// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! The Rust Runtime, including the task scheduler and I/O The `rt` module provides the private runtime infrastructure necessary to support core language features like the exchange and local heap, the garbage collector, logging, local data and unwinding. It also implements the default task scheduler and task model. Initialization routines are provided for setting up runtime resources in common configurations, including that used by `rustc` when generating executables. It is intended that the features provided by `rt` can be factored in a way such that the core library can be built with different 'profiles' for different use cases, e.g. excluding the task scheduler. A number of runtime features though are critical to the functioning of the language and an implementation must be provided regardless of the execution environment. Of foremost importance is the global exchange heap, in the module `global_heap`. Very little practical Rust code can be written without access to the global heap. Unlike most of `rt` the global heap is truly a global resource and generally operates independently of the rest of the runtime. All other runtime features are task-local, including the local heap, the garbage collector, local storage, logging and the stack unwinder. The relationship between `rt` and the rest of the core library is not entirely clear yet and some modules will be moving into or out of `rt` as development proceeds. Several modules in `core` are clients of `rt`: * `core::task` - The user-facing interface to the Rust task model. * `core::task::local_data` - The interface to local data. * `core::gc` - The garbage collector. * `core::unstable::lang` - Miscellaneous lang items, some of which rely on `core::rt`. * `core::condition` - Uses local data. * `core::cleanup` - Local heap destruction. * `core::io` - In the future `core::io` will use an `rt` implementation. * `core::logging` * `core::pipes` * `core::comm` * `core::stackwalk` */ #[doc(hidden)]; #[deny(unused_imports)]; #[deny(unused_mut)]; #[deny(unused_variable)]; use cell::Cell; use clone::Clone; use container::Container; use from_str::FromStr; use iterator::IteratorUtil; use option::{Some, None}; use os; use ptr::RawPtr; use uint; use rt::sched::{Scheduler, Coroutine, Shutdown}; use rt::sleeper_list::SleeperList; use rt::task::Task; use rt::thread::Thread; use rt::work_queue::WorkQueue; use rt::uv::uvio::UvEventLoop; use unstable::atomics::{AtomicInt, SeqCst}; use unstable::sync::UnsafeAtomicRcBox; use vec::{OwnedVector, MutableVector}; /// The global (exchange) heap. pub mod global_heap; /// Implementations of language-critical runtime features like @. pub mod task; /// The coroutine task scheduler, built on the `io` event loop. mod sched; /// Synchronous I/O. #[path = "io/mod.rs"] pub mod io; /// The EventLoop and internal synchronous I/O interface. mod rtio; /// libuv and default rtio implementation. #[path = "uv/mod.rs"] pub mod uv; /// The Local trait for types that are accessible via thread-local /// or task-local storage. pub mod local; /// A parallel work-stealing deque. mod work_queue; /// A parallel queue. mod message_queue; /// A parallel data structure for tracking sleeping schedulers. mod sleeper_list; /// Stack segments and caching. mod stack; /// CPU context swapping. mod context; /// Bindings to system threading libraries. mod thread; /// The runtime configuration, read from environment variables pub mod env; /// The local, managed heap mod local_heap; /// The Logger trait and implementations pub mod logging; /// Tools for testing the runtime pub mod test; /// Reference counting pub mod rc; /// A simple single-threaded channel type for passing buffered data between /// scheduler and task context pub mod tube; /// Simple reimplementation of core::comm pub mod comm; // FIXME #5248 shouldn't be pub /// The runtime needs to be able to put a pointer into thread-local storage. pub mod local_ptr; // FIXME #5248: The import in `sched` doesn't resolve unless this is pub! /// Bindings to pthread/windows thread-local storage. pub mod thread_local_storage; /// A concurrent data structure with which parent tasks wait on child tasks. pub mod join_latch; pub mod metrics; // FIXME #5248 shouldn't be pub /// Just stuff pub mod util; /// Set up a default runtime configuration, given compiler-supplied arguments. /// /// This is invoked by the `start` _language item_ (unstable::lang) to /// run a Rust executable. /// /// # Arguments /// /// * `argc` & `argv` - The argument vector. On Unix this information is used /// by os::args. /// * `crate_map` - Runtime information about the executing crate, mostly for logging /// /// # Return value /// /// The return value is used as the process return code. 0 on success, 101 on error. pub fn start(_argc: int, _argv: **u8, crate_map: *u8, main: ~fn()) -> int { init(crate_map); let exit_code = run(main); cleanup(); return exit_code; } /// One-time runtime initialization. Currently all this does is set up logging /// based on the RUST_LOG environment variable. pub fn init(crate_map: *u8) { logging::init(crate_map); } pub fn cleanup() { global_heap::cleanup(); } pub fn run(main: ~fn()) -> int { static DEFAULT_ERROR_CODE: int = 101; let nthreads = match os::getenv("RUST_THREADS") { Some(nstr) => FromStr::from_str(nstr).get(), None => unsafe { util::num_cpus() } }; let sleepers = SleeperList::new(); let work_queue = WorkQueue::new(); let mut handles = ~[]; let mut scheds = ~[]; for uint::range(0, nthreads) |_| { let loop_ = ~UvEventLoop::new(); let mut sched = ~Scheduler::new(loop_, work_queue.clone(), sleepers.clone()); let handle = sched.make_handle(); handles.push(handle); scheds.push(sched); } let exit_code = UnsafeAtomicRcBox::new(AtomicInt::new(0)); let exit_code_clone = exit_code.clone(); let main_cell = Cell::new(main); let handles = Cell::new(handles); let mut new_task = ~Task::new_root(); let on_exit: ~fn(bool) = |exit_success| { let mut handles = handles.take(); // Tell schedulers to exit for handles.mut_iter().advance |handle| { handle.send(Shutdown); } unsafe { let exit_code = if exit_success { 0 } else { DEFAULT_ERROR_CODE }; (*exit_code_clone.get()).store(exit_code, SeqCst); } }; new_task.on_exit = Some(on_exit); let main_task = ~Coroutine::with_task(&mut scheds[0].stack_pool, new_task, main_cell.take()); scheds[0].enqueue_task(main_task); let mut threads = ~[]; while !scheds.is_empty() { let sched = scheds.pop(); let sched_cell = Cell::new(sched); let thread = do Thread::start { let sched = sched_cell.take(); sched.run(); }; threads.push(thread); } // Wait for schedulers let _threads = threads; unsafe { (*exit_code.get()).load(SeqCst) } } /// Possible contexts in which Rust code may be executing. /// Different runtime services are available depending on context. /// Mostly used for determining if we're using the new scheduler /// or the old scheduler. #[deriving(Eq)] pub enum RuntimeContext { // Only the exchange heap is available GlobalContext, // The scheduler may be accessed SchedulerContext, // Full task services, e.g. local heap, unwinding TaskContext, // Running in an old-style task OldTaskContext } /// Determine the current RuntimeContext pub fn context() -> RuntimeContext { use task::rt::rust_task; use self::local::Local; use self::sched::Scheduler; // XXX: Hitting TLS twice to check if the scheduler exists // then to check for the task is not good for perf if unsafe { rust_try_get_task().is_not_null() } { return OldTaskContext; } else { if Local::exists::() { let context = Cell::new_empty(); do Local::borrow:: |sched| { if sched.in_task_context() { context.put_back(TaskContext); } else { context.put_back(SchedulerContext); } } return context.take(); } else { return GlobalContext; } } pub extern { #[rust_stack] fn rust_try_get_task() -> *rust_task; } } #[test] fn test_context() { use unstable::run_in_bare_thread; use self::sched::{Scheduler, Coroutine}; use rt::local::Local; use rt::test::new_test_uv_sched; assert_eq!(context(), OldTaskContext); do run_in_bare_thread { assert_eq!(context(), GlobalContext); let mut sched = ~new_test_uv_sched(); let task = ~do Coroutine::new_root(&mut sched.stack_pool) { assert_eq!(context(), TaskContext); let sched = Local::take::(); do sched.deschedule_running_task_and_then() |sched, task| { assert_eq!(context(), SchedulerContext); sched.enqueue_task(task); } }; sched.enqueue_task(task); sched.run(); } }