// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! For each definition, we track the following data. A definition //! here is defined somewhat circularly as "something with a def-id", //! but it generally corresponds to things like structs, enums, etc. //! There are also some rather random cases (like const initializer //! expressions) that are mostly just leftovers. use hir; use hir::def_id::{CrateNum, DefId, DefIndex, LOCAL_CRATE, DefIndexAddressSpace}; use ich::Fingerprint; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::indexed_vec::IndexVec; use rustc_data_structures::stable_hasher::StableHasher; use serialize::{Encodable, Decodable, Encoder, Decoder}; use std::fmt::Write; use std::hash::Hash; use syntax::ast::{self, Ident}; use syntax::ext::hygiene::{Mark, SyntaxContext}; use syntax::symbol::{Symbol, InternedString}; use ty::TyCtxt; use util::nodemap::NodeMap; /// The DefPathTable maps DefIndexes to DefKeys and vice versa. /// Internally the DefPathTable holds a tree of DefKeys, where each DefKey /// stores the DefIndex of its parent. /// There is one DefPathTable for each crate. pub struct DefPathTable { index_to_key: [Vec; 2], key_to_index: FxHashMap, def_path_hashes: [Vec; 2], } // Unfortunately we have to provide a manual impl of Clone because of the // fixed-sized array field. impl Clone for DefPathTable { fn clone(&self) -> Self { DefPathTable { index_to_key: [self.index_to_key[0].clone(), self.index_to_key[1].clone()], key_to_index: self.key_to_index.clone(), def_path_hashes: [self.def_path_hashes[0].clone(), self.def_path_hashes[1].clone()], } } } impl DefPathTable { fn allocate(&mut self, key: DefKey, def_path_hash: DefPathHash, address_space: DefIndexAddressSpace) -> DefIndex { let index = { let index_to_key = &mut self.index_to_key[address_space.index()]; let index = DefIndex::new(index_to_key.len() + address_space.start()); debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index); index_to_key.push(key.clone()); index }; self.key_to_index.insert(key, index); self.def_path_hashes[address_space.index()].push(def_path_hash); debug_assert!(self.def_path_hashes[address_space.index()].len() == self.index_to_key[address_space.index()].len()); index } #[inline(always)] pub fn def_key(&self, index: DefIndex) -> DefKey { self.index_to_key[index.address_space().index()] [index.as_array_index()].clone() } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { self.def_path_hashes[index.address_space().index()] [index.as_array_index()] } #[inline(always)] pub fn def_index_for_def_key(&self, key: &DefKey) -> Option { self.key_to_index.get(key).cloned() } #[inline(always)] pub fn contains_key(&self, key: &DefKey) -> bool { self.key_to_index.contains_key(key) } pub fn retrace_path(&self, path_data: &[DisambiguatedDefPathData]) -> Option { let root_key = DefKey { parent: None, disambiguated_data: DisambiguatedDefPathData { data: DefPathData::CrateRoot, disambiguator: 0, }, }; let root_index = self.key_to_index .get(&root_key) .expect("no root key?") .clone(); debug!("retrace_path: root_index={:?}", root_index); let mut index = root_index; for data in path_data { let key = DefKey { parent: Some(index), disambiguated_data: data.clone() }; debug!("retrace_path: key={:?}", key); match self.key_to_index.get(&key) { Some(&i) => index = i, None => return None, } } Some(index) } } impl Encodable for DefPathTable { fn encode(&self, s: &mut S) -> Result<(), S::Error> { // Index to key self.index_to_key[DefIndexAddressSpace::Low.index()].encode(s)?; self.index_to_key[DefIndexAddressSpace::High.index()].encode(s)?; // DefPath hashes self.def_path_hashes[DefIndexAddressSpace::Low.index()].encode(s)?; self.def_path_hashes[DefIndexAddressSpace::High.index()].encode(s)?; Ok(()) } } impl Decodable for DefPathTable { fn decode(d: &mut D) -> Result { let index_to_key_lo: Vec = Decodable::decode(d)?; let index_to_key_hi: Vec = Decodable::decode(d)?; let def_path_hashes_lo: Vec = Decodable::decode(d)?; let def_path_hashes_hi: Vec = Decodable::decode(d)?; let index_to_key = [index_to_key_lo, index_to_key_hi]; let def_path_hashes = [def_path_hashes_lo, def_path_hashes_hi]; let mut key_to_index = FxHashMap(); for space in &[DefIndexAddressSpace::Low, DefIndexAddressSpace::High] { key_to_index.extend(index_to_key[space.index()] .iter() .enumerate() .map(|(index, key)| (key.clone(), DefIndex::new(index + space.start())))) } Ok(DefPathTable { index_to_key: index_to_key, key_to_index: key_to_index, def_path_hashes: def_path_hashes, }) } } /// The definition table containing node definitions. /// It holds the DefPathTable for local DefIds/DefPaths and it also stores a /// mapping from NodeIds to local DefIds. pub struct Definitions { table: DefPathTable, node_to_def_index: NodeMap, def_index_to_node: [Vec; 2], pub(super) node_to_hir_id: IndexVec, macro_def_scopes: FxHashMap, expansions: FxHashMap, } // Unfortunately we have to provide a manual impl of Clone because of the // fixed-sized array field. impl Clone for Definitions { fn clone(&self) -> Self { Definitions { table: self.table.clone(), node_to_def_index: self.node_to_def_index.clone(), def_index_to_node: [ self.def_index_to_node[0].clone(), self.def_index_to_node[1].clone(), ], node_to_hir_id: self.node_to_hir_id.clone(), macro_def_scopes: self.macro_def_scopes.clone(), expansions: self.expansions.clone(), } } } /// A unique identifier that we can use to lookup a definition /// precisely. It combines the index of the definition's parent (if /// any) with a `DisambiguatedDefPathData`. #[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub struct DefKey { /// Parent path. pub parent: Option, /// Identifier of this node. pub disambiguated_data: DisambiguatedDefPathData, } impl DefKey { fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash { let mut hasher = StableHasher::new(); // We hash a 0u8 here to disambiguate between regular DefPath hashes, // and the special "root_parent" below. 0u8.hash(&mut hasher); parent_hash.hash(&mut hasher); self.disambiguated_data.hash(&mut hasher); DefPathHash(hasher.finish()) } fn root_parent_stable_hash(crate_name: &str, crate_disambiguator: &str) -> DefPathHash { let mut hasher = StableHasher::new(); // Disambiguate this from a regular DefPath hash, // see compute_stable_hash() above. 1u8.hash(&mut hasher); crate_name.hash(&mut hasher); crate_disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } } /// Pair of `DefPathData` and an integer disambiguator. The integer is /// normally 0, but in the event that there are multiple defs with the /// same `parent` and `data`, we use this field to disambiguate /// between them. This introduces some artificial ordering dependency /// but means that if you have (e.g.) two impls for the same type in /// the same module, they do get distinct def-ids. #[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub struct DisambiguatedDefPathData { pub data: DefPathData, pub disambiguator: u32 } #[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub struct DefPath { /// the path leading from the crate root to the item pub data: Vec, /// what krate root is this path relative to? pub krate: CrateNum, } impl DefPath { pub fn is_local(&self) -> bool { self.krate == LOCAL_CRATE } pub fn make(krate: CrateNum, start_index: DefIndex, mut get_key: FN) -> DefPath where FN: FnMut(DefIndex) -> DefKey { let mut data = vec![]; let mut index = Some(start_index); loop { debug!("DefPath::make: krate={:?} index={:?}", krate, index); let p = index.unwrap(); let key = get_key(p); debug!("DefPath::make: key={:?}", key); match key.disambiguated_data.data { DefPathData::CrateRoot => { assert!(key.parent.is_none()); break; } _ => { data.push(key.disambiguated_data); index = key.parent; } } } data.reverse(); DefPath { data: data, krate: krate } } pub fn to_string(&self, tcx: TyCtxt) -> String { let mut s = String::with_capacity(self.data.len() * 16); s.push_str(&tcx.original_crate_name(self.krate).as_str()); s.push_str("/"); s.push_str(&tcx.crate_disambiguator(self.krate).as_str()); for component in &self.data { write!(s, "::{}[{}]", component.data.as_interned_str(), component.disambiguator) .unwrap(); } s } /// Returns a string representation of the DefPath without /// the crate-prefix. This method is useful if you don't have /// a TyCtxt available. pub fn to_string_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); for component in &self.data { write!(s, "::{}[{}]", component.data.as_interned_str(), component.disambiguator) .unwrap(); } s } } #[derive(Clone, Debug, RustcEncodable, RustcDecodable)] pub enum DefPathData { // Root: these should only be used for the root nodes, because // they are treated specially by the `def_path` function. /// The crate root (marker) CrateRoot, // Catch-all for random DefId things like DUMMY_NODE_ID Misc, // Different kinds of items and item-like things: /// An impl Impl, /// Something in the type NS TypeNs(Ident), /// Something in the value NS ValueNs(Ident), /// A module declaration Module(Ident), /// A macro rule MacroDef(Ident), /// A closure expression ClosureExpr, // Subportions of items /// A type parameter (generic parameter) TypeParam(Ident), /// A lifetime definition LifetimeDef(Ident), /// A variant of a enum EnumVariant(Ident), /// A struct field Field(Ident), /// Implicit ctor for a tuple-like struct StructCtor, /// Initializer for a const Initializer, /// Pattern binding Binding(Ident), /// An `impl Trait` type node. ImplTrait, /// A `typeof` type node. Typeof, } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug, RustcEncodable, RustcDecodable)] pub struct DefPathHash(pub Fingerprint); impl_stable_hash_for!(tuple_struct DefPathHash { fingerprint }); impl Definitions { /// Create new empty definition map. pub fn new() -> Definitions { Definitions { table: DefPathTable { index_to_key: [vec![], vec![]], key_to_index: FxHashMap(), def_path_hashes: [vec![], vec![]], }, node_to_def_index: NodeMap(), def_index_to_node: [vec![], vec![]], node_to_hir_id: IndexVec::new(), macro_def_scopes: FxHashMap(), expansions: FxHashMap(), } } pub fn def_path_table(&self) -> &DefPathTable { &self.table } /// Get the number of definitions. pub fn def_index_counts_lo_hi(&self) -> (usize, usize) { (self.def_index_to_node[DefIndexAddressSpace::Low.index()].len(), self.def_index_to_node[DefIndexAddressSpace::High.index()].len()) } pub fn def_key(&self, index: DefIndex) -> DefKey { self.table.def_key(index) } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { self.table.def_path_hash(index) } pub fn def_index_for_def_key(&self, key: DefKey) -> Option { self.table.def_index_for_def_key(&key) } /// Returns the path from the crate root to `index`. The root /// nodes are not included in the path (i.e., this will be an /// empty vector for the crate root). For an inlined item, this /// will be the path of the item in the external crate (but the /// path will begin with the path to the external crate). pub fn def_path(&self, index: DefIndex) -> DefPath { DefPath::make(LOCAL_CRATE, index, |p| self.def_key(p)) } pub fn opt_def_index(&self, node: ast::NodeId) -> Option { self.node_to_def_index.get(&node).cloned() } pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option { self.opt_def_index(node).map(DefId::local) } pub fn local_def_id(&self, node: ast::NodeId) -> DefId { self.opt_local_def_id(node).unwrap() } pub fn as_local_node_id(&self, def_id: DefId) -> Option { if def_id.krate == LOCAL_CRATE { let space_index = def_id.index.address_space().index(); let array_index = def_id.index.as_array_index(); Some(self.def_index_to_node[space_index][array_index]) } else { None } } pub fn node_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId { self.node_to_hir_id[node_id] } /// Add a definition with a parent definition. pub fn create_root_def(&mut self, crate_name: &str, crate_disambiguator: &str) -> DefIndex { let key = DefKey { parent: None, disambiguated_data: DisambiguatedDefPathData { data: DefPathData::CrateRoot, disambiguator: 0 } }; let parent_hash = DefKey::root_parent_stable_hash(crate_name, crate_disambiguator); let def_path_hash = key.compute_stable_hash(parent_hash); // Create the definition. let address_space = super::ITEM_LIKE_SPACE; let index = self.table.allocate(key, def_path_hash, address_space); assert!(self.def_index_to_node[address_space.index()].is_empty()); self.def_index_to_node[address_space.index()].push(ast::CRATE_NODE_ID); self.node_to_def_index.insert(ast::CRATE_NODE_ID, index); index } /// Add a definition with a parent definition. pub fn create_def_with_parent(&mut self, parent: DefIndex, node_id: ast::NodeId, data: DefPathData, address_space: DefIndexAddressSpace, expansion: Mark) -> DefIndex { debug!("create_def_with_parent(parent={:?}, node_id={:?}, data={:?})", parent, node_id, data); assert!(!self.node_to_def_index.contains_key(&node_id), "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}", node_id, data, self.table.def_key(self.node_to_def_index[&node_id])); // The root node must be created with create_root_def() assert!(data != DefPathData::CrateRoot); // Find a unique DefKey. This basically means incrementing the disambiguator // until we get no match. let mut key = DefKey { parent: Some(parent), disambiguated_data: DisambiguatedDefPathData { data: data, disambiguator: 0 } }; while self.table.contains_key(&key) { key.disambiguated_data.disambiguator += 1; } let parent_hash = self.table.def_path_hash(parent); let def_path_hash = key.compute_stable_hash(parent_hash); debug!("create_def_with_parent: after disambiguation, key = {:?}", key); // Create the definition. let index = self.table.allocate(key, def_path_hash, address_space); assert_eq!(index.as_array_index(), self.def_index_to_node[address_space.index()].len()); self.def_index_to_node[address_space.index()].push(node_id); if expansion.is_modern() { self.expansions.insert(index, expansion); } debug!("create_def_with_parent: def_index_to_node[{:?} <-> {:?}", index, node_id); self.node_to_def_index.insert(node_id, index); index } /// Initialize the ast::NodeId to HirId mapping once it has been generated during /// AST to HIR lowering. pub fn init_node_id_to_hir_id_mapping(&mut self, mapping: IndexVec) { assert!(self.node_to_hir_id.is_empty(), "Trying initialize NodeId -> HirId mapping twice"); self.node_to_hir_id = mapping; } pub fn expansion(&self, index: DefIndex) -> Mark { self.expansions.get(&index).cloned().unwrap_or(Mark::root()) } pub fn macro_def_scope(&self, mark: Mark) -> DefId { self.macro_def_scopes[&mark] } pub fn add_macro_def_scope(&mut self, mark: Mark, scope: DefId) { self.macro_def_scopes.insert(mark, scope); } } impl DefPathData { pub fn get_opt_ident(&self) -> Option { use self::DefPathData::*; match *self { TypeNs(ident) | ValueNs(ident) | Module(ident) | MacroDef(ident) | TypeParam(ident) | LifetimeDef(ident) | EnumVariant(ident) | Binding(ident) | Field(ident) => Some(ident), Impl | CrateRoot | Misc | ClosureExpr | StructCtor | Initializer | ImplTrait | Typeof => None } } pub fn get_opt_name(&self) -> Option { self.get_opt_ident().map(|ident| ident.name) } pub fn as_interned_str(&self) -> InternedString { use self::DefPathData::*; let s = match *self { TypeNs(ident) | ValueNs(ident) | Module(ident) | MacroDef(ident) | TypeParam(ident) | LifetimeDef(ident) | EnumVariant(ident) | Binding(ident) | Field(ident) => { return ident.name.as_str(); } // note that this does not show up in user printouts CrateRoot => "{{root}}", Impl => "{{impl}}", Misc => "{{?}}", ClosureExpr => "{{closure}}", StructCtor => "{{constructor}}", Initializer => "{{initializer}}", ImplTrait => "{{impl-Trait}}", Typeof => "{{typeof}}", }; Symbol::intern(s).as_str() } pub fn to_string(&self) -> String { self.as_interned_str().to_string() } } impl Eq for DefPathData {} impl PartialEq for DefPathData { fn eq(&self, other: &DefPathData) -> bool { ::std::mem::discriminant(self) == ::std::mem::discriminant(other) && self.get_opt_ident() == other.get_opt_ident() } } impl ::std::hash::Hash for DefPathData { fn hash(&self, hasher: &mut H) { ::std::mem::discriminant(self).hash(hasher); if let Some(ident) = self.get_opt_ident() { if ident.ctxt == SyntaxContext::empty() && ident.name == ident.name.interned() { ident.name.as_str().hash(hasher) } else { // FIXME(jseyfried) implement stable hashing for idents with macros 2.0 hygiene info ident.hash(hasher) } } } }