// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations on tuples //! //! To access a single element of a tuple one can use the following //! methods: //! //! * `valN` - returns a value of _N_-th element //! * `refN` - returns a reference to _N_-th element //! * `mutN` - returns a mutable reference to _N_-th element //! //! Indexing starts from zero, so `val0` returns first value, `val1` //! returns second value, and so on. In general, a tuple with _S_ //! elements provides aforementioned methods suffixed with numbers //! from `0` to `S-1`. Traits which contain these methods are //! implemented for tuples with up to 12 elements. //! //! If every type inside a tuple implements one of the following //! traits, then a tuple itself also implements it. //! //! * `Clone` //! * `PartialEq` //! * `Eq` //! * `PartialOrd` //! * `Ord` //! * `Default` //! //! # Examples //! //! Using methods: //! //! ``` //! #[allow(deprecated)] //! # fn main() { //! let pair = ("pi", 3.14f64); //! assert_eq!(pair.val0(), "pi"); //! assert_eq!(pair.val1(), 3.14f64); //! # } //! ``` //! //! Using traits implemented for tuples: //! //! ``` //! use std::default::Default; //! //! let a = (1i, 2i); //! let b = (3i, 4i); //! assert!(a != b); //! //! let c = b.clone(); //! assert!(b == c); //! //! let d : (u32, f32) = Default::default(); //! assert_eq!(d, (0u32, 0.0f32)); //! ``` #![stable] #[unstable = "this is just a documentation module and should not be part \ of the public api"] use clone::Clone; use cmp::*; use cmp::Ordering::*; use default::Default; use option::Option; use option::Option::Some; // FIXME(#19630) Remove this work-around macro_rules! e { ($e:expr) => { $e } } // macro for implementing n-ary tuple functions and operations macro_rules! tuple_impls { ($( $Tuple:ident { $(($valN:ident, $refN:ident, $mutN:ident, $idx:tt) -> $T:ident)+ } )+) => { $( #[allow(missing_docs)] #[deprecated] pub trait $Tuple<$($T),+> { $( #[deprecated = "use tuple indexing: `tuple.N`"] fn $valN(self) -> $T; #[deprecated = "use tuple indexing: `&tuple.N`"] fn $refN<'a>(&'a self) -> &'a $T; #[deprecated = "use tuple indexing: `&mut tuple.N`"] fn $mutN<'a>(&'a mut self) -> &'a mut $T; )+ } impl<$($T),+> $Tuple<$($T),+> for ($($T,)+) { $( #[inline] #[allow(unused_variables)] #[deprecated = "use tuple indexing: `tuple.N`"] fn $valN(self) -> $T { e!(self.$idx) } #[inline] #[allow(unused_variables)] #[deprecated = "use tuple indexing: `&tuple.N`"] fn $refN<'a>(&'a self) -> &'a $T { e!(&self.$idx) } #[inline] #[allow(unused_variables)] #[deprecated = "use tuple indexing: &mut tuple.N"] fn $mutN<'a>(&'a mut self) -> &'a mut $T { e!(&mut self.$idx) } )+ } #[stable] impl<$($T:Clone),+> Clone for ($($T,)+) { fn clone(&self) -> ($($T,)+) { ($(e!(self.$idx.clone()),)+) } } #[stable] impl<$($T:PartialEq),+> PartialEq for ($($T,)+) { #[inline] fn eq(&self, other: &($($T,)+)) -> bool { e!($(self.$idx == other.$idx)&&+) } #[inline] fn ne(&self, other: &($($T,)+)) -> bool { e!($(self.$idx != other.$idx)||+) } } #[stable] impl<$($T:Eq),+> Eq for ($($T,)+) {} #[stable] impl<$($T:PartialOrd + PartialEq),+> PartialOrd for ($($T,)+) { #[inline] fn partial_cmp(&self, other: &($($T,)+)) -> Option { lexical_partial_cmp!($(self.$idx, other.$idx),+) } #[inline] fn lt(&self, other: &($($T,)+)) -> bool { lexical_ord!(lt, $(self.$idx, other.$idx),+) } #[inline] fn le(&self, other: &($($T,)+)) -> bool { lexical_ord!(le, $(self.$idx, other.$idx),+) } #[inline] fn ge(&self, other: &($($T,)+)) -> bool { lexical_ord!(ge, $(self.$idx, other.$idx),+) } #[inline] fn gt(&self, other: &($($T,)+)) -> bool { lexical_ord!(gt, $(self.$idx, other.$idx),+) } } #[stable] impl<$($T:Ord),+> Ord for ($($T,)+) { #[inline] fn cmp(&self, other: &($($T,)+)) -> Ordering { lexical_cmp!($(self.$idx, other.$idx),+) } } #[stable] impl<$($T:Default),+> Default for ($($T,)+) { #[stable] #[inline] fn default() -> ($($T,)+) { ($({ let x: $T = Default::default(); x},)+) } } )+ } } // Constructs an expression that performs a lexical ordering using method $rel. // The values are interleaved, so the macro invocation for // `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, a1, b1, a2, b2, // a3, b3)` (and similarly for `lexical_cmp`) macro_rules! lexical_ord { ($rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => { if $a != $b { lexical_ord!($rel, $a, $b) } else { lexical_ord!($rel, $($rest_a, $rest_b),+) } }; ($rel: ident, $a:expr, $b:expr) => { ($a) . $rel (& $b) }; } macro_rules! lexical_partial_cmp { ($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => { match ($a).partial_cmp(&$b) { Some(Equal) => lexical_partial_cmp!($($rest_a, $rest_b),+), ordering => ordering } }; ($a:expr, $b:expr) => { ($a).partial_cmp(&$b) }; } macro_rules! lexical_cmp { ($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => { match ($a).cmp(&$b) { Equal => lexical_cmp!($($rest_a, $rest_b),+), ordering => ordering } }; ($a:expr, $b:expr) => { ($a).cmp(&$b) }; } tuple_impls! { Tuple1 { (val0, ref0, mut0, 0) -> A } Tuple2 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B } Tuple3 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C } Tuple4 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D } Tuple5 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E } Tuple6 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F } Tuple7 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F (val6, ref6, mut6, 6) -> G } Tuple8 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F (val6, ref6, mut6, 6) -> G (val7, ref7, mut7, 7) -> H } Tuple9 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F (val6, ref6, mut6, 6) -> G (val7, ref7, mut7, 7) -> H (val8, ref8, mut8, 8) -> I } Tuple10 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F (val6, ref6, mut6, 6) -> G (val7, ref7, mut7, 7) -> H (val8, ref8, mut8, 8) -> I (val9, ref9, mut9, 9) -> J } Tuple11 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F (val6, ref6, mut6, 6) -> G (val7, ref7, mut7, 7) -> H (val8, ref8, mut8, 8) -> I (val9, ref9, mut9, 9) -> J (val10, ref10, mut10, 10) -> K } Tuple12 { (val0, ref0, mut0, 0) -> A (val1, ref1, mut1, 1) -> B (val2, ref2, mut2, 2) -> C (val3, ref3, mut3, 3) -> D (val4, ref4, mut4, 4) -> E (val5, ref5, mut5, 5) -> F (val6, ref6, mut6, 6) -> G (val7, ref7, mut7, 7) -> H (val8, ref8, mut8, 8) -> I (val9, ref9, mut9, 9) -> J (val10, ref10, mut10, 10) -> K (val11, ref11, mut11, 11) -> L } }