// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Translation Item Collection //! =========================== //! //! This module is responsible for discovering all items that will contribute to //! to code generation of the crate. The important part here is that it not only //! needs to find syntax-level items (functions, structs, etc) but also all //! their monomorphized instantiations. Every non-generic, non-const function //! maps to one LLVM artifact. Every generic function can produce //! from zero to N artifacts, depending on the sets of type arguments it //! is instantiated with. //! This also applies to generic items from other crates: A generic definition //! in crate X might produce monomorphizations that are compiled into crate Y. //! We also have to collect these here. //! //! The following kinds of "translation items" are handled here: //! //! - Functions //! - Methods //! - Closures //! - Statics //! - Drop glue //! //! The following things also result in LLVM artifacts, but are not collected //! here, since we instantiate them locally on demand when needed in a given //! codegen unit: //! //! - Constants //! - Vtables //! - Object Shims //! //! //! General Algorithm //! ----------------- //! Let's define some terms first: //! //! - A "translation item" is something that results in a function or global in //! the LLVM IR of a codegen unit. Translation items do not stand on their //! own, they can reference other translation items. For example, if function //! `foo()` calls function `bar()` then the translation item for `foo()` //! references the translation item for function `bar()`. In general, the //! definition for translation item A referencing a translation item B is that //! the LLVM artifact produced for A references the LLVM artifact produced //! for B. //! //! - Translation items and the references between them form a directed graph, //! where the translation items are the nodes and references form the edges. //! Let's call this graph the "translation item graph". //! //! - The translation item graph for a program contains all translation items //! that are needed in order to produce the complete LLVM IR of the program. //! //! The purpose of the algorithm implemented in this module is to build the //! translation item graph for the current crate. It runs in two phases: //! //! 1. Discover the roots of the graph by traversing the HIR of the crate. //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR //! representation of the item corresponding to a given node, until no more //! new nodes are found. //! //! ### Discovering roots //! //! The roots of the translation item graph correspond to the non-generic //! syntactic items in the source code. We find them by walking the HIR of the //! crate, and whenever we hit upon a function, method, or static item, we //! create a translation item consisting of the items DefId and, since we only //! consider non-generic items, an empty type-substitution set. //! //! ### Finding neighbor nodes //! Given a translation item node, we can discover neighbors by inspecting its //! MIR. We walk the MIR and any time we hit upon something that signifies a //! reference to another translation item, we have found a neighbor. Since the //! translation item we are currently at is always monomorphic, we also know the //! concrete type arguments of its neighbors, and so all neighbors again will be //! monomorphic. The specific forms a reference to a neighboring node can take //! in MIR are quite diverse. Here is an overview: //! //! #### Calling Functions/Methods //! The most obvious form of one translation item referencing another is a //! function or method call (represented by a CALL terminator in MIR). But //! calls are not the only thing that might introduce a reference between two //! function translation items, and as we will see below, they are just a //! specialized of the form described next, and consequently will don't get any //! special treatment in the algorithm. //! //! #### Taking a reference to a function or method //! A function does not need to actually be called in order to be a neighbor of //! another function. It suffices to just take a reference in order to introduce //! an edge. Consider the following example: //! //! ```rust //! fn print_val(x: T) { //! println!("{}", x); //! } //! //! fn call_fn(f: &Fn(i32), x: i32) { //! f(x); //! } //! //! fn main() { //! let print_i32 = print_val::; //! call_fn(&print_i32, 0); //! } //! ``` //! The MIR of none of these functions will contain an explicit call to //! `print_val::`. Nonetheless, in order to translate this program, we need //! an instance of this function. Thus, whenever we encounter a function or //! method in operand position, we treat it as a neighbor of the current //! translation item. Calls are just a special case of that. //! //! #### Closures //! In a way, closures are a simple case. Since every closure object needs to be //! constructed somewhere, we can reliably discover them by observing //! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also //! true for closures inlined from other crates. //! //! #### Drop glue //! Drop glue translation items are introduced by MIR drop-statements. The //! generated translation item will again have drop-glue item neighbors if the //! type to be dropped contains nested values that also need to be dropped. It //! might also have a function item neighbor for the explicit `Drop::drop` //! implementation of its type. //! //! #### Unsizing Casts //! A subtle way of introducing neighbor edges is by casting to a trait object. //! Since the resulting fat-pointer contains a reference to a vtable, we need to //! instantiate all object-save methods of the trait, as we need to store //! pointers to these functions even if they never get called anywhere. This can //! be seen as a special case of taking a function reference. //! //! #### Boxes //! Since `Box` expression have special compiler support, no explicit calls to //! `exchange_malloc()` and `exchange_free()` may show up in MIR, even if the //! compiler will generate them. We have to observe `Rvalue::Box` expressions //! and Box-typed drop-statements for that purpose. //! //! //! Interaction with Cross-Crate Inlining //! ------------------------------------- //! The binary of a crate will not only contain machine code for the items //! defined in the source code of that crate. It will also contain monomorphic //! instantiations of any extern generic functions and of functions marked with //! #[inline]. //! The collection algorithm handles this more or less transparently. If it is //! about to create a translation item for something with an external `DefId`, //! it will take a look if the MIR for that item is available, and if so just //! proceed normally. If the MIR is not available, it assumes that the item is //! just linked to and no node is created; which is exactly what we want, since //! no machine code should be generated in the current crate for such an item. //! //! Eager and Lazy Collection Mode //! ------------------------------ //! Translation item collection can be performed in one of two modes: //! //! - Lazy mode means that items will only be instantiated when actually //! referenced. The goal is to produce the least amount of machine code //! possible. //! //! - Eager mode is meant to be used in conjunction with incremental compilation //! where a stable set of translation items is more important than a minimal //! one. Thus, eager mode will instantiate drop-glue for every drop-able type //! in the crate, even of no drop call for that type exists (yet). It will //! also instantiate default implementations of trait methods, something that //! otherwise is only done on demand. //! //! //! Open Issues //! ----------- //! Some things are not yet fully implemented in the current version of this //! module. //! //! ### Initializers of Constants and Statics //! Since no MIR is constructed yet for initializer expressions of constants and //! statics we cannot inspect these properly. //! //! ### Const Fns //! Ideally, no translation item should be generated for const fns unless there //! is a call to them that cannot be evaluated at compile time. At the moment //! this is not implemented however: a translation item will be produced //! regardless of whether it is actually needed or not. use rustc::hir; use rustc::hir::itemlikevisit::ItemLikeVisitor; use rustc::hir::map as hir_map; use rustc::hir::def_id::DefId; use rustc::middle::const_val::ConstVal; use rustc::middle::lang_items::{ExchangeMallocFnLangItem}; use rustc::middle::trans::TransItem; use rustc::traits; use rustc::ty::subst::Substs; use rustc::ty::{self, TypeFoldable, Ty, TyCtxt}; use rustc::ty::adjustment::CustomCoerceUnsized; use rustc::mir::{self, Location}; use rustc::mir::visit::Visitor as MirVisitor; use common::{def_ty, instance_ty, type_has_metadata}; use monomorphize::{self, Instance}; use rustc::util::nodemap::{FxHashSet, FxHashMap, DefIdMap}; use trans_item::{TransItemExt, DefPathBasedNames, InstantiationMode}; use rustc_data_structures::bitvec::BitVector; use syntax::attr; #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)] pub enum TransItemCollectionMode { Eager, Lazy } /// Maps every translation item to all translation items it references in its /// body. pub struct InliningMap<'tcx> { // Maps a source translation item to the range of translation items // accessed by it. // The two numbers in the tuple are the start (inclusive) and // end index (exclusive) within the `targets` vecs. index: FxHashMap, (usize, usize)>, targets: Vec>, // Contains one bit per translation item in the `targets` field. That bit // is true if that translation item needs to be inlined into every CGU. inlines: BitVector, } impl<'tcx> InliningMap<'tcx> { fn new() -> InliningMap<'tcx> { InliningMap { index: FxHashMap(), targets: Vec::new(), inlines: BitVector::new(1024), } } fn record_accesses(&mut self, source: TransItem<'tcx>, new_targets: I) where I: Iterator, bool)> + ExactSizeIterator { assert!(!self.index.contains_key(&source)); let start_index = self.targets.len(); let new_items_count = new_targets.len(); let new_items_count_total = new_items_count + self.targets.len(); self.targets.reserve(new_items_count); self.inlines.grow(new_items_count_total); for (i, (target, inline)) in new_targets.enumerate() { self.targets.push(target); if inline { self.inlines.insert(i + start_index); } } let end_index = self.targets.len(); self.index.insert(source, (start_index, end_index)); } // Internally iterate over all items referenced by `source` which will be // made available for inlining. pub fn with_inlining_candidates(&self, source: TransItem<'tcx>, mut f: F) where F: FnMut(TransItem<'tcx>) { if let Some(&(start_index, end_index)) = self.index.get(&source) { for (i, candidate) in self.targets[start_index .. end_index] .iter() .enumerate() { if self.inlines.contains(start_index + i) { f(*candidate); } } } } // Internally iterate over all items and the things each accesses. pub fn iter_accesses(&self, mut f: F) where F: FnMut(TransItem<'tcx>, &[TransItem<'tcx>]) { for (&accessor, &(start_index, end_index)) in &self.index { f(accessor, &self.targets[start_index .. end_index]) } } } pub fn collect_crate_translation_items<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, mode: TransItemCollectionMode) -> (FxHashSet>, InliningMap<'tcx>) { let roots = collect_roots(tcx, mode); debug!("Building translation item graph, beginning at roots"); let mut visited = FxHashSet(); let mut recursion_depths = DefIdMap(); let mut inlining_map = InliningMap::new(); for root in roots { collect_items_rec(tcx, root, &mut visited, &mut recursion_depths, &mut inlining_map); } (visited, inlining_map) } // Find all non-generic items by walking the HIR. These items serve as roots to // start monomorphizing from. fn collect_roots<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, mode: TransItemCollectionMode) -> Vec> { debug!("Collecting roots"); let mut roots = Vec::new(); { let entry_fn = tcx.sess.entry_fn.borrow().map(|(node_id, _)| { tcx.hir.local_def_id(node_id) }); let mut visitor = RootCollector { tcx, mode, entry_fn, output: &mut roots, }; tcx.hir.krate().visit_all_item_likes(&mut visitor); } // We can only translate items that are instantiable - items all of // whose predicates hold. Luckily, items that aren't instantiable // can't actually be used, so we can just skip translating them. roots.retain(|root| root.is_instantiable(tcx)); roots } // Collect all monomorphized translation items reachable from `starting_point` fn collect_items_rec<'a, 'tcx: 'a>(tcx: TyCtxt<'a, 'tcx, 'tcx>, starting_point: TransItem<'tcx>, visited: &mut FxHashSet>, recursion_depths: &mut DefIdMap, inlining_map: &mut InliningMap<'tcx>) { if !visited.insert(starting_point.clone()) { // We've been here already, no need to search again. return; } debug!("BEGIN collect_items_rec({})", starting_point.to_string(tcx)); let mut neighbors = Vec::new(); let recursion_depth_reset; match starting_point { TransItem::Static(node_id) => { let def_id = tcx.hir.local_def_id(node_id); let instance = Instance::mono(tcx, def_id); // Sanity check whether this ended up being collected accidentally debug_assert!(should_trans_locally(tcx, &instance)); let ty = instance_ty(tcx, &instance); visit_drop_use(tcx, ty, true, &mut neighbors); recursion_depth_reset = None; collect_neighbours(tcx, instance, true, &mut neighbors); } TransItem::Fn(instance) => { // Sanity check whether this ended up being collected accidentally debug_assert!(should_trans_locally(tcx, &instance)); // Keep track of the monomorphization recursion depth recursion_depth_reset = Some(check_recursion_limit(tcx, instance, recursion_depths)); check_type_length_limit(tcx, instance); collect_neighbours(tcx, instance, false, &mut neighbors); } TransItem::GlobalAsm(..) => { recursion_depth_reset = None; } } record_accesses(tcx, starting_point, &neighbors[..], inlining_map); for neighbour in neighbors { collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map); } if let Some((def_id, depth)) = recursion_depth_reset { recursion_depths.insert(def_id, depth); } debug!("END collect_items_rec({})", starting_point.to_string(tcx)); } fn record_accesses<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, caller: TransItem<'tcx>, callees: &[TransItem<'tcx>], inlining_map: &mut InliningMap<'tcx>) { let is_inlining_candidate = |trans_item: &TransItem<'tcx>| { trans_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy }; let accesses = callees.into_iter() .map(|trans_item| { (*trans_item, is_inlining_candidate(trans_item)) }); inlining_map.record_accesses(caller, accesses); } fn check_recursion_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: Instance<'tcx>, recursion_depths: &mut DefIdMap) -> (DefId, usize) { let def_id = instance.def_id(); let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0); debug!(" => recursion depth={}", recursion_depth); let recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() { // HACK: drop_in_place creates tight monomorphization loops. Give // it more margin. recursion_depth / 4 } else { recursion_depth }; // Code that needs to instantiate the same function recursively // more than the recursion limit is assumed to be causing an // infinite expansion. if recursion_depth > tcx.sess.recursion_limit.get() { let error = format!("reached the recursion limit while instantiating `{}`", instance); if let Some(node_id) = tcx.hir.as_local_node_id(def_id) { tcx.sess.span_fatal(tcx.hir.span(node_id), &error); } else { tcx.sess.fatal(&error); } } recursion_depths.insert(def_id, recursion_depth + 1); (def_id, recursion_depth) } fn check_type_length_limit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: Instance<'tcx>) { let type_length = instance.substs.types().flat_map(|ty| ty.walk()).count(); debug!(" => type length={}", type_length); // Rust code can easily create exponentially-long types using only a // polynomial recursion depth. Even with the default recursion // depth, you can easily get cases that take >2^60 steps to run, // which means that rustc basically hangs. // // Bail out in these cases to avoid that bad user experience. let type_length_limit = tcx.sess.type_length_limit.get(); if type_length > type_length_limit { // The instance name is already known to be too long for rustc. Use // `{:.64}` to avoid blasting the user's terminal with thousands of // lines of type-name. let instance_name = instance.to_string(); let msg = format!("reached the type-length limit while instantiating `{:.64}...`", instance_name); let mut diag = if let Some(node_id) = tcx.hir.as_local_node_id(instance.def_id()) { tcx.sess.struct_span_fatal(tcx.hir.span(node_id), &msg) } else { tcx.sess.struct_fatal(&msg) }; diag.note(&format!( "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate", type_length_limit*2)); diag.emit(); tcx.sess.abort_if_errors(); } } struct MirNeighborCollector<'a, 'tcx: 'a> { tcx: TyCtxt<'a, 'tcx, 'tcx>, mir: &'a mir::Mir<'tcx>, output: &'a mut Vec>, param_substs: &'tcx Substs<'tcx>, const_context: bool, } impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) { debug!("visiting rvalue {:?}", *rvalue); match *rvalue { // When doing an cast from a regular pointer to a fat pointer, we // have to instantiate all methods of the trait being cast to, so we // can build the appropriate vtable. mir::Rvalue::Cast(mir::CastKind::Unsize, ref operand, target_ty) => { let target_ty = self.tcx.trans_apply_param_substs(self.param_substs, &target_ty); let source_ty = operand.ty(self.mir, self.tcx); let source_ty = self.tcx.trans_apply_param_substs(self.param_substs, &source_ty); let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty); // This could also be a different Unsize instruction, like // from a fixed sized array to a slice. But we are only // interested in things that produce a vtable. if target_ty.is_trait() && !source_ty.is_trait() { create_trans_items_for_vtable_methods(self.tcx, target_ty, source_ty, self.output); } } mir::Rvalue::Cast(mir::CastKind::ReifyFnPointer, ref operand, _) => { let fn_ty = operand.ty(self.mir, self.tcx); let fn_ty = self.tcx.trans_apply_param_substs(self.param_substs, &fn_ty); visit_fn_use(self.tcx, fn_ty, false, &mut self.output); } mir::Rvalue::Cast(mir::CastKind::ClosureFnPointer, ref operand, _) => { let source_ty = operand.ty(self.mir, self.tcx); let source_ty = self.tcx.trans_apply_param_substs(self.param_substs, &source_ty); match source_ty.sty { ty::TyClosure(def_id, substs) => { let instance = monomorphize::resolve_closure( self.tcx, def_id, substs, ty::ClosureKind::FnOnce); self.output.push(create_fn_trans_item(instance)); } _ => bug!(), } } mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => { let tcx = self.tcx; let exchange_malloc_fn_def_id = tcx .lang_items() .require(ExchangeMallocFnLangItem) .unwrap_or_else(|e| tcx.sess.fatal(&e)); let instance = Instance::mono(tcx, exchange_malloc_fn_def_id); if should_trans_locally(tcx, &instance) { self.output.push(create_fn_trans_item(instance)); } } _ => { /* not interesting */ } } self.super_rvalue(rvalue, location); } fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) { debug!("visiting const {:?} @ {:?}", *constant, location); if let ConstVal::Unevaluated(def_id, substs) = constant.val { let substs = self.tcx.trans_apply_param_substs(self.param_substs, &substs); let instance = ty::Instance::resolve(self.tcx, ty::ParamEnv::empty(traits::Reveal::All), def_id, substs).unwrap(); collect_neighbours(self.tcx, instance, true, self.output); } self.super_const(constant); } fn visit_terminator_kind(&mut self, block: mir::BasicBlock, kind: &mir::TerminatorKind<'tcx>, location: Location) { debug!("visiting terminator {:?} @ {:?}", kind, location); let tcx = self.tcx; match *kind { mir::TerminatorKind::Call { ref func, .. } => { let callee_ty = func.ty(self.mir, tcx); let callee_ty = tcx.trans_apply_param_substs(self.param_substs, &callee_ty); let constness = match (self.const_context, &callee_ty.sty) { (true, &ty::TyFnDef(def_id, substs)) if self.tcx.is_const_fn(def_id) => { let instance = ty::Instance::resolve(self.tcx, ty::ParamEnv::empty(traits::Reveal::All), def_id, substs).unwrap(); Some(instance) } _ => None }; if let Some(const_fn_instance) = constness { // If this is a const fn, called from a const context, we // have to visit its body in order to find any fn reifications // it might contain. collect_neighbours(self.tcx, const_fn_instance, true, self.output); } else { visit_fn_use(self.tcx, callee_ty, true, &mut self.output); } } mir::TerminatorKind::Drop { ref location, .. } | mir::TerminatorKind::DropAndReplace { ref location, .. } => { let ty = location.ty(self.mir, self.tcx) .to_ty(self.tcx); let ty = tcx.trans_apply_param_substs(self.param_substs, &ty); visit_drop_use(self.tcx, ty, true, self.output); } mir::TerminatorKind::Goto { .. } | mir::TerminatorKind::SwitchInt { .. } | mir::TerminatorKind::Resume | mir::TerminatorKind::Return | mir::TerminatorKind::Unreachable | mir::TerminatorKind::Assert { .. } => {} mir::TerminatorKind::GeneratorDrop | mir::TerminatorKind::Yield { .. } | mir::TerminatorKind::FalseEdges { .. } => bug!(), } self.super_terminator_kind(block, kind, location); } fn visit_static(&mut self, static_: &mir::Static<'tcx>, context: mir::visit::LvalueContext<'tcx>, location: Location) { debug!("visiting static {:?} @ {:?}", static_.def_id, location); let tcx = self.tcx; let instance = Instance::mono(tcx, static_.def_id); if should_trans_locally(tcx, &instance) { let node_id = tcx.hir.as_local_node_id(static_.def_id).unwrap(); self.output.push(TransItem::Static(node_id)); } self.super_static(static_, context, location); } } fn visit_drop_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>, is_direct_call: bool, output: &mut Vec>) { let instance = monomorphize::resolve_drop_in_place(tcx, ty); visit_instance_use(tcx, instance, is_direct_call, output); } fn visit_fn_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>, is_direct_call: bool, output: &mut Vec>) { if let ty::TyFnDef(def_id, substs) = ty.sty { let instance = ty::Instance::resolve(tcx, ty::ParamEnv::empty(traits::Reveal::All), def_id, substs).unwrap(); visit_instance_use(tcx, instance, is_direct_call, output); } } fn visit_instance_use<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: ty::Instance<'tcx>, is_direct_call: bool, output: &mut Vec>) { debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call); if !should_trans_locally(tcx, &instance) { return } match instance.def { ty::InstanceDef::Intrinsic(def_id) => { if !is_direct_call { bug!("intrinsic {:?} being reified", def_id); } } ty::InstanceDef::Virtual(..) | ty::InstanceDef::DropGlue(_, None) => { // don't need to emit shim if we are calling directly. if !is_direct_call { output.push(create_fn_trans_item(instance)); } } ty::InstanceDef::DropGlue(_, Some(_)) => { output.push(create_fn_trans_item(instance)); } ty::InstanceDef::ClosureOnceShim { .. } | ty::InstanceDef::Item(..) | ty::InstanceDef::FnPtrShim(..) | ty::InstanceDef::CloneShim(..) => { output.push(create_fn_trans_item(instance)); } } } // Returns true if we should translate an instance in the local crate. // Returns false if we can just link to the upstream crate and therefore don't // need a translation item. fn should_trans_locally<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: &Instance<'tcx>) -> bool { let def_id = match instance.def { ty::InstanceDef::Item(def_id) => def_id, ty::InstanceDef::ClosureOnceShim { .. } | ty::InstanceDef::Virtual(..) | ty::InstanceDef::FnPtrShim(..) | ty::InstanceDef::DropGlue(..) | ty::InstanceDef::Intrinsic(_) | ty::InstanceDef::CloneShim(..) => return true }; match tcx.hir.get_if_local(def_id) { Some(hir_map::NodeForeignItem(..)) => { false // foreign items are linked against, not translated. } Some(_) => true, None => { if tcx.is_exported_symbol(def_id) || tcx.is_foreign_item(def_id) { // We can link to the item in question, no instance needed // in this crate false } else { if !tcx.is_mir_available(def_id) { bug!("Cannot create local trans-item for {:?}", def_id) } true } } } } /// For given pair of source and target type that occur in an unsizing coercion, /// this function finds the pair of types that determines the vtable linking /// them. /// /// For example, the source type might be `&SomeStruct` and the target type\ /// might be `&SomeTrait` in a cast like: /// /// let src: &SomeStruct = ...; /// let target = src as &SomeTrait; /// /// Then the output of this function would be (SomeStruct, SomeTrait) since for /// constructing the `target` fat-pointer we need the vtable for that pair. /// /// Things can get more complicated though because there's also the case where /// the unsized type occurs as a field: /// /// ```rust /// struct ComplexStruct { /// a: u32, /// b: f64, /// c: T /// } /// ``` /// /// In this case, if `T` is sized, `&ComplexStruct` is a thin pointer. If `T` /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is /// for the pair of `T` (which is a trait) and the concrete type that `T` was /// originally coerced from: /// /// let src: &ComplexStruct = ...; /// let target = src as &ComplexStruct; /// /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair /// `(SomeStruct, SomeTrait)`. /// /// Finally, there is also the case of custom unsizing coercions, e.g. for /// smart pointers such as `Rc` and `Arc`. fn find_vtable_types_for_unsizing<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, source_ty: Ty<'tcx>, target_ty: Ty<'tcx>) -> (Ty<'tcx>, Ty<'tcx>) { let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| { if type_has_metadata(tcx, inner_source) { (inner_source, inner_target) } else { tcx.struct_lockstep_tails(inner_source, inner_target) } }; match (&source_ty.sty, &target_ty.sty) { (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) | (&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) | (&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }), &ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => { ptr_vtable(a, b) } (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => { ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty()) } (&ty::TyAdt(source_adt_def, source_substs), &ty::TyAdt(target_adt_def, target_substs)) => { assert_eq!(source_adt_def, target_adt_def); let kind = monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty); let coerce_index = match kind { CustomCoerceUnsized::Struct(i) => i }; let source_fields = &source_adt_def.struct_variant().fields; let target_fields = &target_adt_def.struct_variant().fields; assert!(coerce_index < source_fields.len() && source_fields.len() == target_fields.len()); find_vtable_types_for_unsizing(tcx, source_fields[coerce_index].ty(tcx, source_substs), target_fields[coerce_index].ty(tcx, target_substs)) } _ => bug!("find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", source_ty, target_ty) } } fn create_fn_trans_item<'a, 'tcx>(instance: Instance<'tcx>) -> TransItem<'tcx> { debug!("create_fn_trans_item(instance={})", instance); TransItem::Fn(instance) } /// Creates a `TransItem` for each method that is referenced by the vtable for /// the given trait/impl pair. fn create_trans_items_for_vtable_methods<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, trait_ty: Ty<'tcx>, impl_ty: Ty<'tcx>, output: &mut Vec>) { assert!(!trait_ty.needs_subst() && !trait_ty.has_escaping_regions() && !impl_ty.needs_subst() && !impl_ty.has_escaping_regions()); if let ty::TyDynamic(ref trait_ty, ..) = trait_ty.sty { if let Some(principal) = trait_ty.principal() { let poly_trait_ref = principal.with_self_ty(tcx, impl_ty); assert!(!poly_trait_ref.has_escaping_regions()); // Walk all methods of the trait, including those of its supertraits let methods = tcx.vtable_methods(poly_trait_ref); let methods = methods.iter().cloned().filter_map(|method| method) .map(|(def_id, substs)| ty::Instance::resolve( tcx, ty::ParamEnv::empty(traits::Reveal::All), def_id, substs).unwrap()) .filter(|&instance| should_trans_locally(tcx, &instance)) .map(|instance| create_fn_trans_item(instance)); output.extend(methods); } // Also add the destructor visit_drop_use(tcx, impl_ty, false, output); } } //=----------------------------------------------------------------------------- // Root Collection //=----------------------------------------------------------------------------- struct RootCollector<'b, 'a: 'b, 'tcx: 'a + 'b> { tcx: TyCtxt<'a, 'tcx, 'tcx>, mode: TransItemCollectionMode, output: &'b mut Vec>, entry_fn: Option, } impl<'b, 'a, 'v> ItemLikeVisitor<'v> for RootCollector<'b, 'a, 'v> { fn visit_item(&mut self, item: &'v hir::Item) { match item.node { hir::ItemExternCrate(..) | hir::ItemUse(..) | hir::ItemForeignMod(..) | hir::ItemTy(..) | hir::ItemAutoImpl(..) | hir::ItemTrait(..) | hir::ItemMod(..) => { // Nothing to do, just keep recursing... } hir::ItemImpl(..) => { if self.mode == TransItemCollectionMode::Eager { create_trans_items_for_default_impls(self.tcx, item, self.output); } } hir::ItemEnum(_, ref generics) | hir::ItemStruct(_, ref generics) | hir::ItemUnion(_, ref generics) => { if !generics.is_parameterized() { if self.mode == TransItemCollectionMode::Eager { let def_id = self.tcx.hir.local_def_id(item.id); debug!("RootCollector: ADT drop-glue for {}", def_id_to_string(self.tcx, def_id)); let ty = def_ty(self.tcx, def_id, Substs::empty()); visit_drop_use(self.tcx, ty, true, self.output); } } } hir::ItemGlobalAsm(..) => { debug!("RootCollector: ItemGlobalAsm({})", def_id_to_string(self.tcx, self.tcx.hir.local_def_id(item.id))); self.output.push(TransItem::GlobalAsm(item.id)); } hir::ItemStatic(..) => { debug!("RootCollector: ItemStatic({})", def_id_to_string(self.tcx, self.tcx.hir.local_def_id(item.id))); self.output.push(TransItem::Static(item.id)); } hir::ItemConst(..) => { // const items only generate translation items if they are // actually used somewhere. Just declaring them is insufficient. } hir::ItemFn(..) => { let tcx = self.tcx; let def_id = tcx.hir.local_def_id(item.id); if self.is_root(def_id) { debug!("RootCollector: ItemFn({})", def_id_to_string(tcx, def_id)); let instance = Instance::mono(tcx, def_id); self.output.push(TransItem::Fn(instance)); } } } } fn visit_trait_item(&mut self, _: &'v hir::TraitItem) { // Even if there's a default body with no explicit generics, // it's still generic over some `Self: Trait`, so not a root. } fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) { match ii.node { hir::ImplItemKind::Method(hir::MethodSig { .. }, _) => { let tcx = self.tcx; let def_id = tcx.hir.local_def_id(ii.id); if self.is_root(def_id) { debug!("RootCollector: MethodImplItem({})", def_id_to_string(tcx, def_id)); let instance = Instance::mono(tcx, def_id); self.output.push(TransItem::Fn(instance)); } } _ => { /* Nothing to do here */ } } } } impl<'b, 'a, 'v> RootCollector<'b, 'a, 'v> { fn is_root(&self, def_id: DefId) -> bool { !item_has_type_parameters(self.tcx, def_id) && match self.mode { TransItemCollectionMode::Eager => { true } TransItemCollectionMode::Lazy => { self.entry_fn == Some(def_id) || self.tcx.is_exported_symbol(def_id) || attr::contains_name(&self.tcx.get_attrs(def_id), "rustc_std_internal_symbol") } } } } fn item_has_type_parameters<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> bool { let generics = tcx.generics_of(def_id); generics.parent_types as usize + generics.types.len() > 0 } fn create_trans_items_for_default_impls<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, item: &'tcx hir::Item, output: &mut Vec>) { match item.node { hir::ItemImpl(_, _, _, ref generics, .., ref impl_item_refs) => { if generics.is_type_parameterized() { return } let impl_def_id = tcx.hir.local_def_id(item.id); debug!("create_trans_items_for_default_impls(item={})", def_id_to_string(tcx, impl_def_id)); if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) { let callee_substs = tcx.erase_regions(&trait_ref.substs); let overridden_methods: FxHashSet<_> = impl_item_refs.iter() .map(|iiref| iiref.name) .collect(); for method in tcx.provided_trait_methods(trait_ref.def_id) { if overridden_methods.contains(&method.name) { continue; } if !tcx.generics_of(method.def_id).types.is_empty() { continue; } let instance = ty::Instance::resolve(tcx, ty::ParamEnv::empty(traits::Reveal::All), method.def_id, callee_substs).unwrap(); let trans_item = create_fn_trans_item(instance); if trans_item.is_instantiable(tcx) && should_trans_locally(tcx, &instance) { output.push(trans_item); } } } } _ => { bug!() } } } /// Scan the MIR in order to find function calls, closures, and drop-glue fn collect_neighbours<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, instance: Instance<'tcx>, const_context: bool, output: &mut Vec>) { let mir = tcx.instance_mir(instance.def); let mut visitor = MirNeighborCollector { tcx, mir: &mir, output, param_substs: instance.substs, const_context, }; visitor.visit_mir(&mir); for promoted in &mir.promoted { visitor.mir = promoted; visitor.visit_mir(promoted); } } fn def_id_to_string<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> String { let mut output = String::new(); let printer = DefPathBasedNames::new(tcx, false, false); printer.push_def_path(def_id, &mut output); output }