.init(); (module_path.to_vec(), name) } }; self.build_import_directive( &*module_, module_path, SingleImport(name, name), source_item.span, source_item.node.id(), is_public, shadowable); } } ViewPathGlob(_, id) => { self.build_import_directive(&*module_, module_path, GlobImport, view_path.span, id, is_public, shadowable); } } } ViewItemExternCrate(name, _, node_id) => { // n.b. we don't need to look at the path option here, because cstore already did for &crate_id in self.session.cstore .find_extern_mod_stmt_cnum(node_id).iter() { let def_id = DefId { krate: crate_id, node: 0 }; self.external_exports.insert(def_id); let parent_link = ModuleParentLink(parent.module().downgrade(), name.name); let external_module = Rc::new(Module::new(parent_link, Some(def_id), NormalModuleKind, false, true)); debug!("(build reduced graph for item) found extern `{}`", self.module_to_string(&*external_module)); self.check_for_conflicts_between_external_crates( &*parent.module(), name.name, view_item.span); parent.module().external_module_children.borrow_mut() .insert(name.name, external_module.clone()); self.build_reduced_graph_for_external_crate(external_module); } } } } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(&mut self, foreign_item: &ForeignItem, parent: ReducedGraphParent, f: F) where F: FnOnce(&mut Resolver), { let name = foreign_item.ident.name; let is_public = foreign_item.vis == ast::Public; let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE; let name_bindings = self.add_child(name, parent, ForbidDuplicateValues, foreign_item.span); match foreign_item.node { ForeignItemFn(_, ref generics) => { let def = DefFn(local_def(foreign_item.id), false); name_bindings.define_value(def, foreign_item.span, modifiers); self.with_type_parameter_rib( HasTypeParameters(generics, FnSpace, foreign_item.id, NormalRibKind), f); } ForeignItemStatic(_, m) => { let def = DefStatic(local_def(foreign_item.id), m); name_bindings.define_value(def, foreign_item.span, modifiers); f(self) } } } fn build_reduced_graph_for_block(&mut self, block: &Block, parent: ReducedGraphParent) -> ReducedGraphParent { if self.block_needs_anonymous_module(block) { let block_id = block.id; debug!("(building reduced graph for block) creating a new \ anonymous module for block {}", block_id); let parent_module = parent.module(); let new_module = Rc::new(Module::new( BlockParentLink(parent_module.downgrade(), block_id), None, AnonymousModuleKind, false, false)); parent_module.anonymous_children.borrow_mut() .insert(block_id, new_module.clone()); ModuleReducedGraphParent(new_module) } else { parent } } fn handle_external_def(&mut self, def: Def, vis: Visibility, child_name_bindings: &NameBindings, final_ident: &str, name: Name, new_parent: ReducedGraphParent) { debug!("(building reduced graph for \ external crate) building external def, priv {}", vis); let is_public = vis == ast::Public; let modifiers = if is_public { PUBLIC } else { DefModifiers::empty() } | IMPORTABLE; let is_exported = is_public && match new_parent { ModuleReducedGraphParent(ref module) => { match module.def_id.get() { None => true, Some(did) => self.external_exports.contains(&did) } } }; if is_exported { self.external_exports.insert(def.def_id()); } let kind = match def { DefTy(_, true) => EnumModuleKind, DefStruct(..) | DefTy(..) => ImplModuleKind, _ => NormalModuleKind }; match def { DefMod(def_id) | DefForeignMod(def_id) | DefStruct(def_id) | DefTy(def_id, _) => { let type_def = child_name_bindings.type_def.borrow().clone(); match type_def { Some(TypeNsDef { module_def: Some(module_def), .. }) => { debug!("(building reduced graph for external crate) \ already created module"); module_def.def_id.set(Some(def_id)); } Some(_) | None => { debug!("(building reduced graph for \ external crate) building module \ {}", final_ident); let parent_link = self.get_parent_link(new_parent.clone(), name); child_name_bindings.define_module(parent_link, Some(def_id), kind, true, is_public, DUMMY_SP); } } } _ => {} } match def { DefMod(_) | DefForeignMod(_) => {} DefVariant(_, variant_id, is_struct) => { debug!("(building reduced graph for external crate) building \ variant {}", final_ident); // variants are always treated as importable to allow them to be // glob used let modifiers = PUBLIC | IMPORTABLE; if is_struct { child_name_bindings.define_type(def, DUMMY_SP, modifiers); // Not adding fields for variants as they are not accessed with a self receiver self.structs.insert(variant_id, Vec::new()); } else { child_name_bindings.define_value(def, DUMMY_SP, modifiers); } } DefFn(ctor_id, true) => { child_name_bindings.define_value( csearch::get_tuple_struct_definition_if_ctor(&self.session.cstore, ctor_id) .map_or(def, |_| DefStruct(ctor_id)), DUMMY_SP, modifiers); } DefFn(..) | DefStaticMethod(..) | DefStatic(..) | DefConst(..) | DefMethod(..) => { debug!("(building reduced graph for external \ crate) building value (fn/static) {}", final_ident); // impl methods have already been defined with the correct importability modifier let mut modifiers = match *child_name_bindings.value_def.borrow() { Some(ref def) => (modifiers & !IMPORTABLE) | (def.modifiers & IMPORTABLE), None => modifiers }; if new_parent.module().kind.get() != NormalModuleKind { modifiers = modifiers & !IMPORTABLE; } child_name_bindings.define_value(def, DUMMY_SP, modifiers); } DefTrait(def_id) => { debug!("(building reduced graph for external \ crate) building type {}", final_ident); // If this is a trait, add all the trait item names to the trait // info. let trait_item_def_ids = csearch::get_trait_item_def_ids(&self.session.cstore, def_id); for trait_item_def_id in trait_item_def_ids.iter() { let (trait_item_name, trait_item_kind) = csearch::get_trait_item_name_and_kind( &self.session.cstore, trait_item_def_id.def_id()); debug!("(building reduced graph for external crate) ... \ adding trait item '{}'", token::get_name(trait_item_name)); self.trait_item_map.insert((trait_item_name, def_id), trait_item_kind); if is_exported { self.external_exports .insert(trait_item_def_id.def_id()); } } child_name_bindings.define_type(def, DUMMY_SP, modifiers); // Define a module if necessary. let parent_link = self.get_parent_link(new_parent, name); child_name_bindings.set_module_kind(parent_link, Some(def_id), TraitModuleKind, true, is_public, DUMMY_SP) } DefTy(..) | DefAssociatedTy(..) | DefAssociatedPath(..) => { debug!("(building reduced graph for external \ crate) building type {}", final_ident); child_name_bindings.define_type(def, DUMMY_SP, modifiers); } DefStruct(def_id) => { debug!("(building reduced graph for external \ crate) building type and value for {}", final_ident); child_name_bindings.define_type(def, DUMMY_SP, modifiers); let fields = csearch::get_struct_fields(&self.session.cstore, def_id).iter().map(|f| { f.name }).collect::>(); if fields.len() == 0 { child_name_bindings.define_value(def, DUMMY_SP, modifiers); } // Record the def ID and fields of this struct. self.structs.insert(def_id, fields); } DefLocal(..) | DefPrimTy(..) | DefTyParam(..) | DefUse(..) | DefUpvar(..) | DefRegion(..) | DefTyParamBinder(..) | DefLabel(..) | DefSelfTy(..) => { panic!("didn't expect `{}`", def); } } } /// Builds the reduced graph for a single item in an external crate. fn build_reduced_graph_for_external_crate_def(&mut self, root: Rc, def_like: DefLike, name: Name, visibility: Visibility) { match def_like { DlDef(def) => { // Add the new child item, if necessary. match def { DefForeignMod(def_id) => { // Foreign modules have no names. Recur and populate // eagerly. csearch::each_child_of_item(&self.session.cstore, def_id, |def_like, child_name, vis| { self.build_reduced_graph_for_external_crate_def( root.clone(), def_like, child_name, vis) }); } _ => { let child_name_bindings = self.add_child(name, ModuleReducedGraphParent(root.clone()), OverwriteDuplicates, DUMMY_SP); self.handle_external_def(def, visibility, &*child_name_bindings, token::get_name(name).get(), name, ModuleReducedGraphParent(root)); } } } DlImpl(def) => { match csearch::get_type_name_if_impl(&self.session.cstore, def) { None => {} Some(final_name) => { let methods_opt = csearch::get_methods_if_impl(&self.session.cstore, def); match methods_opt { Some(ref methods) if methods.len() >= 1 => { debug!("(building reduced graph for \ external crate) processing \ static methods for type name {}", token::get_name(final_name)); let child_name_bindings = self.add_child( final_name, ModuleReducedGraphParent(root.clone()), OverwriteDuplicates, DUMMY_SP); // Process the static methods. First, // create the module. let type_module; let type_def = child_name_bindings.type_def.borrow().clone(); match type_def { Some(TypeNsDef { module_def: Some(module_def), .. }) => { // We already have a module. This // is OK. type_module = module_def; // Mark it as an impl module if // necessary. type_module.kind.set(ImplModuleKind); } Some(_) | None => { let parent_link = self.get_parent_link(ModuleReducedGraphParent(root), final_name); child_name_bindings.define_module( parent_link, Some(def), ImplModuleKind, true, true, DUMMY_SP); type_module = child_name_bindings. get_module(); } } // Add each static method to the module. let new_parent = ModuleReducedGraphParent(type_module); for method_info in methods.iter() { let name = method_info.name; debug!("(building reduced graph for \ external crate) creating \ static method '{}'", token::get_name(name)); let method_name_bindings = self.add_child(name, new_parent.clone(), OverwriteDuplicates, DUMMY_SP); let def = DefFn(method_info.def_id, false); // NB: not IMPORTABLE let modifiers = if visibility == ast::Public { PUBLIC } else { DefModifiers::empty() }; method_name_bindings.define_value( def, DUMMY_SP, modifiers); } } // Otherwise, do nothing. Some(_) | None => {} } } } } DlField => { debug!("(building reduced graph for external crate) \ ignoring field"); } } } /// Builds the reduced graph rooted at the given external module. fn populate_external_module(&mut self, module: Rc) { debug!("(populating external module) attempting to populate {}", self.module_to_string(&*module)); let def_id = match module.def_id.get() { None => { debug!("(populating external module) ... no def ID!"); return } Some(def_id) => def_id, }; csearch::each_child_of_item(&self.session.cstore, def_id, |def_like, child_name, visibility| { debug!("(populating external module) ... found ident: {}", token::get_name(child_name)); self.build_reduced_graph_for_external_crate_def(module.clone(), def_like, child_name, visibility) }); module.populated.set(true) } /// Ensures that the reduced graph rooted at the given external module /// is built, building it if it is not. fn populate_module_if_necessary(&mut self, module: &Rc) { if !module.populated.get() { self.populate_external_module(module.clone()) } assert!(module.populated.get()) } /// Builds the reduced graph rooted at the 'use' directive for an external /// crate. fn build_reduced_graph_for_external_crate(&mut self, root: Rc) { csearch::each_top_level_item_of_crate(&self.session.cstore, root.def_id .get() .unwrap() .krate, |def_like, name, visibility| { self.build_reduced_graph_for_external_crate_def(root.clone(), def_like, name, visibility) }); } /// Creates and adds an import directive to the given module. fn build_import_directive(&mut self, module_: &Module, module_path: Vec, subclass: ImportDirectiveSubclass, span: Span, id: NodeId, is_public: bool, shadowable: bool) { module_.imports.borrow_mut().push(ImportDirective::new(module_path, subclass, span, id, is_public, shadowable)); self.unresolved_imports += 1; // Bump the reference count on the name. Or, if this is a glob, set // the appropriate flag. match subclass { SingleImport(target, _) => { debug!("(building import directive) building import \ directive: {}::{}", self.names_to_string(module_.imports.borrow().last().unwrap() .module_path[]), token::get_name(target)); let mut import_resolutions = module_.import_resolutions .borrow_mut(); match import_resolutions.get_mut(&target) { Some(resolution) => { debug!("(building import directive) bumping \ reference"); resolution.outstanding_references += 1; // the source of this name is different now resolution.type_id = id; resolution.value_id = id; resolution.is_public = is_public; return; } None => {} } debug!("(building import directive) creating new"); let mut resolution = ImportResolution::new(id, is_public); resolution.outstanding_references = 1; import_resolutions.insert(target, resolution); } GlobImport => { // Set the glob flag. This tells us that we don't know the // module's exports ahead of time. module_.glob_count.set(module_.glob_count.get() + 1); } } } // Import resolution // // This is a fixed-point algorithm. We resolve imports until our efforts // are stymied by an unresolved import; then we bail out of the current // module and continue. We terminate successfully once no more imports // remain or unsuccessfully when no forward progress in resolving imports // is made. /// Resolves all imports for the crate. This method performs the fixed- /// point iteration. fn resolve_imports(&mut self) { let mut i = 0u; let mut prev_unresolved_imports = 0; loop { debug!("(resolving imports) iteration {}, {} imports left", i, self.unresolved_imports); let module_root = self.graph_root.get_module(); self.resolve_imports_for_module_subtree(module_root.clone()); if self.unresolved_imports == 0 { debug!("(resolving imports) success"); break; } if self.unresolved_imports == prev_unresolved_imports { self.report_unresolved_imports(module_root); break; } i += 1; prev_unresolved_imports = self.unresolved_imports; } } /// Attempts to resolve imports for the given module and all of its /// submodules. fn resolve_imports_for_module_subtree(&mut self, module_: Rc) { debug!("(resolving imports for module subtree) resolving {}", self.module_to_string(&*module_)); let orig_module = replace(&mut self.current_module, module_.clone()); self.resolve_imports_for_module(module_.clone()); self.current_module = orig_module; self.populate_module_if_necessary(&module_); for (_, child_node) in module_.children.borrow().iter() { match child_node.get_module_if_available() { None => { // Nothing to do. } Some(child_module) => { self.resolve_imports_for_module_subtree(child_module); } } } for (_, child_module) in module_.anonymous_children.borrow().iter() { self.resolve_imports_for_module_subtree(child_module.clone()); } } /// Attempts to resolve imports for the given module only. fn resolve_imports_for_module(&mut self, module: Rc) { if module.all_imports_resolved() { debug!("(resolving imports for module) all imports resolved for \ {}", self.module_to_string(&*module)); return; } let imports = module.imports.borrow(); let import_count = imports.len(); while module.resolved_import_count.get() < import_count { let import_index = module.resolved_import_count.get(); let import_directive = &(*imports)[import_index]; match self.resolve_import_for_module(module.clone(), import_directive) { Failed(err) => { let (span, help) = match err { Some((span, msg)) => (span, format!(". {}", msg)), None => (import_directive.span, String::new()) }; let msg = format!("unresolved import `{}`{}", self.import_path_to_string( import_directive.module_path [], import_directive.subclass), help); self.resolve_error(span, msg[]); } Indeterminate => break, // Bail out. We'll come around next time. Success(()) => () // Good. Continue. } module.resolved_import_count .set(module.resolved_import_count.get() + 1); } } fn names_to_string(&self, names: &[Name]) -> String { let mut first = true; let mut result = String::new(); for name in names.iter() { if first { first = false } else { result.push_str("::") } result.push_str(token::get_name(*name).get()); }; result } fn path_names_to_string(&self, path: &Path) -> String { let names: Vec = path.segments .iter() .map(|seg| seg.identifier.name) .collect(); self.names_to_string(names[]) } fn import_directive_subclass_to_string(&mut self, subclass: ImportDirectiveSubclass) -> String { match subclass { SingleImport(_, source) => { token::get_name(source).get().to_string() } GlobImport => "*".to_string() } } fn import_path_to_string(&mut self, names: &[Name], subclass: ImportDirectiveSubclass) -> String { if names.is_empty() { self.import_directive_subclass_to_string(subclass) } else { (format!("{}::{}", self.names_to_string(names), self.import_directive_subclass_to_string( subclass))).to_string() } } /// Attempts to resolve the given import. The return value indicates /// failure if we're certain the name does not exist, indeterminate if we /// don't know whether the name exists at the moment due to other /// currently-unresolved imports, or success if we know the name exists. /// If successful, the resolved bindings are written into the module. fn resolve_import_for_module(&mut self, module_: Rc, import_directive: &ImportDirective) -> ResolveResult<()> { let mut resolution_result = Failed(None); let module_path = &import_directive.module_path; debug!("(resolving import for module) resolving import `{}::...` in \ `{}`", self.names_to_string(module_path[]), self.module_to_string(&*module_)); // First, resolve the module path for the directive, if necessary. let container = if module_path.len() == 0 { // Use the crate root. Some((self.graph_root.get_module(), LastMod(AllPublic))) } else { match self.resolve_module_path(module_.clone(), module_path[], DontUseLexicalScope, import_directive.span, ImportSearch) { Failed(err) => { resolution_result = Failed(err); None }, Indeterminate => { resolution_result = Indeterminate; None } Success(container) => Some(container), } }; match container { None => {} Some((containing_module, lp)) => { // We found the module that the target is contained // within. Attempt to resolve the import within it. match import_directive.subclass { SingleImport(target, source) => { resolution_result = self.resolve_single_import(&*module_, containing_module, target, source, import_directive, lp); } GlobImport => { resolution_result = self.resolve_glob_import(&*module_, containing_module, import_directive, lp); } } } } // Decrement the count of unresolved imports. match resolution_result { Success(()) => { assert!(self.unresolved_imports >= 1); self.unresolved_imports -= 1; } _ => { // Nothing to do here; just return the error. } } // Decrement the count of unresolved globs if necessary. But only if // the resolution result is indeterminate -- otherwise we'll stop // processing imports here. (See the loop in // resolve_imports_for_module.) if !resolution_result.indeterminate() { match import_directive.subclass { GlobImport => { assert!(module_.glob_count.get() >= 1); module_.glob_count.set(module_.glob_count.get() - 1); } SingleImport(..) => { // Ignore. } } } return resolution_result; } fn create_name_bindings_from_module(module: Rc) -> NameBindings { NameBindings { type_def: RefCell::new(Some(TypeNsDef { modifiers: IMPORTABLE, module_def: Some(module), type_def: None, type_span: None })), value_def: RefCell::new(None), } } fn resolve_single_import(&mut self, module_: &Module, containing_module: Rc, target: Name, source: Name, directive: &ImportDirective, lp: LastPrivate) -> ResolveResult<()> { debug!("(resolving single import) resolving `{}` = `{}::{}` from \ `{}` id {}, last private {}", token::get_name(target), self.module_to_string(&*containing_module), token::get_name(source), self.module_to_string(module_), directive.id, lp); let lp = match lp { LastMod(lp) => lp, LastImport {..} => { self.session .span_bug(directive.span, "not expecting Import here, must be LastMod") } }; // We need to resolve both namespaces for this to succeed. // let mut value_result = UnknownResult; let mut type_result = UnknownResult; // Search for direct children of the containing module. self.populate_module_if_necessary(&containing_module); match containing_module.children.borrow().get(&source) { None => { // Continue. } Some(ref child_name_bindings) => { if child_name_bindings.defined_in_namespace(ValueNS) { debug!("(resolving single import) found value binding"); value_result = BoundResult(containing_module.clone(), (*child_name_bindings).clone()); } if child_name_bindings.defined_in_namespace(TypeNS) { debug!("(resolving single import) found type binding"); type_result = BoundResult(containing_module.clone(), (*child_name_bindings).clone()); } } } // Unless we managed to find a result in both namespaces (unlikely), // search imports as well. let mut value_used_reexport = false; let mut type_used_reexport = false; match (value_result.clone(), type_result.clone()) { (BoundResult(..), BoundResult(..)) => {} // Continue. _ => { // If there is an unresolved glob at this point in the // containing module, bail out. We don't know enough to be // able to resolve this import. if containing_module.glob_count.get() > 0 { debug!("(resolving single import) unresolved glob; \ bailing out"); return Indeterminate; } // Now search the exported imports within the containing module. match containing_module.import_resolutions.borrow().get(&source) { None => { debug!("(resolving single import) no import"); // The containing module definitely doesn't have an // exported import with the name in question. We can // therefore accurately report that the names are // unbound. if value_result.is_unknown() { value_result = UnboundResult; } if type_result.is_unknown() { type_result = UnboundResult; } } Some(import_resolution) if import_resolution.outstanding_references == 0 => { fn get_binding(this: &mut Resolver, import_resolution: &ImportResolution, namespace: Namespace) -> NamespaceResult { // Import resolutions must be declared with "pub" // in order to be exported. if !import_resolution.is_public { return UnboundResult; } match import_resolution. target_for_namespace(namespace) { None => { return UnboundResult; } Some(Target { target_module, bindings, shadowable: _ }) => { debug!("(resolving single import) found \ import in ns {}", namespace); let id = import_resolution.id(namespace); // track used imports and extern crates as well this.used_imports.insert((id, namespace)); match target_module.def_id.get() { Some(DefId{krate: kid, ..}) => { this.used_crates.insert(kid); }, _ => {} } return BoundResult(target_module, bindings); } } } // The name is an import which has been fully // resolved. We can, therefore, just follow it. if value_result.is_unknown() { value_result = get_binding(self, import_resolution, ValueNS); value_used_reexport = import_resolution.is_public; } if type_result.is_unknown() { type_result = get_binding(self, import_resolution, TypeNS); type_used_reexport = import_resolution.is_public; } } Some(_) => { // If containing_module is the same module whose import we are resolving // and there it has an unresolved import with the same name as `source`, // then the user is actually trying to import an item that is declared // in the same scope // // e.g // use self::submodule; // pub mod submodule; // // In this case we continue as if we resolved the import and let the // check_for_conflicts_between_imports_and_items call below handle // the conflict match (module_.def_id.get(), containing_module.def_id.get()) { (Some(id1), Some(id2)) if id1 == id2 => { if value_result.is_unknown() { value_result = UnboundResult; } if type_result.is_unknown() { type_result = UnboundResult; } } _ => { // The import is unresolved. Bail out. debug!("(resolving single import) unresolved import; \ bailing out"); return Indeterminate; } } } } } } // If we didn't find a result in the type namespace, search the // external modules. let mut value_used_public = false; let mut type_used_public = false; match type_result { BoundResult(..) => {} _ => { match containing_module.external_module_children.borrow_mut() .get(&source).cloned() { None => {} // Continue. Some(module) => { debug!("(resolving single import) found external \ module"); // track the module as used. match module.def_id.get() { Some(DefId{krate: kid, ..}) => { self.used_crates.insert(kid); }, _ => {} } let name_bindings = Rc::new(Resolver::create_name_bindings_from_module( module)); type_result = BoundResult(containing_module.clone(), name_bindings); type_used_public = true; } } } } // We've successfully resolved the import. Write the results in. let mut import_resolutions = module_.import_resolutions.borrow_mut(); let import_resolution = &mut (*import_resolutions)[target]; match value_result { BoundResult(ref target_module, ref name_bindings) => { debug!("(resolving single import) found value target: {}", { name_bindings.value_def.borrow().clone().unwrap().def }); self.check_for_conflicting_import( &import_resolution.value_target, directive.span, target, ValueNS); self.check_that_import_is_importable( &**name_bindings, directive.span, target, ValueNS); import_resolution.value_target = Some(Target::new(target_module.clone(), name_bindings.clone(), directive.shadowable)); import_resolution.value_id = directive.id; import_resolution.is_public = directive.is_public; value_used_public = name_bindings.defined_in_public_namespace(ValueNS); } UnboundResult => { /* Continue. */ } UnknownResult => { panic!("value result should be known at this point"); } } match type_result { BoundResult(ref target_module, ref name_bindings) => { debug!("(resolving single import) found type target: {}", { name_bindings.type_def.borrow().clone().unwrap().type_def }); self.check_for_conflicting_import( &import_resolution.type_target, directive.span, target, TypeNS); self.check_that_import_is_importable( &**name_bindings, directive.span, target, TypeNS); import_resolution.type_target = Some(Target::new(target_module.clone(), name_bindings.clone(), directive.shadowable)); import_resolution.type_id = directive.id; import_resolution.is_public = directive.is_public; type_used_public = name_bindings.defined_in_public_namespace(TypeNS); } UnboundResult => { /* Continue. */ } UnknownResult => { panic!("type result should be known at this point"); } } self.check_for_conflicts_between_imports_and_items( module_, import_resolution, directive.span, target); if value_result.is_unbound() && type_result.is_unbound() { let msg = format!("There is no `{}` in `{}`", token::get_name(source), self.module_to_string(&*containing_module)); return Failed(Some((directive.span, msg))); } let value_used_public = value_used_reexport || value_used_public; let type_used_public = type_used_reexport || type_used_public; assert!(import_resolution.outstanding_references >= 1); import_resolution.outstanding_references -= 1; // record what this import resolves to for later uses in documentation, // this may resolve to either a value or a type, but for documentation // purposes it's good enough to just favor one over the other. let value_private = match import_resolution.value_target { Some(ref target) => { let def = target.bindings.def_for_namespace(ValueNS).unwrap(); self.def_map.borrow_mut().insert(directive.id, def); let did = def.def_id(); if value_used_public {Some(lp)} else {Some(DependsOn(did))} }, // AllPublic here and below is a dummy value, it should never be used because // _exists is false. None => None, }; let type_private = match import_resolution.type_target { Some(ref target) => { let def = target.bindings.def_for_namespace(TypeNS).unwrap(); self.def_map.borrow_mut().insert(directive.id, def); let did = def.def_id(); if type_used_public {Some(lp)} else {Some(DependsOn(did))} }, None => None, }; self.last_private.insert(directive.id, LastImport{value_priv: value_private, value_used: Used, type_priv: type_private, type_used: Used}); debug!("(resolving single import) successfully resolved import"); return Success(()); } // Resolves a glob import. Note that this function cannot panic; it either // succeeds or bails out (as importing * from an empty module or a module // that exports nothing is valid). fn resolve_glob_import(&mut self, module_: &Module, containing_module: Rc, import_directive: &ImportDirective, lp: LastPrivate) -> ResolveResult<()> { let id = import_directive.id; let is_public = import_directive.is_public; // This function works in a highly imperative manner; it eagerly adds // everything it can to the list of import resolutions of the module // node. debug!("(resolving glob import) resolving glob import {}", id); // We must bail out if the node has unresolved imports of any kind // (including globs). if !(*containing_module).all_imports_resolved() { debug!("(resolving glob import) target module has unresolved \ imports; bailing out"); return Indeterminate; } assert_eq!(containing_module.glob_count.get(), 0); // Add all resolved imports from the containing module. let import_resolutions = containing_module.import_resolutions .borrow(); for (ident, target_import_resolution) in import_resolutions.iter() { debug!("(resolving glob import) writing module resolution \ {} into `{}`", target_import_resolution.type_target.is_none(), self.module_to_string(module_)); if !target_import_resolution.is_public { debug!("(resolving glob import) nevermind, just kidding"); continue } // Here we merge two import resolutions. let mut import_resolutions = module_.import_resolutions.borrow_mut(); match import_resolutions.get_mut(ident) { Some(dest_import_resolution) => { // Merge the two import resolutions at a finer-grained // level. match target_import_resolution.value_target { None => { // Continue. } Some(ref value_target) => { dest_import_resolution.value_target = Some(value_target.clone()); } } match target_import_resolution.type_target { None => { // Continue. } Some(ref type_target) => { dest_import_resolution.type_target = Some(type_target.clone()); } } dest_import_resolution.is_public = is_public; continue; } None => {} } // Simple: just copy the old import resolution. let mut new_import_resolution = ImportResolution::new(id, is_public); new_import_resolution.value_target = target_import_resolution.value_target.clone(); new_import_resolution.type_target = target_import_resolution.type_target.clone(); import_resolutions.insert(*ident, new_import_resolution); } // Add all children from the containing module. self.populate_module_if_necessary(&containing_module); for (&name, name_bindings) in containing_module.children .borrow().iter() { self.merge_import_resolution(module_, containing_module.clone(), import_directive, name, name_bindings.clone()); } // Add external module children from the containing module. for (&name, module) in containing_module.external_module_children .borrow().iter() { let name_bindings = Rc::new(Resolver::create_name_bindings_from_module(module.clone())); self.merge_import_resolution(module_, containing_module.clone(), import_directive, name, name_bindings); } // Record the destination of this import match containing_module.def_id.get() { Some(did) => { self.def_map.borrow_mut().insert(id, DefMod(did)); self.last_private.insert(id, lp); } None => {} } debug!("(resolving glob import) successfully resolved import"); return Success(()); } fn merge_import_resolution(&mut self, module_: &Module, containing_module: Rc, import_directive: &ImportDirective, name: Name, name_bindings: Rc) { let id = import_directive.id; let is_public = import_directive.is_public; let mut import_resolutions = module_.import_resolutions.borrow_mut(); let dest_import_resolution = match import_resolutions.entry(name) { Occupied(entry) => entry.into_mut(), Vacant(entry) => { // Create a new import resolution from this child. entry.set(ImportResolution::new(id, is_public)) } }; debug!("(resolving glob import) writing resolution `{}` in `{}` \ to `{}`", token::get_name(name).get().to_string(), self.module_to_string(&*containing_module), self.module_to_string(module_)); // Merge the child item into the import resolution. if name_bindings.defined_in_namespace_with(ValueNS, IMPORTABLE | PUBLIC) { debug!("(resolving glob import) ... for value target"); dest_import_resolution.value_target = Some(Target::new(containing_module.clone(), name_bindings.clone(), import_directive.shadowable)); dest_import_resolution.value_id = id; } if name_bindings.defined_in_namespace_with(TypeNS, IMPORTABLE | PUBLIC) { debug!("(resolving glob import) ... for type target"); dest_import_resolution.type_target = Some(Target::new(containing_module, name_bindings.clone(), import_directive.shadowable)); dest_import_resolution.type_id = id; } dest_import_resolution.is_public = is_public; self.check_for_conflicts_between_imports_and_items( module_, dest_import_resolution, import_directive.span, name); } /// Checks that imported names and items don't have the same name. fn check_for_conflicting_import(&mut self, target: &Option, import_span: Span, name: Name, namespace: Namespace) { if self.session.features.borrow().import_shadowing { return } match *target { Some(ref target) if !target.shadowable => { let msg = format!("a {} named `{}` has already been imported \ in this module", match namespace { TypeNS => "type", ValueNS => "value", }, token::get_name(name).get()); self.session.span_err(import_span, msg[]); } Some(_) | None => {} } } /// Checks that an import is actually importable fn check_that_import_is_importable(&mut self, name_bindings: &NameBindings, import_span: Span, name: Name, namespace: Namespace) { if !name_bindings.defined_in_namespace_with(namespace, IMPORTABLE) { let msg = format!("`{}` is not directly importable", token::get_name(name)); self.session.span_err(import_span, msg[]); } } /// Checks that imported names and items don't have the same name. fn check_for_conflicts_between_imports_and_items(&mut self, module: &Module, import_resolution: &ImportResolution, import_span: Span, name: Name) { if self.session.features.borrow().import_shadowing { return } // First, check for conflicts between imports and `extern crate`s. if module.external_module_children .borrow() .contains_key(&name) { match import_resolution.type_target { Some(ref target) if !target.shadowable => { let msg = format!("import `{0}` conflicts with imported \ crate in this module \ (maybe you meant `use {0}::*`?)", token::get_name(name).get()); self.session.span_err(import_span, msg[]); } Some(_) | None => {} } } // Check for item conflicts. let children = module.children.borrow(); let name_bindings = match children.get(&name) { None => { // There can't be any conflicts. return } Some(ref name_bindings) => (*name_bindings).clone(), }; match import_resolution.value_target { Some(ref target) if !target.shadowable => { if let Some(ref value) = *name_bindings.value_def.borrow() { let msg = format!("import `{}` conflicts with value \ in this module", token::get_name(name).get()); self.session.span_err(import_span, msg[]); if let Some(span) = value.value_span { self.session.span_note(span, "conflicting value here"); } } } Some(_) | None => {} } match import_resolution.type_target { Some(ref target) if !target.shadowable => { if let Some(ref ty) = *name_bindings.type_def.borrow() { match ty.module_def { None => { let msg = format!("import `{}` conflicts with type in \ this module", token::get_name(name).get()); self.session.span_err(import_span, msg[]); if let Some(span) = ty.type_span { self.session.span_note(span, "note conflicting type here") } } Some(ref module_def) => { match module_def.kind.get() { ImplModuleKind => { if let Some(span) = ty.type_span { let msg = format!("inherent implementations \ are only allowed on types \ defined in the current module"); self.session.span_err(span, msg[]); self.session.span_note(import_span, "import from other module here") } } _ => { let msg = format!("import `{}` conflicts with existing \ submodule", token::get_name(name).get()); self.session.span_err(import_span, msg[]); if let Some(span) = ty.type_span { self.session.span_note(span, "note conflicting module here") } } } } } } } Some(_) | None => {} } } /// Checks that the names of external crates don't collide with other /// external crates. fn check_for_conflicts_between_external_crates(&self, module: &Module, name: Name, span: Span) { if self.session.features.borrow().import_shadowing { return } if module.external_module_children.borrow().contains_key(&name) { self.session .span_err(span, format!("an external crate named `{}` has already \ been imported into this module", token::get_name(name).get())[]); } } /// Checks that the names of items don't collide with external crates. fn check_for_conflicts_between_external_crates_and_items(&self, module: &Module, name: Name, span: Span) { if self.session.features.borrow().import_shadowing { return } if module.external_module_children.borrow().contains_key(&name) { self.session .span_err(span, format!("the name `{}` conflicts with an external \ crate that has been imported into this \ module", token::get_name(name).get())[]); } } /// Resolves the given module path from the given root `module_`. fn resolve_module_path_from_root(&mut self, module_: Rc, module_path: &[Name], index: uint, span: Span, name_search_type: NameSearchType, lp: LastPrivate) -> ResolveResult<(Rc, LastPrivate)> { fn search_parent_externals(needle: Name, module: &Rc) -> Option> { module.external_module_children.borrow() .get(&needle).cloned() .map(|_| module.clone()) .or_else(|| { match module.parent_link.clone() { ModuleParentLink(parent, _) => { search_parent_externals(needle, &parent.upgrade().unwrap()) } _ => None } }) } let mut search_module = module_; let mut index = index; let module_path_len = module_path.len(); let mut closest_private = lp; // Resolve the module part of the path. This does not involve looking // upward though scope chains; we simply resolve names directly in // modules as we go. while index < module_path_len { let name = module_path[index]; match self.resolve_name_in_module(search_module.clone(), name, TypeNS, name_search_type, false) { Failed(None) => { let segment_name = token::get_name(name); let module_name = self.module_to_string(&*search_module); let mut span = span; let msg = if "???" == module_name[] { span.hi = span.lo + Pos::from_uint(segment_name.get().len()); match search_parent_externals(name, &self.current_module) { Some(module) => { let path_str = self.names_to_string(module_path); let target_mod_str = self.module_to_string(&*module); let current_mod_str = self.module_to_string(&*self.current_module); let prefix = if target_mod_str == current_mod_str { "self::".to_string() } else { format!("{}::", target_mod_str) }; format!("Did you mean `{}{}`?", prefix, path_str) }, None => format!("Maybe a missing `extern crate {}`?", segment_name), } } else { format!("Could not find `{}` in `{}`", segment_name, module_name) }; return Failed(Some((span, msg))); } Failed(err) => return Failed(err), Indeterminate => { debug!("(resolving module path for import) module \ resolution is indeterminate: {}", token::get_name(name)); return Indeterminate; } Success((target, used_proxy)) => { // Check to see whether there are type bindings, and, if // so, whether there is a module within. match *target.bindings.type_def.borrow() { Some(ref type_def) => { match type_def.module_def { None => { let msg = format!("Not a module `{}`", token::get_name(name)); return Failed(Some((span, msg))); } Some(ref module_def) => { search_module = module_def.clone(); // track extern crates for unused_extern_crate lint if let Some(did) = module_def.def_id.get() { self.used_crates.insert(did.krate); } // Keep track of the closest // private module used when // resolving this import chain. if !used_proxy && !search_module.is_public { if let Some(did) = search_module.def_id.get() { closest_private = LastMod(DependsOn(did)); } } } } } None => { // There are no type bindings at all. let msg = format!("Not a module `{}`", token::get_name(name)); return Failed(Some((span, msg))); } } } } index += 1; } return Success((search_module, closest_private)); } /// Attempts to resolve the module part of an import directive or path /// rooted at the given module. /// /// On success, returns the resolved module, and the closest *private* /// module found to the destination when resolving this path. fn resolve_module_path(&mut self, module_: Rc, module_path: &[Name], use_lexical_scope: UseLexicalScopeFlag, span: Span, name_search_type: NameSearchType) -> ResolveResult<(Rc, LastPrivate)> { let module_path_len = module_path.len(); assert!(module_path_len > 0); debug!("(resolving module path for import) processing `{}` rooted at `{}`", self.names_to_string(module_path), self.module_to_string(&*module_)); // Resolve the module prefix, if any. let module_prefix_result = self.resolve_module_prefix(module_.clone(), module_path); let search_module; let start_index; let last_private; match module_prefix_result { Failed(None) => { let mpath = self.names_to_string(module_path); let mpath = mpath[]; match mpath.rfind(':') { Some(idx) => { let msg = format!("Could not find `{}` in `{}`", // idx +- 1 to account for the // colons on either side mpath[idx + 1..], mpath[0..idx - 1]); return Failed(Some((span, msg))); }, None => { return Failed(None) } } } Failed(err) => return Failed(err), Indeterminate => { debug!("(resolving module path for import) indeterminate; \ bailing"); return Indeterminate; } Success(NoPrefixFound) => { // There was no prefix, so we're considering the first element // of the path. How we handle this depends on whether we were // instructed to use lexical scope or not. match use_lexical_scope { DontUseLexicalScope => { // This is a crate-relative path. We will start the // resolution process at index zero. search_module = self.graph_root.get_module(); start_index = 0; last_private = LastMod(AllPublic); } UseLexicalScope => { // This is not a crate-relative path. We resolve the // first component of the path in the current lexical // scope and then proceed to resolve below that. match self.resolve_module_in_lexical_scope(module_, module_path[0]) { Failed(err) => return Failed(err), Indeterminate => { debug!("(resolving module path for import) \ indeterminate; bailing"); return Indeterminate; } Success(containing_module) => { search_module = containing_module; start_index = 1; last_private = LastMod(AllPublic); } } } } } Success(PrefixFound(ref containing_module, index)) => { search_module = containing_module.clone(); start_index = index; last_private = LastMod(DependsOn(containing_module.def_id .get() .unwrap())); } } self.resolve_module_path_from_root(search_module, module_path, start_index, span, name_search_type, last_private) } /// Invariant: This must only be called during main resolution, not during /// import resolution. fn resolve_item_in_lexical_scope(&mut self, module_: Rc, name: Name, namespace: Namespace) -> ResolveResult<(Target, bool)> { debug!("(resolving item in lexical scope) resolving `{}` in \ namespace {} in `{}`", token::get_name(name), namespace, self.module_to_string(&*module_)); // The current module node is handled specially. First, check for // its immediate children. self.populate_module_if_necessary(&module_); match module_.children.borrow().get(&name) { Some(name_bindings) if name_bindings.defined_in_namespace(namespace) => { debug!("top name bindings succeeded"); return Success((Target::new(module_.clone(), name_bindings.clone(), false), false)); } Some(_) | None => { /* Not found; continue. */ } } // Now check for its import directives. We don't have to have resolved // all its imports in the usual way; this is because chains of // adjacent import statements are processed as though they mutated the // current scope. if let Some(import_resolution) = module_.import_resolutions.borrow().get(&name) { match (*import_resolution).target_for_namespace(namespace) { None => { // Not found; continue. debug!("(resolving item in lexical scope) found \ import resolution, but not in namespace {}", namespace); } Some(target) => { debug!("(resolving item in lexical scope) using \ import resolution"); // track used imports and extern crates as well self.used_imports.insert((import_resolution.id(namespace), namespace)); if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() { self.used_crates.insert(kid); } return Success((target, false)); } } } // Search for external modules. if namespace == TypeNS { if let Some(module) = module_.external_module_children.borrow().get(&name).cloned() { let name_bindings = Rc::new(Resolver::create_name_bindings_from_module(module)); debug!("lower name bindings succeeded"); return Success((Target::new(module_, name_bindings, false), false)); } } // Finally, proceed up the scope chain looking for parent modules. let mut search_module = module_; loop { // Go to the next parent. match search_module.parent_link.clone() { NoParentLink => { // No more parents. This module was unresolved. debug!("(resolving item in lexical scope) unresolved \ module"); return Failed(None); } ModuleParentLink(parent_module_node, _) => { match search_module.kind.get() { NormalModuleKind => { // We stop the search here. debug!("(resolving item in lexical \ scope) unresolved module: not \ searching through module \ parents"); return Failed(None); } TraitModuleKind | ImplModuleKind | EnumModuleKind | AnonymousModuleKind => { search_module = parent_module_node.upgrade().unwrap(); } } } BlockParentLink(ref parent_module_node, _) => { search_module = parent_module_node.upgrade().unwrap(); } } // Resolve the name in the parent module. match self.resolve_name_in_module(search_module.clone(), name, namespace, PathSearch, true) { Failed(Some((span, msg))) => self.resolve_error(span, format!("failed to resolve. {}", msg)[]), Failed(None) => (), // Continue up the search chain. Indeterminate => { // We couldn't see through the higher scope because of an // unresolved import higher up. Bail. debug!("(resolving item in lexical scope) indeterminate \ higher scope; bailing"); return Indeterminate; } Success((target, used_reexport)) => { // We found the module. debug!("(resolving item in lexical scope) found name \ in module, done"); return Success((target, used_reexport)); } } } } /// Resolves a module name in the current lexical scope. fn resolve_module_in_lexical_scope(&mut self, module_: Rc, name: Name) -> ResolveResult> { // If this module is an anonymous module, resolve the item in the // lexical scope. Otherwise, resolve the item from the crate root. let resolve_result = self.resolve_item_in_lexical_scope(module_, name, TypeNS); match resolve_result { Success((target, _)) => { let bindings = &*target.bindings; match *bindings.type_def.borrow() { Some(ref type_def) => { match type_def.module_def { None => { debug!("!!! (resolving module in lexical \ scope) module wasn't actually a \ module!"); return Failed(None); } Some(ref module_def) => { return Success(module_def.clone()); } } } None => { debug!("!!! (resolving module in lexical scope) module wasn't actually a module!"); return Failed(None); } } } Indeterminate => { debug!("(resolving module in lexical scope) indeterminate; \ bailing"); return Indeterminate; } Failed(err) => { debug!("(resolving module in lexical scope) failed to resolve"); return Failed(err); } } } /// Returns the nearest normal module parent of the given module. fn get_nearest_normal_module_parent(&mut self, module_: Rc) -> Option> { let mut module_ = module_; loop { match module_.parent_link.clone() { NoParentLink => return None, ModuleParentLink(new_module, _) | BlockParentLink(new_module, _) => { let new_module = new_module.upgrade().unwrap(); match new_module.kind.get() { NormalModuleKind => return Some(new_module), TraitModuleKind | ImplModuleKind | EnumModuleKind | AnonymousModuleKind => module_ = new_module, } } } } } /// Returns the nearest normal module parent of the given module, or the /// module itself if it is a normal module. fn get_nearest_normal_module_parent_or_self(&mut self, module_: Rc) -> Rc { match module_.kind.get() { NormalModuleKind => return module_, TraitModuleKind | ImplModuleKind | EnumModuleKind | AnonymousModuleKind => { match self.get_nearest_normal_module_parent(module_.clone()) { None => module_, Some(new_module) => new_module } } } } /// Resolves a "module prefix". A module prefix is one or both of (a) `self::`; /// (b) some chain of `super::`. /// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) * fn resolve_module_prefix(&mut self, module_: Rc, module_path: &[Name]) -> ResolveResult { // Start at the current module if we see `self` or `super`, or at the // top of the crate otherwise. let mut containing_module; let mut i; let first_module_path_string = token::get_name(module_path[0]); if "self" == first_module_path_string.get() { containing_module = self.get_nearest_normal_module_parent_or_self(module_); i = 1; } else if "super" == first_module_path_string.get() { containing_module = self.get_nearest_normal_module_parent_or_self(module_); i = 0; // We'll handle `super` below. } else { return Success(NoPrefixFound); } // Now loop through all the `super`s we find. while i < module_path.len() { let string = token::get_name(module_path[i]); if "super" != string.get() { break } debug!("(resolving module prefix) resolving `super` at {}", self.module_to_string(&*containing_module)); match self.get_nearest_normal_module_parent(containing_module) { None => return Failed(None), Some(new_module) => { containing_module = new_module; i += 1; } } } debug!("(resolving module prefix) finished resolving prefix at {}", self.module_to_string(&*containing_module)); return Success(PrefixFound(containing_module, i)); } /// Attempts to resolve the supplied name in the given module for the /// given namespace. If successful, returns the target corresponding to /// the name. /// /// The boolean returned on success is an indicator of whether this lookup /// passed through a public re-export proxy. fn resolve_name_in_module(&mut self, module_: Rc, name: Name, namespace: Namespace, name_search_type: NameSearchType, allow_private_imports: bool) -> ResolveResult<(Target, bool)> { debug!("(resolving name in module) resolving `{}` in `{}`", token::get_name(name).get(), self.module_to_string(&*module_)); // First, check the direct children of the module. self.populate_module_if_necessary(&module_); match module_.children.borrow().get(&name) { Some(name_bindings) if name_bindings.defined_in_namespace(namespace) => { debug!("(resolving name in module) found node as child"); return Success((Target::new(module_.clone(), name_bindings.clone(), false), false)); } Some(_) | None => { // Continue. } } // Next, check the module's imports if necessary. // If this is a search of all imports, we should be done with glob // resolution at this point. if name_search_type == PathSearch { assert_eq!(module_.glob_count.get(), 0); } // Check the list of resolved imports. match module_.import_resolutions.borrow().get(&name) { Some(import_resolution) if allow_private_imports || import_resolution.is_public => { if import_resolution.is_public && import_resolution.outstanding_references != 0 { debug!("(resolving name in module) import \ unresolved; bailing out"); return Indeterminate; } match import_resolution.target_for_namespace(namespace) { None => { debug!("(resolving name in module) name found, \ but not in namespace {}", namespace); } Some(target) => { debug!("(resolving name in module) resolved to \ import"); // track used imports and extern crates as well self.used_imports.insert((import_resolution.id(namespace), namespace)); if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() { self.used_crates.insert(kid); } return Success((target, true)); } } } Some(..) | None => {} // Continue. } // Finally, search through external children. if namespace == TypeNS { if let Some(module) = module_.external_module_children.borrow().get(&name).cloned() { let name_bindings = Rc::new(Resolver::create_name_bindings_from_module(module)); return Success((Target::new(module_, name_bindings, false), false)); } } // We're out of luck. debug!("(resolving name in module) failed to resolve `{}`", token::get_name(name).get()); return Failed(None); } fn report_unresolved_imports(&mut self, module_: Rc) { let index = module_.resolved_import_count.get(); let imports = module_.imports.borrow(); let import_count = imports.len(); if index != import_count { let sn = self.session .codemap() .span_to_snippet((*imports)[index].span) .unwrap(); if sn.contains("::") { self.resolve_error((*imports)[index].span, "unresolved import"); } else { let err = format!("unresolved import (maybe you meant `{}::*`?)", sn); self.resolve_error((*imports)[index].span, err[]); } } // Descend into children and anonymous children. self.populate_module_if_necessary(&module_); for (_, child_node) in module_.children.borrow().iter() { match child_node.get_module_if_available() { None => { // Continue. } Some(child_module) => { self.report_unresolved_imports(child_module); } } } for (_, module_) in module_.anonymous_children.borrow().iter() { self.report_unresolved_imports(module_.clone()); } } // AST resolution // // We maintain a list of value ribs and type ribs. // // Simultaneously, we keep track of the current position in the module // graph in the `current_module` pointer. When we go to resolve a name in // the value or type namespaces, we first look through all the ribs and // then query the module graph. When we resolve a name in the module // namespace, we can skip all the ribs (since nested modules are not // allowed within blocks in Rust) and jump straight to the current module // graph node. // // Named implementations are handled separately. When we find a method // call, we consult the module node to find all of the implementations in // scope. This information is lazily cached in the module node. We then // generate a fake "implementation scope" containing all the // implementations thus found, for compatibility with old resolve pass. fn with_scope(&mut self, name: Option, f: F) where F: FnOnce(&mut Resolver), { let orig_module = self.current_module.clone(); // Move down in the graph. match name { None => { // Nothing to do. } Some(name) => { self.populate_module_if_necessary(&orig_module); match orig_module.children.borrow().get(&name) { None => { debug!("!!! (with scope) didn't find `{}` in `{}`", token::get_name(name), self.module_to_string(&*orig_module)); } Some(name_bindings) => { match (*name_bindings).get_module_if_available() { None => { debug!("!!! (with scope) didn't find module \ for `{}` in `{}`", token::get_name(name), self.module_to_string(&*orig_module)); } Some(module_) => { self.current_module = module_; } } } } } } f(self); self.current_module = orig_module; } /// Wraps the given definition in the appropriate number of `DefUpvar` /// wrappers. fn upvarify(&self, ribs: &[Rib], def_like: DefLike, span: Span) -> Option { match def_like { DlDef(d @ DefUpvar(..)) => { self.session.span_bug(span, format!("unexpected {} in bindings", d)[]) } DlDef(d @ DefLocal(_)) => { let node_id = d.def_id().node; let mut def = d; let mut last_proc_body_id = ast::DUMMY_NODE_ID; for rib in ribs.iter() { match rib.kind { NormalRibKind => { // Nothing to do. Continue. } ClosureRibKind(function_id, maybe_proc_body) => { let prev_def = def; if maybe_proc_body != ast::DUMMY_NODE_ID { last_proc_body_id = maybe_proc_body; } def = DefUpvar(node_id, function_id, last_proc_body_id); let mut seen = self.freevars_seen.borrow_mut(); let seen = match seen.entry(function_id) { Occupied(v) => v.into_mut(), Vacant(v) => v.set(NodeSet::new()), }; if seen.contains(&node_id) { continue; } match self.freevars.borrow_mut().entry(function_id) { Occupied(v) => v.into_mut(), Vacant(v) => v.set(vec![]), }.push(Freevar { def: prev_def, span: span }); seen.insert(node_id); } MethodRibKind(item_id, _) => { // If the def is a ty param, and came from the parent // item, it's ok match def { DefTyParam(_, did, _) if { self.def_map.borrow().get(&did.node).cloned() == Some(DefTyParamBinder(item_id)) } => {} // ok DefSelfTy(did) if did == item_id => {} // ok _ => { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.resolve_error( span, "can't capture dynamic environment in a fn item; \ use the || { ... } closure form instead"); return None; } } } ItemRibKind => { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. self.resolve_error( span, "can't capture dynamic environment in a fn item; \ use the || { ... } closure form instead"); return None; } ConstantItemRibKind => { // Still doesn't deal with upvars self.resolve_error(span, "attempt to use a non-constant \ value in a constant"); } } } Some(DlDef(def)) } DlDef(def @ DefTyParam(..)) | DlDef(def @ DefSelfTy(..)) => { for rib in ribs.iter() { match rib.kind { NormalRibKind | ClosureRibKind(..) => { // Nothing to do. Continue. } MethodRibKind(item_id, _) => { // If the def is a ty param, and came from the parent // item, it's ok match def { DefTyParam(_, did, _) if { self.def_map.borrow().get(&did.node).cloned() == Some(DefTyParamBinder(item_id)) } => {} // ok DefSelfTy(did) if did == item_id => {} // ok _ => { // This was an attempt to use a type parameter outside // its scope. self.resolve_error(span, "can't use type parameters from \ outer function; try using a local \ type parameter instead"); return None; } } } ItemRibKind => { // This was an attempt to use a type parameter outside // its scope. self.resolve_error(span, "can't use type parameters from \ outer function; try using a local \ type parameter instead"); return None; } ConstantItemRibKind => { // see #9186 self.resolve_error(span, "cannot use an outer type \ parameter in this context"); } } } Some(DlDef(def)) } _ => Some(def_like) } } fn search_ribs(&self, ribs: &[Rib], name: Name, span: Span) -> Option { // FIXME #4950: Try caching? for (i, rib) in ribs.iter().enumerate().rev() { match rib.bindings.get(&name).cloned() { Some(def_like) => { return self.upvarify(ribs[i + 1..], def_like, span); } None => { // Continue. } } } None } fn resolve_crate(&mut self, krate: &ast::Crate) { debug!("(resolving crate) starting"); visit::walk_crate(self, krate); } fn resolve_item(&mut self, item: &Item) { let name = item.ident.name; debug!("(resolving item) resolving {}", token::get_name(name)); match item.node { // enum item: resolve all the variants' discrs, // then resolve the ty params ItemEnum(ref enum_def, ref generics) => { for variant in (*enum_def).variants.iter() { for dis_expr in variant.node.disr_expr.iter() { // resolve the discriminator expr // as a constant self.with_constant_rib(|this| { this.resolve_expr(&**dis_expr); }); } } // n.b. the discr expr gets visited twice. // but maybe it's okay since the first time will signal an // error if there is one? -- tjc self.with_type_parameter_rib(HasTypeParameters(generics, TypeSpace, item.id, ItemRibKind), |this| { this.resolve_type_parameters(&generics.ty_params); this.resolve_where_clause(&generics.where_clause); visit::walk_item(this, item); }); } ItemTy(_, ref generics) => { self.with_type_parameter_rib(HasTypeParameters(generics, TypeSpace, item.id, ItemRibKind), |this| { this.resolve_type_parameters(&generics.ty_params); visit::walk_item(this, item); }); } ItemImpl(_, ref generics, ref implemented_traits, ref self_type, ref impl_items) => { self.resolve_implementation(item.id, generics, implemented_traits, &**self_type, impl_items[]); } ItemTrait(_, ref generics, ref unbound, ref bounds, ref trait_items) => { // Create a new rib for the self type. let mut self_type_rib = Rib::new(ItemRibKind); // plain insert (no renaming, types are not currently hygienic....) let name = self.type_self_name; self_type_rib.bindings.insert(name, DlDef(DefSelfTy(item.id))); self.type_ribs.push(self_type_rib); // Create a new rib for the trait-wide type parameters. self.with_type_parameter_rib(HasTypeParameters(generics, TypeSpace, item.id, NormalRibKind), |this| { this.resolve_type_parameters(&generics.ty_params); this.resolve_where_clause(&generics.where_clause); this.resolve_type_parameter_bounds(item.id, bounds, TraitDerivation); match *unbound { Some(ref tpb) => { this.resolve_trait_reference(item.id, tpb, TraitDerivation); } None => {} } for trait_item in (*trait_items).iter() { // Create a new rib for the trait_item-specific type // parameters. // // FIXME #4951: Do we need a node ID here? match *trait_item { ast::RequiredMethod(ref ty_m) => { this.with_type_parameter_rib (HasTypeParameters(&ty_m.generics, FnSpace, item.id, MethodRibKind(item.id, RequiredMethod)), |this| { // Resolve the method-specific type // parameters. this.resolve_type_parameters( &ty_m.generics.ty_params); this.resolve_where_clause(&ty_m.generics .where_clause); for argument in ty_m.decl.inputs.iter() { this.resolve_type(&*argument.ty); } if let SelfExplicit(ref typ, _) = ty_m.explicit_self.node { this.resolve_type(&**typ) } if let ast::Return(ref ret_ty) = ty_m.decl.output { this.resolve_type(&**ret_ty); } }); } ast::ProvidedMethod(ref m) => { this.resolve_method(MethodRibKind(item.id, ProvidedMethod(m.id)), &**m) } ast::TypeTraitItem(ref data) => { this.resolve_type_parameter(&data.ty_param); visit::walk_trait_item(this, trait_item); } } } }); self.type_ribs.pop(); } ItemStruct(ref struct_def, ref generics) => { self.resolve_struct(item.id, generics, struct_def.fields[]); } ItemMod(ref module_) => { self.with_scope(Some(name), |this| { this.resolve_module(module_, item.span, name, item.id); }); } ItemForeignMod(ref foreign_module) => { self.with_scope(Some(name), |this| { for foreign_item in foreign_module.items.iter() { match foreign_item.node { ForeignItemFn(_, ref generics) => { this.with_type_parameter_rib( HasTypeParameters( generics, FnSpace, foreign_item.id, ItemRibKind), |this| visit::walk_foreign_item(this, &**foreign_item)); } ForeignItemStatic(..) => { visit::walk_foreign_item(this, &**foreign_item); } } } }); } ItemFn(ref fn_decl, _, _, ref generics, ref block) => { self.resolve_function(ItemRibKind, Some(&**fn_decl), HasTypeParameters (generics, FnSpace, item.id, ItemRibKind), &**block); } ItemConst(..) | ItemStatic(..) => { self.with_constant_rib(|this| { visit::walk_item(this, item); }); } ItemMac(..) => { // do nothing, these are just around to be encoded } } } fn with_type_parameter_rib(&mut self, type_parameters: TypeParameters, f: F) where F: FnOnce(&mut Resolver), { match type_parameters { HasTypeParameters(generics, space, node_id, rib_kind) => { let mut function_type_rib = Rib::new(rib_kind); let mut seen_bindings = HashSet::new(); for (index, type_parameter) in generics.ty_params.iter().enumerate() { let name = type_parameter.ident.name; debug!("with_type_parameter_rib: {} {}", node_id, type_parameter.id); if seen_bindings.contains(&name) { self.resolve_error(type_parameter.span, format!("the name `{}` is already \ used for a type \ parameter in this type \ parameter list", token::get_name( name))[]) } seen_bindings.insert(name); let def_like = DlDef(DefTyParam(space, local_def(type_parameter.id), index)); // Associate this type parameter with // the item that bound it self.record_def(type_parameter.id, (DefTyParamBinder(node_id), LastMod(AllPublic))); // plain insert (no renaming) function_type_rib.bindings.insert(name, def_like); } self.type_ribs.push(function_type_rib); } NoTypeParameters => { // Nothing to do. } } f(self); match type_parameters { HasTypeParameters(..) => { self.type_ribs.pop(); } NoTypeParameters => { } } } fn with_label_rib(&mut self, f: F) where F: FnOnce(&mut Resolver), { self.label_ribs.push(Rib::new(NormalRibKind)); f(self); self.label_ribs.pop(); } fn with_constant_rib(&mut self, f: F) where F: FnOnce(&mut Resolver), { self.value_ribs.push(Rib::new(ConstantItemRibKind)); self.type_ribs.push(Rib::new(ConstantItemRibKind)); f(self); self.type_ribs.pop(); self.value_ribs.pop(); } fn resolve_function(&mut self, rib_kind: RibKind, optional_declaration: Option<&FnDecl>, type_parameters: TypeParameters, block: &Block) { // Create a value rib for the function. let function_value_rib = Rib::new(rib_kind); self.value_ribs.push(function_value_rib); // Create a label rib for the function. let function_label_rib = Rib::new(rib_kind); self.label_ribs.push(function_label_rib); // If this function has type parameters, add them now. self.with_type_parameter_rib(type_parameters, |this| { // Resolve the type parameters. match type_parameters { NoTypeParameters => { // Continue. } HasTypeParameters(ref generics, _, _, _) => { this.resolve_type_parameters(&generics.ty_params); this.resolve_where_clause(&generics.where_clause); } } // Add each argument to the rib. match optional_declaration { None => { // Nothing to do. } Some(declaration) => { let mut bindings_list = HashMap::new(); for argument in declaration.inputs.iter() { this.resolve_pattern(&*argument.pat, ArgumentIrrefutableMode, &mut bindings_list); this.resolve_type(&*argument.ty); debug!("(resolving function) recorded argument"); } if let ast::Return(ref ret_ty) = declaration.output { this.resolve_type(&**ret_ty); } } } // Resolve the function body. this.resolve_block(&*block); debug!("(resolving function) leaving function"); }); self.label_ribs.pop(); self.value_ribs.pop(); } fn resolve_type_parameters(&mut self, type_parameters: &OwnedSlice) { for type_parameter in type_parameters.iter() { self.resolve_type_parameter(type_parameter); } } fn resolve_type_parameter(&mut self, type_parameter: &TyParam) { for bound in type_parameter.bounds.iter() { self.resolve_type_parameter_bound(type_parameter.id, bound, TraitBoundingTypeParameter); } match &type_parameter.unbound { &Some(ref unbound) => self.resolve_trait_reference( type_parameter.id, unbound, TraitBoundingTypeParameter), &None => {} } match type_parameter.default { Some(ref ty) => self.resolve_type(&**ty), None => {} } } fn resolve_type_parameter_bounds(&mut self, id: NodeId, type_parameter_bounds: &OwnedSlice, reference_type: TraitReferenceType) { for type_parameter_bound in type_parameter_bounds.iter() { self.resolve_type_parameter_bound(id, type_parameter_bound, reference_type); } } fn resolve_type_parameter_bound(&mut self, id: NodeId, type_parameter_bound: &TyParamBound, reference_type: TraitReferenceType) { match *type_parameter_bound { TraitTyParamBound(ref tref) => { self.resolve_poly_trait_reference(id, tref, reference_type) } RegionTyParamBound(..) => {} } } fn resolve_poly_trait_reference(&mut self, id: NodeId, poly_trait_reference: &PolyTraitRef, reference_type: TraitReferenceType) { self.resolve_trait_reference(id, &poly_trait_reference.trait_ref, reference_type) } fn resolve_trait_reference(&mut self, id: NodeId, trait_reference: &TraitRef, reference_type: TraitReferenceType) { match self.resolve_path(id, &trait_reference.path, TypeNS, true) { None => { let path_str = self.path_names_to_string(&trait_reference.path); let usage_str = match reference_type { TraitBoundingTypeParameter => "bound type parameter with", TraitImplementation => "implement", TraitDerivation => "derive", TraitObject => "reference", TraitQPath => "extract an associated type from", }; let msg = format!("attempt to {} a nonexistent trait `{}`", usage_str, path_str); self.resolve_error(trait_reference.path.span, msg[]); } Some(def) => { match def { (DefTrait(_), _) => { debug!("(resolving trait) found trait def: {}", def); self.record_def(trait_reference.ref_id, def); } (def, _) => { self.resolve_error(trait_reference.path.span, format!("`{}` is not a trait", self.path_names_to_string( &trait_reference.path))[]); // If it's a typedef, give a note if let DefTy(..) = def { self.session.span_note( trait_reference.path.span, format!("`type` aliases cannot be used for traits") []); } } } } } } fn resolve_where_clause(&mut self, where_clause: &ast::WhereClause) { for predicate in where_clause.predicates.iter() { match predicate { &ast::WherePredicate::BoundPredicate(ref bound_pred) => { self.resolve_type(&*bound_pred.bounded_ty); for bound in bound_pred.bounds.iter() { self.resolve_type_parameter_bound(bound_pred.bounded_ty.id, bound, TraitBoundingTypeParameter); } } &ast::WherePredicate::RegionPredicate(_) => {} &ast::WherePredicate::EqPredicate(ref eq_pred) => { match self.resolve_path(eq_pred.id, &eq_pred.path, TypeNS, true) { Some((def @ DefTyParam(..), last_private)) => { self.record_def(eq_pred.id, (def, last_private)); } _ => { self.resolve_error(eq_pred.path.span, "undeclared associated type"); } } self.resolve_type(&*eq_pred.ty); } } } } fn resolve_struct(&mut self, id: NodeId, generics: &Generics, fields: &[StructField]) { // If applicable, create a rib for the type parameters. self.with_type_parameter_rib(HasTypeParameters(generics, TypeSpace, id, ItemRibKind), |this| { // Resolve the type parameters. this.resolve_type_parameters(&generics.ty_params); this.resolve_where_clause(&generics.where_clause); // Resolve fields. for field in fields.iter() { this.resolve_type(&*field.node.ty); } }); } // Does this really need to take a RibKind or is it always going // to be NormalRibKind? fn resolve_method(&mut self, rib_kind: RibKind, method: &ast::Method) { let method_generics = method.pe_generics(); let type_parameters = HasTypeParameters(method_generics, FnSpace, method.id, rib_kind); if let SelfExplicit(ref typ, _) = method.pe_explicit_self().node { self.resolve_type(&**typ); } self.resolve_function(rib_kind, Some(method.pe_fn_decl()), type_parameters, method.pe_body()); } fn with_current_self_type(&mut self, self_type: &Ty, f: F) -> T where F: FnOnce(&mut Resolver) -> T, { // Handle nested impls (inside fn bodies) let previous_value = replace(&mut self.current_self_type, Some(self_type.clone())); let result = f(self); self.current_self_type = previous_value; result } fn with_optional_trait_ref(&mut self, id: NodeId, opt_trait_ref: &Option, f: F) -> T where F: FnOnce(&mut Resolver) -> T, { let new_val = match *opt_trait_ref { Some(ref trait_ref) => { self.resolve_trait_reference(id, trait_ref, TraitImplementation); match self.def_map.borrow().get(&trait_ref.ref_id) { Some(def) => { let did = def.def_id(); Some((did, trait_ref.clone())) } None => None } } None => None }; let original_trait_ref = replace(&mut self.current_trait_ref, new_val); let result = f(self); self.current_trait_ref = original_trait_ref; result } fn resolve_implementation(&mut self, id: NodeId, generics: &Generics, opt_trait_reference: &Option, self_type: &Ty, impl_items: &[ImplItem]) { // If applicable, create a rib for the type parameters. self.with_type_parameter_rib(HasTypeParameters(generics, TypeSpace, id, NormalRibKind), |this| { // Resolve the type parameters. this.resolve_type_parameters(&generics.ty_params); this.resolve_where_clause(&generics.where_clause); // Resolve the trait reference, if necessary. this.with_optional_trait_ref(id, opt_trait_reference, |this| { // Resolve the self type. this.resolve_type(self_type); this.with_current_self_type(self_type, |this| { for impl_item in impl_items.iter() { match *impl_item { MethodImplItem(ref method) => { // If this is a trait impl, ensure the method // exists in trait this.check_trait_item(method.pe_ident().name, method.span); // We also need a new scope for the method- // specific type parameters. this.resolve_method( MethodRibKind(id, ProvidedMethod(method.id)), &**method); } TypeImplItem(ref typedef) => { // If this is a trait impl, ensure the method // exists in trait this.check_trait_item(typedef.ident.name, typedef.span); this.resolve_type(&*typedef.typ); } } } }); }); }); // Check that the current type is indeed a type, if we have an anonymous impl if opt_trait_reference.is_none() { match self_type.node { // TyPath is the only thing that we handled in `build_reduced_graph_for_item`, // where we created a module with the name of the type in order to implement // an anonymous trait. In the case that the path does not resolve to an actual // type, the result will be that the type name resolves to a module but not // a type (shadowing any imported modules or types with this name), leading // to weird user-visible bugs. So we ward this off here. See #15060. TyPath(ref path, path_id) => { match self.def_map.borrow().get(&path_id) { // FIXME: should we catch other options and give more precise errors? Some(&DefMod(_)) => { self.resolve_error(path.span, "inherent implementations are not \ allowed for types not defined in \ the current module"); } _ => {} } } _ => { } } } } fn check_trait_item(&self, name: Name, span: Span) { // If there is a TraitRef in scope for an impl, then the method must be in the trait. for &(did, ref trait_ref) in self.current_trait_ref.iter() { if self.trait_item_map.get(&(name, did)).is_none() { let path_str = self.path_names_to_string(&trait_ref.path); self.resolve_error(span, format!("method `{}` is not a member of trait `{}`", token::get_name(name), path_str)[]); } } } fn resolve_module(&mut self, module: &Mod, _span: Span, _name: Name, id: NodeId) { // Write the implementations in scope into the module metadata. debug!("(resolving module) resolving module ID {}", id); visit::walk_mod(self, module); } fn resolve_local(&mut self, local: &Local) { // Resolve the type. self.resolve_type(&*local.ty); // Resolve the initializer, if necessary. match local.init { None => { // Nothing to do. } Some(ref initializer) => { self.resolve_expr(&**initializer); } } // Resolve the pattern. let mut bindings_list = HashMap::new(); self.resolve_pattern(&*local.pat, LocalIrrefutableMode, &mut bindings_list); } // build a map from pattern identifiers to binding-info's. // this is done hygienically. This could arise for a macro // that expands into an or-pattern where one 'x' was from the // user and one 'x' came from the macro. fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap { let mut result = HashMap::new(); pat_bindings(&self.def_map, pat, |binding_mode, _id, sp, path1| { let name = mtwt::resolve(path1.node); result.insert(name, BindingInfo { span: sp, binding_mode: binding_mode }); }); return result; } // check that all of the arms in an or-pattern have exactly the // same set of bindings, with the same binding modes for each. fn check_consistent_bindings(&mut self, arm: &Arm) { if arm.pats.len() == 0 { return } let map_0 = self.binding_mode_map(&*arm.pats[0]); for (i, p) in arm.pats.iter().enumerate() { let map_i = self.binding_mode_map(&**p); for (&key, &binding_0) in map_0.iter() { match map_i.get(&key) { None => { self.resolve_error( p.span, format!("variable `{}` from pattern #1 is \ not bound in pattern #{}", token::get_name(key), i + 1)[]); } Some(binding_i) => { if binding_0.binding_mode != binding_i.binding_mode { self.resolve_error( binding_i.span, format!("variable `{}` is bound with different \ mode in pattern #{} than in pattern #1", token::get_name(key), i + 1)[]); } } } } for (&key, &binding) in map_i.iter() { if !map_0.contains_key(&key) { self.resolve_error( binding.span, format!("variable `{}` from pattern {}{} is \ not bound in pattern {}1", token::get_name(key), "#", i + 1, "#")[]); } } } } fn resolve_arm(&mut self, arm: &Arm) { self.value_ribs.push(Rib::new(NormalRibKind)); let mut bindings_list = HashMap::new(); for pattern in arm.pats.iter() { self.resolve_pattern(&**pattern, RefutableMode, &mut bindings_list); } // This has to happen *after* we determine which // pat_idents are variants self.check_consistent_bindings(arm); visit::walk_expr_opt(self, &arm.guard); self.resolve_expr(&*arm.body); self.value_ribs.pop(); } fn resolve_block(&mut self, block: &Block) { debug!("(resolving block) entering block"); self.value_ribs.push(Rib::new(NormalRibKind)); // Move down in the graph, if there's an anonymous module rooted here. let orig_module = self.current_module.clone(); match orig_module.anonymous_children.borrow().get(&block.id) { None => { /* Nothing to do. */ } Some(anonymous_module) => { debug!("(resolving block) found anonymous module, moving \ down"); self.current_module = anonymous_module.clone(); } } // Descend into the block. visit::walk_block(self, block); // Move back up. self.current_module = orig_module; self.value_ribs.pop(); debug!("(resolving block) leaving block"); } fn resolve_type(&mut self, ty: &Ty) { match ty.node { // Like path expressions, the interpretation of path types depends // on whether the path has multiple elements in it or not. TyPath(ref path, path_id) => { // This is a path in the type namespace. Walk through scopes // looking for it. let mut result_def = None; // First, check to see whether the name is a primitive type. if path.segments.len() == 1 { let id = path.segments.last().unwrap().identifier; match self.primitive_type_table .primitive_types .get(&id.name) { Some(&primitive_type) => { result_def = Some((DefPrimTy(primitive_type), LastMod(AllPublic))); if path.segments[0].parameters.has_lifetimes() { span_err!(self.session, path.span, E0157, "lifetime parameters are not allowed on this type"); } else if !path.segments[0].parameters.is_empty() { span_err!(self.session, path.span, E0153, "type parameters are not allowed on this type"); } } None => { // Continue. } } } match result_def { None => { match self.resolve_path(ty.id, path, TypeNS, true) { Some(def) => { debug!("(resolving type) resolved `{}` to \ type {}", token::get_ident(path.segments .last().unwrap() .identifier), def); result_def = Some(def); } None => { result_def = None; } } } Some(_) => {} // Continue. } match result_def { Some(def) => { // Write the result into the def map. debug!("(resolving type) writing resolution for `{}` \ (id {})", self.path_names_to_string(path), path_id); self.record_def(path_id, def); } None => { let msg = format!("use of undeclared type name `{}`", self.path_names_to_string(path)); self.resolve_error(ty.span, msg[]); } } } TyObjectSum(ref ty, ref bound_vec) => { self.resolve_type(&**ty); self.resolve_type_parameter_bounds(ty.id, bound_vec, TraitBoundingTypeParameter); } TyQPath(ref qpath) => { self.resolve_type(&*qpath.self_type); self.resolve_trait_reference(ty.id, &*qpath.trait_ref, TraitQPath); } TyClosure(ref c) => { self.resolve_type_parameter_bounds( ty.id, &c.bounds, TraitBoundingTypeParameter); visit::walk_ty(self, ty); } TyPolyTraitRef(ref bounds) => { self.resolve_type_parameter_bounds( ty.id, bounds, TraitObject); visit::walk_ty(self, ty); } _ => { // Just resolve embedded types. visit::walk_ty(self, ty); } } } fn resolve_pattern(&mut self, pattern: &Pat, mode: PatternBindingMode, // Maps idents to the node ID for the (outermost) // pattern that binds them bindings_list: &mut HashMap) { let pat_id = pattern.id; walk_pat(pattern, |pattern| { match pattern.node { PatIdent(binding_mode, ref path1, _) => { // The meaning of pat_ident with no type parameters // depends on whether an enum variant or unit-like struct // with that name is in scope. The probing lookup has to // be careful not to emit spurious errors. Only matching // patterns (match) can match nullary variants or // unit-like structs. For binding patterns (let), matching // such a value is simply disallowed (since it's rarely // what you want). let ident = path1.node; let renamed = mtwt::resolve(ident); match self.resolve_bare_identifier_pattern(ident.name, pattern.span) { FoundStructOrEnumVariant(ref def, lp) if mode == RefutableMode => { debug!("(resolving pattern) resolving `{}` to \ struct or enum variant", token::get_name(renamed)); self.enforce_default_binding_mode( pattern, binding_mode, "an enum variant"); self.record_def(pattern.id, (def.clone(), lp)); } FoundStructOrEnumVariant(..) => { self.resolve_error( pattern.span, format!("declaration of `{}` shadows an enum \ variant or unit-like struct in \ scope", token::get_name(renamed))[]); } FoundConst(ref def, lp) if mode == RefutableMode => { debug!("(resolving pattern) resolving `{}` to \ constant", token::get_name(renamed)); self.enforce_default_binding_mode( pattern, binding_mode, "a constant"); self.record_def(pattern.id, (def.clone(), lp)); } FoundConst(..) => { self.resolve_error(pattern.span, "only irrefutable patterns \ allowed here"); } BareIdentifierPatternUnresolved => { debug!("(resolving pattern) binding `{}`", token::get_name(renamed)); let def = DefLocal(pattern.id); // Record the definition so that later passes // will be able to distinguish variants from // locals in patterns. self.record_def(pattern.id, (def, LastMod(AllPublic))); // Add the binding to the local ribs, if it // doesn't already exist in the bindings list. (We // must not add it if it's in the bindings list // because that breaks the assumptions later // passes make about or-patterns.) if !bindings_list.contains_key(&renamed) { let this = &mut *self; let last_rib = this.value_ribs.last_mut().unwrap(); last_rib.bindings.insert(renamed, DlDef(def)); bindings_list.insert(renamed, pat_id); } else if mode == ArgumentIrrefutableMode && bindings_list.contains_key(&renamed) { // Forbid duplicate bindings in the same // parameter list. self.resolve_error(pattern.span, format!("identifier `{}` \ is bound more \ than once in \ this parameter \ list", token::get_ident( ident)) []) } else if bindings_list.get(&renamed) == Some(&pat_id) { // Then this is a duplicate variable in the // same disjunction, which is an error. self.resolve_error(pattern.span, format!("identifier `{}` is bound \ more than once in the same \ pattern", token::get_ident(ident))[]); } // Else, not bound in the same pattern: do // nothing. } } } PatEnum(ref path, _) => { // This must be an enum variant, struct or const. match self.resolve_path(pat_id, path, ValueNS, false) { Some(def @ (DefVariant(..), _)) | Some(def @ (DefStruct(..), _)) | Some(def @ (DefConst(..), _)) => { self.record_def(pattern.id, def); } Some((DefStatic(..), _)) => { self.resolve_error(path.span, "static variables cannot be \ referenced in a pattern, \ use a `const` instead"); } Some(_) => { self.resolve_error(path.span, format!("`{}` is not an enum variant, struct or const", token::get_ident( path.segments .last() .unwrap() .identifier))[]); } None => { self.resolve_error(path.span, format!("unresolved enum variant, struct or const `{}`", token::get_ident( path.segments .last() .unwrap() .identifier))[]); } } // Check the types in the path pattern. for ty in path.segments .iter() .flat_map(|s| s.parameters.types().into_iter()) { self.resolve_type(&**ty); } } PatLit(ref expr) => { self.resolve_expr(&**expr); } PatRange(ref first_expr, ref last_expr) => { self.resolve_expr(&**first_expr); self.resolve_expr(&**last_expr); } PatStruct(ref path, _, _) => { match self.resolve_path(pat_id, path, TypeNS, false) { Some(definition) => { self.record_def(pattern.id, definition); } result => { debug!("(resolving pattern) didn't find struct \ def: {}", result); let msg = format!("`{}` does not name a structure", self.path_names_to_string(path)); self.resolve_error(path.span, msg[]); } } } _ => { // Nothing to do. } } true }); } fn resolve_bare_identifier_pattern(&mut self, name: Name, span: Span) -> BareIdentifierPatternResolution { let module = self.current_module.clone(); match self.resolve_item_in_lexical_scope(module, name, ValueNS) { Success((target, _)) => { debug!("(resolve bare identifier pattern) succeeded in \ finding {} at {}", token::get_name(name), target.bindings.value_def.borrow()); match *target.bindings.value_def.borrow() { None => { panic!("resolved name in the value namespace to a \ set of name bindings with no def?!"); } Some(def) => { // For the two success cases, this lookup can be // considered as not having a private component because // the lookup happened only within the current module. match def.def { def @ DefVariant(..) | def @ DefStruct(..) => { return FoundStructOrEnumVariant(def, LastMod(AllPublic)); } def @ DefConst(..) => { return FoundConst(def, LastMod(AllPublic)); } DefStatic(..) => { self.resolve_error(span, "static variables cannot be \ referenced in a pattern, \ use a `const` instead"); return BareIdentifierPatternUnresolved; } _ => { return BareIdentifierPatternUnresolved; } } } } } Indeterminate => { panic!("unexpected indeterminate result"); } Failed(err) => { match err { Some((span, msg)) => { self.resolve_error(span, format!("failed to resolve: {}", msg)[]); } None => () } debug!("(resolve bare identifier pattern) failed to find {}", token::get_name(name)); return BareIdentifierPatternUnresolved; } } } /// If `check_ribs` is true, checks the local definitions first; i.e. /// doesn't skip straight to the containing module. fn resolve_path(&mut self, id: NodeId, path: &Path, namespace: Namespace, check_ribs: bool) -> Option<(Def, LastPrivate)> { // First, resolve the types and associated type bindings. for ty in path.segments.iter().flat_map(|s| s.parameters.types().into_iter()) { self.resolve_type(&**ty); } for binding in path.segments.iter().flat_map(|s| s.parameters.bindings().into_iter()) { self.resolve_type(&*binding.ty); } // A special case for sugared associated type paths `T::A` where `T` is // a type parameter and `A` is an associated type on some bound of `T`. if namespace == TypeNS && path.segments.len() == 2 { match self.resolve_identifier(path.segments[0].identifier, TypeNS, true, path.span) { Some((def, last_private)) => { match def { DefTyParam(_, did, _) => { let def = DefAssociatedPath(TyParamProvenance::FromParam(did), path.segments.last() .unwrap().identifier); return Some((def, last_private)); } DefSelfTy(nid) => { let def = DefAssociatedPath(TyParamProvenance::FromSelf(local_def(nid)), path.segments.last() .unwrap().identifier); return Some((def, last_private)); } _ => {} } } _ => {} } } if path.global { return self.resolve_crate_relative_path(path, namespace); } // Try to find a path to an item in a module. let unqualified_def = self.resolve_identifier(path.segments .last().unwrap() .identifier, namespace, check_ribs, path.span); if path.segments.len() > 1 { let def = self.resolve_module_relative_path(path, namespace); match (def, unqualified_def) { (Some((ref d, _)), Some((ref ud, _))) if *d == *ud => { self.session .add_lint(lint::builtin::UNUSED_QUALIFICATIONS, id, path.span, "unnecessary qualification".to_string()); } _ => () } return def; } return unqualified_def; } // resolve a single identifier (used as a varref) fn resolve_identifier(&mut self, identifier: Ident, namespace: Namespace, check_ribs: bool, span: Span) -> Option<(Def, LastPrivate)> { if check_ribs { match self.resolve_identifier_in_local_ribs(identifier, namespace, span) { Some(def) => { return Some((def, LastMod(AllPublic))); } None => { // Continue. } } } return self.resolve_item_by_name_in_lexical_scope(identifier.name, namespace); } // FIXME #4952: Merge me with resolve_name_in_module? fn resolve_definition_of_name_in_module(&mut self, containing_module: Rc, name: Name, namespace: Namespace) -> NameDefinition { // First, search children. self.populate_module_if_necessary(&containing_module); match containing_module.children.borrow().get(&name) { Some(child_name_bindings) => { match child_name_bindings.def_for_namespace(namespace) { Some(def) => { // Found it. Stop the search here. let p = child_name_bindings.defined_in_public_namespace( namespace); let lp = if p {LastMod(AllPublic)} else { LastMod(DependsOn(def.def_id())) }; return ChildNameDefinition(def, lp); } None => {} } } None => {} } // Next, search import resolutions. match containing_module.import_resolutions.borrow().get(&name) { Some(import_resolution) if import_resolution.is_public => { if let Some(target) = (*import_resolution).target_for_namespace(namespace) { match target.bindings.def_for_namespace(namespace) { Some(def) => { // Found it. let id = import_resolution.id(namespace); // track imports and extern crates as well self.used_imports.insert((id, namespace)); match target.target_module.def_id.get() { Some(DefId{krate: kid, ..}) => { self.used_crates.insert(kid); }, _ => {} } return ImportNameDefinition(def, LastMod(AllPublic)); } None => { // This can happen with external impls, due to // the imperfect way we read the metadata. } } } } Some(..) | None => {} // Continue. } // Finally, search through external children. if namespace == TypeNS { if let Some(module) = containing_module.external_module_children.borrow() .get(&name).cloned() { if let Some(def_id) = module.def_id.get() { // track used crates self.used_crates.insert(def_id.krate); let lp = if module.is_public {LastMod(AllPublic)} else { LastMod(DependsOn(def_id)) }; return ChildNameDefinition(DefMod(def_id), lp); } } } return NoNameDefinition; } // resolve a "module-relative" path, e.g. a::b::c fn resolve_module_relative_path(&mut self, path: &Path, namespace: Namespace) -> Option<(Def, LastPrivate)> { let module_path = path.segments.init().iter() .map(|ps| ps.identifier.name) .collect::>(); let containing_module; let last_private; let module = self.current_module.clone(); match self.resolve_module_path(module, module_path[], UseLexicalScope, path.span, PathSearch) { Failed(err) => { let (span, msg) = match err { Some((span, msg)) => (span, msg), None => { let msg = format!("Use of undeclared type or module `{}`", self.names_to_string(module_path.as_slice())); (path.span, msg) } }; self.resolve_error(span, format!("failed to resolve. {}", msg)[]); return None; } Indeterminate => panic!("indeterminate unexpected"), Success((resulting_module, resulting_last_private)) => { containing_module = resulting_module; last_private = resulting_last_private; } } let name = path.segments.last().unwrap().identifier.name; let def = match self.resolve_definition_of_name_in_module(containing_module.clone(), name, namespace) { NoNameDefinition => { // We failed to resolve the name. Report an error. return None; } ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => { (def, last_private.or(lp)) } }; if let Some(DefId{krate: kid, ..}) = containing_module.def_id.get() { self.used_crates.insert(kid); } return Some(def); } /// Invariant: This must be called only during main resolution, not during /// import resolution. fn resolve_crate_relative_path(&mut self, path: &Path, namespace: Namespace) -> Option<(Def, LastPrivate)> { let module_path = path.segments.init().iter() .map(|ps| ps.identifier.name) .collect::>(); let root_module = self.graph_root.get_module(); let containing_module; let last_private; match self.resolve_module_path_from_root(root_module, module_path[], 0, path.span, PathSearch, LastMod(AllPublic)) { Failed(err) => { let (span, msg) = match err { Some((span, msg)) => (span, msg), None => { let msg = format!("Use of undeclared module `::{}`", self.names_to_string(module_path[])); (path.span, msg) } }; self.resolve_error(span, format!("failed to resolve. {}", msg)[]); return None; } Indeterminate => { panic!("indeterminate unexpected"); } Success((resulting_module, resulting_last_private)) => { containing_module = resulting_module; last_private = resulting_last_private; } } let name = path.segments.last().unwrap().identifier.name; match self.resolve_definition_of_name_in_module(containing_module, name, namespace) { NoNameDefinition => { // We failed to resolve the name. Report an error. return None; } ChildNameDefinition(def, lp) | ImportNameDefinition(def, lp) => { return Some((def, last_private.or(lp))); } } } fn resolve_identifier_in_local_ribs(&mut self, ident: Ident, namespace: Namespace, span: Span) -> Option { // Check the local set of ribs. let search_result = match namespace { ValueNS => { let renamed = mtwt::resolve(ident); self.search_ribs(self.value_ribs.as_slice(), renamed, span) } TypeNS => { let name = ident.name; self.search_ribs(self.type_ribs[], name, span) } }; match search_result { Some(DlDef(def)) => { debug!("(resolving path in local ribs) resolved `{}` to \ local: {}", token::get_ident(ident), def); return Some(def); } Some(DlField) | Some(DlImpl(_)) | None => { return None; } } } fn resolve_item_by_name_in_lexical_scope(&mut self, name: Name, namespace: Namespace) -> Option<(Def, LastPrivate)> { // Check the items. let module = self.current_module.clone(); match self.resolve_item_in_lexical_scope(module, name, namespace) { Success((target, _)) => { match (*target.bindings).def_for_namespace(namespace) { None => { // This can happen if we were looking for a type and // found a module instead. Modules don't have defs. debug!("(resolving item path by identifier in lexical \ scope) failed to resolve {} after success...", token::get_name(name)); return None; } Some(def) => { debug!("(resolving item path in lexical scope) \ resolved `{}` to item", token::get_name(name)); // This lookup is "all public" because it only searched // for one identifier in the current module (couldn't // have passed through reexports or anything like that. return Some((def, LastMod(AllPublic))); } } } Indeterminate => { panic!("unexpected indeterminate result"); } Failed(err) => { match err { Some((span, msg)) => self.resolve_error(span, format!("failed to resolve. {}", msg)[]), None => () } debug!("(resolving item path by identifier in lexical scope) \ failed to resolve {}", token::get_name(name)); return None; } } } fn with_no_errors(&mut self, f: F) -> T where F: FnOnce(&mut Resolver) -> T, { self.emit_errors = false; let rs = f(self); self.emit_errors = true; rs } fn resolve_error(&self, span: Span, s: &str) { if self.emit_errors { self.session.span_err(span, s); } } fn find_fallback_in_self_type(&mut self, name: Name) -> FallbackSuggestion { fn extract_path_and_node_id(t: &Ty, allow: FallbackChecks) -> Option<(Path, NodeId, FallbackChecks)> { match t.node { TyPath(ref path, node_id) => Some((path.clone(), node_id, allow)), TyPtr(ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, OnlyTraitAndStatics), TyRptr(_, ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, allow), // This doesn't handle the remaining `Ty` variants as they are not // that commonly the self_type, it might be interesting to provide // support for those in future. _ => None, } } fn get_module(this: &mut Resolver, span: Span, name_path: &[ast::Name]) -> Option> { let root = this.current_module.clone(); let last_name = name_path.last().unwrap(); if name_path.len() == 1 { match this.primitive_type_table.primitive_types.get(last_name) { Some(_) => None, None => { match this.current_module.children.borrow().get(last_name) { Some(child) => child.get_module_if_available(), None => None } } } } else { match this.resolve_module_path(root, name_path[], UseLexicalScope, span, PathSearch) { Success((module, _)) => Some(module), _ => None } } } let (path, node_id, allowed) = match self.current_self_type { Some(ref ty) => match extract_path_and_node_id(ty, Everything) { Some(x) => x, None => return NoSuggestion, }, None => return NoSuggestion, }; if allowed == Everything { // Look for a field with the same name in the current self_type. match self.def_map.borrow().get(&node_id) { Some(&DefTy(did, _)) | Some(&DefStruct(did)) | Some(&DefVariant(_, did, _)) => match self.structs.get(&did) { None => {} Some(fields) => { if fields.iter().any(|&field_name| name == field_name) { return Field; } } }, _ => {} // Self type didn't resolve properly } } let name_path = path.segments.iter().map(|seg| seg.identifier.name).collect::>(); // Look for a method in the current self type's impl module. match get_module(self, path.span, name_path[]) { Some(module) => match module.children.borrow().get(&name) { Some(binding) => { let p_str = self.path_names_to_string(&path); match binding.def_for_namespace(ValueNS) { Some(DefStaticMethod(_, provenance)) => { match provenance { FromImpl(_) => return StaticMethod(p_str), FromTrait(_) => unreachable!() } } Some(DefMethod(_, None, _)) if allowed == Everything => return Method, Some(DefMethod(_, Some(_), _)) => return TraitItem, _ => () } } None => {} }, None => {} } // Look for a method in the current trait. match self.current_trait_ref { Some((did, ref trait_ref)) => { let path_str = self.path_names_to_string(&trait_ref.path); match self.trait_item_map.get(&(name, did)) { Some(&StaticMethodTraitItemKind) => { return TraitMethod(path_str) } Some(_) => return TraitItem, None => {} } } None => {} } NoSuggestion } fn find_best_match_for_name(&mut self, name: &str, max_distance: uint) -> Option { let this = &mut *self; let mut maybes: Vec = Vec::new(); let mut values: Vec = Vec::new(); for rib in this.value_ribs.iter().rev() { for (&k, _) in rib.bindings.iter() { maybes.push(token::get_name(k)); values.push(uint::MAX); } } let mut smallest = 0; for (i, other) in maybes.iter().enumerate() { values[i] = lev_distance(name, other.get()); if values[i] <= values[smallest] { smallest = i; } } if values.len() > 0 && values[smallest] != uint::MAX && values[smallest] < name.len() + 2 && values[smallest] <= max_distance && name != maybes[smallest].get() { Some(maybes[smallest].get().to_string()) } else { None } } fn resolve_expr(&mut self, expr: &Expr) { // First, record candidate traits for this expression if it could // result in the invocation of a method call. self.record_candidate_traits_for_expr_if_necessary(expr); // Next, resolve the node. match expr.node { // The interpretation of paths depends on whether the path has // multiple elements in it or not. ExprPath(ref path) => { // This is a local path in the value namespace. Walk through // scopes looking for it. let path_name = self.path_names_to_string(path); match self.resolve_path(expr.id, path, ValueNS, true) { // Check if struct variant Some((DefVariant(_, _, true), _)) => { self.resolve_error(expr.span, format!("`{}` is a struct variant name, but \ this expression \ uses it like a function name", path_name).as_slice()); self.session.span_help(expr.span, format!("Did you mean to write: \ `{} {{ /* fields */ }}`?", path_name).as_slice()); } Some(def) => { // Write the result into the def map. debug!("(resolving expr) resolved `{}`", path_name); self.record_def(expr.id, def); } None => { // Be helpful if the name refers to a struct // (The pattern matching def_tys where the id is in self.structs // matches on regular structs while excluding tuple- and enum-like // structs, which wouldn't result in this error.) match self.with_no_errors(|this| this.resolve_path(expr.id, path, TypeNS, false)) { Some((DefTy(struct_id, _), _)) if self.structs.contains_key(&struct_id) => { self.resolve_error(expr.span, format!("`{}` is a structure name, but \ this expression \ uses it like a function name", path_name).as_slice()); self.session.span_help(expr.span, format!("Did you mean to write: \ `{} {{ /* fields */ }}`?", path_name).as_slice()); } _ => { let mut method_scope = false; self.value_ribs.iter().rev().all(|rib| { let res = match *rib { Rib { bindings: _, kind: MethodRibKind(_, _) } => true, Rib { bindings: _, kind: ItemRibKind } => false, _ => return true, // Keep advancing }; method_scope = res; false // Stop advancing }); if method_scope && token::get_name(self.self_name).get() == path_name { self.resolve_error( expr.span, "`self` is not available \ in a static method. Maybe a \ `self` argument is missing?"); } else { let last_name = path.segments.last().unwrap().identifier.name; let mut msg = match self.find_fallback_in_self_type(last_name) { NoSuggestion => { // limit search to 5 to reduce the number // of stupid suggestions self.find_best_match_for_name(path_name.as_slice(), 5) .map_or("".to_string(), |x| format!("`{}`", x)) } Field => format!("`self.{}`", path_name), Method | TraitItem => format!("to call `self.{}`", path_name), TraitMethod(path_str) | StaticMethod(path_str) => format!("to call `{}::{}`", path_str, path_name) }; if msg.len() > 0 { msg = format!(". Did you mean {}?", msg) } self.resolve_error( expr.span, format!("unresolved name `{}`{}", path_name, msg).as_slice()); } } } } } visit::walk_expr(self, expr); } ExprClosure(capture_clause, _, ref fn_decl, ref block) => { self.capture_mode_map.insert(expr.id, capture_clause); self.resolve_function(ClosureRibKind(expr.id, ast::DUMMY_NODE_ID), Some(&**fn_decl), NoTypeParameters, &**block); } ExprStruct(ref path, _, _) => { // Resolve the path to the structure it goes to. We don't // check to ensure that the path is actually a structure; that // is checked later during typeck. match self.resolve_path(expr.id, path, TypeNS, false) { Some(definition) => self.record_def(expr.id, definition), result => { debug!("(resolving expression) didn't find struct \ def: {}", result); let msg = format!("`{}` does not name a structure", self.path_names_to_string(path)); self.resolve_error(path.span, msg[]); } } visit::walk_expr(self, expr); } ExprLoop(_, Some(label)) | ExprWhile(_, _, Some(label)) => { self.with_label_rib(|this| { let def_like = DlDef(DefLabel(expr.id)); { let rib = this.label_ribs.last_mut().unwrap(); let renamed = mtwt::resolve(label); rib.bindings.insert(renamed, def_like); } visit::walk_expr(this, expr); }) } ExprForLoop(ref pattern, ref head, ref body, optional_label) => { self.resolve_expr(&**head); self.value_ribs.push(Rib::new(NormalRibKind)); self.resolve_pattern(&**pattern, LocalIrrefutableMode, &mut HashMap::new()); match optional_label { None => {} Some(label) => { self.label_ribs .push(Rib::new(NormalRibKind)); let def_like = DlDef(DefLabel(expr.id)); { let rib = self.label_ribs.last_mut().unwrap(); let renamed = mtwt::resolve(label); rib.bindings.insert(renamed, def_like); } } } self.resolve_block(&**body); if optional_label.is_some() { drop(self.label_ribs.pop()) } self.value_ribs.pop(); } ExprBreak(Some(label)) | ExprAgain(Some(label)) => { let renamed = mtwt::resolve(label); match self.search_ribs(self.label_ribs[], renamed, expr.span) { None => { self.resolve_error( expr.span, format!("use of undeclared label `{}`", token::get_ident(label))[]) } Some(DlDef(def @ DefLabel(_))) => { // Since this def is a label, it is never read. self.record_def(expr.id, (def, LastMod(AllPublic))) } Some(_) => { self.session.span_bug(expr.span, "label wasn't mapped to a \ label def!") } } } _ => { visit::walk_expr(self, expr); } } } fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) { match expr.node { ExprField(_, ident) => { // FIXME(#6890): Even though you can't treat a method like a // field, we need to add any trait methods we find that match // the field name so that we can do some nice error reporting // later on in typeck. let traits = self.search_for_traits_containing_method(ident.node.name); self.trait_map.insert(expr.id, traits); } ExprMethodCall(ident, _, _) => { debug!("(recording candidate traits for expr) recording \ traits for {}", expr.id); let traits = self.search_for_traits_containing_method(ident.node.name); self.trait_map.insert(expr.id, traits); } _ => { // Nothing to do. } } } fn search_for_traits_containing_method(&mut self, name: Name) -> Vec { debug!("(searching for traits containing method) looking for '{}'", token::get_name(name)); fn add_trait_info(found_traits: &mut Vec, trait_def_id: DefId, name: Name) { debug!("(adding trait info) found trait {}:{} for method '{}'", trait_def_id.krate, trait_def_id.node, token::get_name(name)); found_traits.push(trait_def_id); } let mut found_traits = Vec::new(); let mut search_module = self.current_module.clone(); loop { // Look for the current trait. match self.current_trait_ref { Some((trait_def_id, _)) => { if self.trait_item_map.contains_key(&(name, trait_def_id)) { add_trait_info(&mut found_traits, trait_def_id, name); } } None => {} // Nothing to do. } // Look for trait children. self.populate_module_if_necessary(&search_module); { for (_, child_names) in search_module.children.borrow().iter() { let def = match child_names.def_for_namespace(TypeNS) { Some(def) => def, None => continue }; let trait_def_id = match def { DefTrait(trait_def_id) => trait_def_id, _ => continue, }; if self.trait_item_map.contains_key(&(name, trait_def_id)) { add_trait_info(&mut found_traits, trait_def_id, name); } } } // Look for imports. for (_, import) in search_module.import_resolutions.borrow().iter() { let target = match import.target_for_namespace(TypeNS) { None => continue, Some(target) => target, }; let did = match target.bindings.def_for_namespace(TypeNS) { Some(DefTrait(trait_def_id)) => trait_def_id, Some(..) | None => continue, }; if self.trait_item_map.contains_key(&(name, did)) { add_trait_info(&mut found_traits, did, name); self.used_imports.insert((import.type_id, TypeNS)); if let Some(DefId{krate: kid, ..}) = target.target_module.def_id.get() { self.used_crates.insert(kid); } } } match search_module.parent_link.clone() { NoParentLink | ModuleParentLink(..) => break, BlockParentLink(parent_module, _) => { search_module = parent_module.upgrade().unwrap(); } } } found_traits } fn record_def(&mut self, node_id: NodeId, (def, lp): (Def, LastPrivate)) { debug!("(recording def) recording {} for {}, last private {}", def, node_id, lp); assert!(match lp {LastImport{..} => false, _ => true}, "Import should only be used for `use` directives"); self.last_private.insert(node_id, lp); match self.def_map.borrow_mut().entry(node_id) { // Resolve appears to "resolve" the same ID multiple // times, so here is a sanity check it at least comes to // the same conclusion! - nmatsakis Occupied(entry) => if def != *entry.get() { self.session .bug(format!("node_id {} resolved first to {} and \ then {}", node_id, *entry.get(), def)[]); }, Vacant(entry) => { entry.set(def); }, } } fn enforce_default_binding_mode(&mut self, pat: &Pat, pat_binding_mode: BindingMode, descr: &str) { match pat_binding_mode { BindByValue(_) => {} BindByRef(..) => { self.resolve_error(pat.span, format!("cannot use `ref` binding mode \ with {}", descr)[]); } } } // // Diagnostics // // Diagnostics are not particularly efficient, because they're rarely // hit. // /// A somewhat inefficient routine to obtain the name of a module. fn module_to_string(&self, module: &Module) -> String { let mut names = Vec::new(); fn collect_mod(names: &mut Vec, module: &Module) { match module.parent_link { NoParentLink => {} ModuleParentLink(ref module, name) => { names.push(name); collect_mod(names, &*module.upgrade().unwrap()); } BlockParentLink(ref module, _) => { // danger, shouldn't be ident? names.push(special_idents::opaque.name); collect_mod(names, &*module.upgrade().unwrap()); } } } collect_mod(&mut names, module); if names.len() == 0 { return "???".to_string(); } self.names_to_string(names.into_iter().rev() .collect::>()[]) } #[allow(dead_code)] // useful for debugging fn dump_module(&mut self, module_: Rc) { debug!("Dump of module `{}`:", self.module_to_string(&*module_)); debug!("Children:"); self.populate_module_if_necessary(&module_); for (&name, _) in module_.children.borrow().iter() { debug!("* {}", token::get_name(name)); } debug!("Import resolutions:"); let import_resolutions = module_.import_resolutions.borrow(); for (&name, import_resolution) in import_resolutions.iter() { let value_repr; match import_resolution.target_for_namespace(ValueNS) { None => { value_repr = "".to_string(); } Some(_) => { value_repr = " value:?".to_string(); // FIXME #4954 } } let type_repr; match import_resolution.target_for_namespace(TypeNS) { None => { type_repr = "".to_string(); } Some(_) => { type_repr = " type:?".to_string(); // FIXME #4954 } } debug!("* {}:{}{}", token::get_name(name), value_repr, type_repr); } } } pub struct CrateMap { pub def_map: DefMap, pub freevars: RefCell, pub capture_mode_map: RefCell, pub export_map: ExportMap, pub trait_map: TraitMap, pub external_exports: ExternalExports, pub last_private_map: LastPrivateMap, } /// Entry point to crate resolution. pub fn resolve_crate(session: &Session, _: &LanguageItems, krate: &Crate) -> CrateMap { let mut resolver = Resolver::new(session, krate.span); resolver.build_reduced_graph(krate); session.abort_if_errors(); resolver.resolve_imports(); session.abort_if_errors(); record_exports::record(&mut resolver); session.abort_if_errors(); resolver.resolve_crate(krate); session.abort_if_errors(); check_unused::check_crate(&mut resolver, krate); CrateMap { def_map: resolver.def_map, freevars: resolver.freevars, capture_mode_map: RefCell::new(resolver.capture_mode_map), export_map: resolver.export_map, trait_map: resolver.trait_map, external_exports: resolver.external_exports, last_private_map: resolver.last_private, } }