// Rust cycle collector. Temporary, but will probably stick around for some // time until LLVM's GC infrastructure is more mature. #include #include #include #include #include "rust_globals.h" #include "rust_cc.h" #include "rust_debug.h" #include "rust_shape.h" #include "rust_task.h" // The number of allocations Rust code performs before performing cycle // collection. #define RUST_CC_FREQUENCY 5000 using namespace std; void annihilate_box(rust_task *task, rust_opaque_box *box); namespace cc { // Internal reference count computation typedef std::map irc_map; class irc : public shape::data { friend class shape::data; irc_map &ircs; irc(const irc &other, const shape::ptr &in_dp) : shape::data(other.task, other.align, other.sp, other.tables, in_dp), ircs(other.ircs) {} irc(const irc &other, const uint8_t *in_sp, const rust_shape_tables *in_tables = NULL) : shape::data(other.task, other.align, in_sp, in_tables ? in_tables : other.tables, other.dp), ircs(other.ircs) {} irc(const irc &other, const uint8_t *in_sp, const rust_shape_tables *in_tables, shape::ptr in_dp) : shape::data(other.task, other.align, in_sp, in_tables, in_dp), ircs(other.ircs) {} irc(rust_task *in_task, bool in_align, const uint8_t *in_sp, const rust_shape_tables *in_tables, uint8_t *in_data, irc_map &in_ircs) : shape::data(in_task, in_align, in_sp, in_tables, shape::ptr(in_data)), ircs(in_ircs) {} void walk_vec2(bool is_pod, std::pair data_range) { // There can't be any outbound pointers from pod. if (is_pod) return; irc sub(*this, shape::ptr(data_range.first)); shape::ptr data_end = sub.end_dp = shape::ptr(data_range.second); while (sub.dp < data_end) { sub.walk_reset(); // FIXME: shouldn't this be 'sub.align = true;'? align = true; } } void walk_vec2(bool is_pod) { if (shape::get_dp(dp) == NULL) return; walk_vec2(is_pod, get_vec_data_range(dp)); } void walk_unboxed_vec2(bool is_pod) { walk_vec2(is_pod, get_unboxed_vec_data_range(dp)); } void walk_slice2(bool is_pod, bool is_str) { walk_vec2(is_pod, get_slice_data_range(is_str, dp)); } void walk_fixedvec2(uint16_t n_elts, size_t elt_sz, bool is_pod) { walk_vec2(is_pod, get_fixedvec_data_range(n_elts, elt_sz, dp)); } void walk_tag2(shape::tag_info &tinfo, uint32_t tag_variant) { shape::data::walk_variant1(tinfo, tag_variant); } void walk_box2() { // the box ptr can be NULL for env ptrs in closures and data // not fully initialized rust_opaque_box *box = *(rust_opaque_box**)dp; if (box) shape::data::walk_box_contents1(); } void walk_uniq2() { rust_opaque_box *box = *(rust_opaque_box**)dp; if (box) shape::data::walk_uniq_contents1(); } void walk_rptr2() { shape::data::walk_rptr_contents1(); } void walk_fn2(char code) { switch (code) { case shape::SHAPE_BOX_FN: { shape::bump_dp(dp); // skip over the code ptr walk_box2(); // walk over the environment ptr break; } case shape::SHAPE_BARE_FN: // Does not close over data. case shape::SHAPE_STACK_FN: // Not reachable from heap. case shape::SHAPE_UNIQ_FN: break; /* Can only close over sendable * (and hence acyclic) data */ default: abort(); } } void walk_iface2() { walk_box2(); } void walk_tydesc2(char) { } void walk_res2(const shape::rust_fn *dtor, const uint8_t *end_sp, bool live) { while (this->sp != end_sp) { this->walk(); align = true; } } void walk_subcontext2(irc &sub) { sub.walk(); } void walk_uniq_contents2(irc &sub) { sub.walk(); } void walk_rptr_contents2(irc &sub) { sub.walk(); } void walk_box_contents2(irc &sub) { maybe_record_irc(); // Do not traverse the contents of this box; it's in the allocation // somewhere, so we're guaranteed to come back to it (if we haven't // traversed it already). } void maybe_record_irc() { rust_opaque_box *box_ptr = *(rust_opaque_box **) dp; if (!box_ptr) return; // Bump the internal reference count of the box. if (ircs.find(box_ptr) == ircs.end()) { LOG(task, gc, "setting internal reference count for %p to 1", box_ptr); ircs[box_ptr] = 1; } else { uintptr_t newcount = ircs[box_ptr] + 1; LOG(task, gc, "bumping internal reference count for %p to %lu", box_ptr, newcount); ircs[box_ptr] = newcount; } } void walk_struct2(const uint8_t *end_sp) { while (this->sp != end_sp) { this->walk(); align = true; } } void walk_variant2(shape::tag_info &tinfo, uint32_t variant_id, const std::pair variant_ptr_and_end); template inline void walk_number2() { /* no-op */ } public: static void compute_ircs(rust_task *task, irc_map &ircs); }; void irc::walk_variant2(shape::tag_info &tinfo, uint32_t variant_id, const std::pair variant_ptr_and_end) { irc sub(*this, variant_ptr_and_end.first); assert(variant_id < 256); // FIXME: Temporary sanity check. const uint8_t *variant_end = variant_ptr_and_end.second; while (sub.sp < variant_end) { sub.walk(); align = true; } } void irc::compute_ircs(rust_task *task, irc_map &ircs) { boxed_region *boxed = &task->boxed; for (rust_opaque_box *box = boxed->first_live_alloc(); box != NULL; box = box->next) { type_desc *tydesc = box->td; uint8_t *body = (uint8_t*) box_body(box); LOG(task, gc, "determining internal ref counts: " "box=%p tydesc=%p body=%p", box, tydesc, body); shape::arena arena; irc irc(task, true, tydesc->shape, tydesc->shape_tables, body, ircs); irc.walk(); } } // Root finding void find_roots(rust_task *task, irc_map &ircs, std::vector &roots) { boxed_region *boxed = &task->boxed; for (rust_opaque_box *box = boxed->first_live_alloc(); box != NULL; box = box->next) { uintptr_t ref_count = box->ref_count; uintptr_t irc; if (ircs.find(box) != ircs.end()) irc = ircs[box]; else irc = 0; if (irc < ref_count) { // This allocation must be a root, because the internal reference // count is smaller than the total reference count. LOG(task, gc,"root found: %p, irc %lu, ref count %lu", box, irc, ref_count); roots.push_back(box); } else { LOG(task, gc, "nonroot found: %p, irc %lu, ref count %lu", box, irc, ref_count); assert(irc == ref_count && "Internal reference count must be " "less than or equal to the total reference count!"); } } } // Marking class mark : public shape::data { friend class shape::data; std::set &marked; mark(const mark &other, const shape::ptr &in_dp) : shape::data(other.task, other.align, other.sp, other.tables, in_dp), marked(other.marked) {} mark(const mark &other, const uint8_t *in_sp, const rust_shape_tables *in_tables = NULL) : shape::data(other.task, other.align, in_sp, in_tables ? in_tables : other.tables, other.dp), marked(other.marked) {} mark(const mark &other, const uint8_t *in_sp, const rust_shape_tables *in_tables, shape::ptr in_dp) : shape::data(other.task, other.align, in_sp, in_tables, in_dp), marked(other.marked) {} mark(rust_task *in_task, bool in_align, const uint8_t *in_sp, const rust_shape_tables *in_tables, uint8_t *in_data, std::set &in_marked) : shape::data(in_task, in_align, in_sp, in_tables, shape::ptr(in_data)), marked(in_marked) {} void walk_vec2(bool is_pod, std::pair data_range) { // There can't be any outbound pointers from pod. if (is_pod) return; if (data_range.second - data_range.first > 100000) abort(); // FIXME: Temporary sanity check. mark sub(*this, shape::ptr(data_range.first)); shape::ptr data_end = sub.end_dp = shape::ptr(data_range.second); while (sub.dp < data_end) { sub.walk_reset(); align = true; } } void walk_vec2(bool is_pod) { if (shape::get_dp(dp) == NULL) return; walk_vec2(is_pod, get_vec_data_range(dp)); } void walk_unboxed_vec2(bool is_pod) { walk_vec2(is_pod, get_unboxed_vec_data_range(dp)); } void walk_slice2(bool is_pod, bool is_str) { walk_vec2(is_pod, get_slice_data_range(is_str, dp)); } void walk_fixedvec2(uint16_t n_elts, size_t elt_sz, bool is_pod) { walk_vec2(is_pod, get_fixedvec_data_range(n_elts, elt_sz, dp)); } void walk_tag2(shape::tag_info &tinfo, uint32_t tag_variant) { shape::data::walk_variant1(tinfo, tag_variant); } void walk_box2() { // the box ptr can be NULL for env ptrs in closures and data // not fully initialized rust_opaque_box *box = *(rust_opaque_box**)dp; if (box) shape::data::walk_box_contents1(); } void walk_uniq2() { rust_opaque_box *box = *(rust_opaque_box**)dp; if (box) shape::data::walk_uniq_contents1(); } void walk_rptr2() { shape::data::walk_rptr_contents1(); } void walk_fn2(char code) { switch (code) { case shape::SHAPE_BOX_FN: { shape::bump_dp(dp); // skip over the code ptr walk_box2(); // walk over the environment ptr break; } case shape::SHAPE_BARE_FN: // Does not close over data. case shape::SHAPE_STACK_FN: // Not reachable from heap. case shape::SHAPE_UNIQ_FN: break; /* Can only close over sendable * (and hence acyclic) data */ default: abort(); } } void walk_res2(const shape::rust_fn *dtor, const uint8_t *end_sp, bool live) { while (this->sp != end_sp) { this->walk(); align = true; } } void walk_iface2() { walk_box2(); } void walk_tydesc2(char) { } void walk_subcontext2(mark &sub) { sub.walk(); } void walk_uniq_contents2(mark &sub) { sub.walk(); } void walk_rptr_contents2(mark &sub) { sub.walk(); } void walk_box_contents2(mark &sub) { rust_opaque_box *box_ptr = *(rust_opaque_box **) dp; if (!box_ptr) return; if (marked.find(box_ptr) != marked.end()) return; // Skip to avoid chasing cycles. marked.insert(box_ptr); sub.walk(); } void walk_struct2(const uint8_t *end_sp) { while (this->sp != end_sp) { this->walk(); align = true; } } void walk_variant2(shape::tag_info &tinfo, uint32_t variant_id, const std::pair variant_ptr_and_end); template inline void walk_number2() { /* no-op */ } public: static void do_mark(rust_task *task, const std::vector &roots, std::set &marked); }; void mark::walk_variant2(shape::tag_info &tinfo, uint32_t variant_id, const std::pair variant_ptr_and_end) { mark sub(*this, variant_ptr_and_end.first); assert(variant_id < 256); // FIXME: Temporary sanity check. const uint8_t *variant_end = variant_ptr_and_end.second; while (sub.sp < variant_end) { sub.walk(); align = true; } } void mark::do_mark(rust_task *task, const std::vector &roots, std::set &marked) { std::vector::const_iterator begin(roots.begin()), end(roots.end()); while (begin != end) { rust_opaque_box *box = *begin; if (marked.find(box) == marked.end()) { marked.insert(box); const type_desc *tydesc = box->td; LOG(task, gc, "marking: %p, tydesc=%p", box, tydesc); uint8_t *p = (uint8_t*) box_body(box); shape::arena arena; mark mark(task, true, tydesc->shape, tydesc->shape_tables, p, marked); mark.walk(); } ++begin; } } void do_sweep(rust_task *task, const std::set &marked) { boxed_region *boxed = &task->boxed; rust_opaque_box *box = boxed->first_live_alloc(); while (box != NULL) { // save next ptr as we may be freeing box rust_opaque_box *box_next = box->next; if (marked.find(box) == marked.end()) { LOG(task, gc, "object is part of a cycle: %p", box); annihilate_box(task, box); } box = box_next; } } void do_cc(rust_task *task) { LOG(task, gc, "cc"); irc_map ircs; irc::compute_ircs(task, ircs); std::vector roots; find_roots(task, ircs, roots); std::set marked; mark::do_mark(task, roots, marked); do_sweep(task, marked); } void do_final_cc(rust_task *task) { do_cc(task); boxed_region *boxed = &task->boxed; for (rust_opaque_box *box = boxed->first_live_alloc(); box != NULL; box = box->next) { cerr << "Unreclaimed object found at " << (void*) box << ": "; const type_desc *td = box->td; shape::arena arena; shape::log log(task, true, td->shape, td->shape_tables, (uint8_t*)box_body(box), cerr); log.walk(); cerr << "\n"; } } void maybe_cc(rust_task *task) { static debug::flag zeal("RUST_CC_ZEAL"); if (*zeal) { do_cc(task); return; } // FIXME: Needs a snapshot. #if 0 if (task->cc_counter++ > RUST_CC_FREQUENCY) { task->cc_counter = 0; do_cc(task); } #endif } } // end namespace cc // // Local Variables: // mode: C++ // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //