use std::iter; use rustc::hir; use rustc_target::spec::abi::Abi; use crate::prelude::*; pub fn cton_sig_from_fn_ty<'a, 'tcx: 'a>( tcx: TyCtxt<'a, 'tcx, 'tcx>, fn_ty: Ty<'tcx>, ) -> Signature { let sig = ty_fn_sig(tcx, fn_ty); assert!(!sig.variadic, "Variadic function are not yet supported"); let (call_conv, inputs, _output): (CallConv, Vec, Ty) = match sig.abi { Abi::Rust => (CallConv::Fast, sig.inputs().to_vec(), sig.output()), Abi::C => (CallConv::SystemV, sig.inputs().to_vec(), sig.output()), Abi::RustCall => { println!( "rust-call sig: {:?} inputs: {:?} output: {:?}", sig, sig.inputs(), sig.output() ); assert_eq!(sig.inputs().len(), 2); let extra_args = match sig.inputs().last().unwrap().sty { ty::TyTuple(ref tupled_arguments) => tupled_arguments, _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"), }; let mut inputs: Vec = vec![sig.inputs()[0]]; inputs.extend(extra_args.into_iter()); (CallConv::Fast, inputs, sig.output()) } Abi::System => bug!("system abi should be selected elsewhere"), Abi::RustIntrinsic => (CallConv::SystemV, sig.inputs().to_vec(), sig.output()), _ => unimplemented!("unsupported abi {:?}", sig.abi), }; Signature { params: Some(types::I64).into_iter() // First param is place to put return val .chain(inputs.into_iter().map(|ty| { let cton_ty = cton_type_from_ty(tcx, ty); if let Some(cton_ty) = cton_ty { cton_ty } else { if sig.abi == Abi::C { unimplemented!("Non scalars are not yet supported for \"C\" abi"); } types::I64 } })) .map(AbiParam::new).collect(), returns: vec![], call_conv, argument_bytes: None, } } fn ty_fn_sig<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> ty::FnSig<'tcx> { let sig = match ty.sty { ty::TyFnDef(..) | // Shims currently have type TyFnPtr. Not sure this should remain. ty::TyFnPtr(_) => ty.fn_sig(tcx), ty::TyClosure(def_id, substs) => { let sig = substs.closure_sig(def_id, tcx); let env_ty = tcx.closure_env_ty(def_id, substs).unwrap(); sig.map_bound(|sig| tcx.mk_fn_sig( iter::once(*env_ty.skip_binder()).chain(sig.inputs().iter().cloned()), sig.output(), sig.variadic, sig.unsafety, sig.abi )) } ty::TyGenerator(def_id, substs, _) => { let sig = substs.poly_sig(def_id, tcx); let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv); let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); sig.map_bound(|sig| { let state_did = tcx.lang_items().gen_state().unwrap(); let state_adt_ref = tcx.adt_def(state_did); let state_substs = tcx.intern_substs(&[ sig.yield_ty.into(), sig.return_ty.into(), ]); let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); tcx.mk_fn_sig(iter::once(env_ty), ret_ty, false, hir::Unsafety::Normal, Abi::Rust ) }) } _ => bug!("unexpected type {:?} to ty_fn_sig", ty) }; tcx.normalize_erasing_late_bound_regions(ParamEnv::reveal_all(), &sig) } impl<'a, 'tcx: 'a> FunctionCx<'a, 'tcx> { /// Instance must be monomorphized pub fn get_function_ref(&mut self, inst: Instance<'tcx>) -> FuncRef { assert!(!inst.substs.needs_infer() && !inst.substs.has_param_types()); let fn_ty = inst.ty(self.tcx); let sig = cton_sig_from_fn_ty(self.tcx, fn_ty); let def_path_based_names = ::rustc_mir::monomorphize::item::DefPathBasedNames::new(self.tcx, false, false); let mut name = String::new(); def_path_based_names.push_instance_as_string(inst, &mut name); let func_id = self .module .declare_function(&name, Linkage::Import, &sig) .unwrap(); self.module .declare_func_in_func(func_id, &mut self.bcx.func) } fn lib_call( &mut self, name: &str, input_tys: Vec, output_ty: Option, args: &[Value], ) -> Option { let sig = Signature { params: input_tys.iter().cloned().map(AbiParam::new).collect(), returns: vec![AbiParam::new(output_ty.unwrap_or(types::VOID))], call_conv: CallConv::SystemV, argument_bytes: None, }; let func_id = self .module .declare_function(&name, Linkage::Import, &sig) .unwrap(); let func_ref = self .module .declare_func_in_func(func_id, &mut self.bcx.func); let call_inst = self.bcx.ins().call(func_ref, args); if output_ty.is_none() { return None; } let results = self.bcx.inst_results(call_inst); assert_eq!(results.len(), 1); Some(results[0]) } pub fn easy_call( &mut self, name: &str, args: &[CValue<'tcx>], return_ty: Ty<'tcx>, ) -> CValue<'tcx> { let (input_tys, args): (Vec<_>, Vec<_>) = args .into_iter() .map(|arg| { ( self.cton_type(arg.layout().ty).unwrap(), arg.load_value(self), ) }).unzip(); let return_layout = self.layout_of(return_ty); let return_ty = if let TypeVariants::TyTuple(tup) = return_ty.sty { if !tup.is_empty() { bug!("easy_call( (...) -> ) is not allowed"); } None } else { Some(self.cton_type(return_ty).unwrap()) }; if let Some(val) = self.lib_call(name, input_tys, return_ty, &args) { CValue::ByVal(val, return_layout) } else { CValue::ByRef(self.bcx.ins().iconst(types::I64, 0), return_layout) } } fn self_sig(&self) -> FnSig<'tcx> { ty_fn_sig(self.tcx, self.instance.ty(self.tcx)) } fn return_type(&self) -> Ty<'tcx> { self.self_sig().output() } } pub fn codegen_fn_prelude<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx>, start_ebb: Ebb) { let ssa_analyzed = crate::analyze::analyze(fx); fx.tcx.sess.warn(&format!("ssa {:?}", ssa_analyzed)); match fx.self_sig().abi { Abi::Rust | Abi::RustCall => {} _ => unimplemented!("declared function with non \"rust\" or \"rust-call\" abi"), } let ret_param = fx.bcx.append_ebb_param(start_ebb, types::I64); enum ArgKind { Normal(Value), Spread(Vec), } let func_params = fx.mir.args_iter().map(|local| { let arg_ty = fx.monomorphize(&fx.mir.local_decls[local].ty); // Adapted from https://github.com/rust-lang/rust/blob/145155dc96757002c7b2e9de8489416e2fdbbd57/src/librustc_codegen_llvm/mir/mod.rs#L442-L482 if Some(local) == fx.mir.spread_arg { // This argument (e.g. the last argument in the "rust-call" ABI) // is a tuple that was spread at the ABI level and now we have // to reconstruct it into a tuple local variable, from multiple // individual function arguments. let tupled_arg_tys = match arg_ty.sty { ty::TyTuple(ref tys) => tys, _ => bug!("spread argument isn't a tuple?! but {:?}", arg_ty), }; let mut ebb_params = Vec::new(); for arg_ty in tupled_arg_tys.iter() { let cton_type = fx.cton_type(arg_ty).unwrap_or(types::I64); ebb_params.push(fx.bcx.append_ebb_param(start_ebb, cton_type)); } (local, ArgKind::Spread(ebb_params), arg_ty) } else { let cton_type = fx.cton_type(arg_ty).unwrap_or(types::I64); (local, ArgKind::Normal(fx.bcx.append_ebb_param(start_ebb, cton_type)), arg_ty) } }).collect::>(); let ret_layout = fx.layout_of(fx.return_type()); fx.local_map .insert(RETURN_PLACE, CPlace::Addr(ret_param, ret_layout)); for (local, arg_kind, ty) in func_params { let layout = fx.layout_of(ty); if let ArgKind::Normal(ebb_param) = arg_kind { if !ssa_analyzed .get(&local) .unwrap() .contains(crate::analyze::Flags::NOT_SSA) { let var = Variable(local); fx.bcx.declare_var(var, fx.cton_type(ty).unwrap()); fx.bcx.def_var(var, ebb_param); fx.local_map.insert(local, CPlace::Var(var, layout)); continue; } } let stack_slot = fx.bcx.create_stack_slot(StackSlotData { kind: StackSlotKind::ExplicitSlot, size: layout.size.bytes() as u32, offset: None, }); let place = CPlace::from_stack_slot(fx, stack_slot, ty); match arg_kind { ArgKind::Normal(ebb_param) => { if fx.cton_type(ty).is_some() { place.write_cvalue(fx, CValue::ByVal(ebb_param, place.layout())); } else { place.write_cvalue(fx, CValue::ByRef(ebb_param, place.layout())); } } ArgKind::Spread(ebb_params) => { for (i, ebb_param) in ebb_params.into_iter().enumerate() { let sub_place = place.place_field(fx, mir::Field::new(i)); if fx.cton_type(sub_place.layout().ty).is_some() { sub_place.write_cvalue(fx, CValue::ByVal(ebb_param, sub_place.layout())); } else { sub_place.write_cvalue(fx, CValue::ByRef(ebb_param, sub_place.layout())); } } } } fx.local_map.insert(local, place); } for local in fx.mir.vars_and_temps_iter() { let ty = fx.mir.local_decls[local].ty; let layout = fx.layout_of(ty); let place = if ssa_analyzed .get(&local) .unwrap() .contains(crate::analyze::Flags::NOT_SSA) { let stack_slot = fx.bcx.create_stack_slot(StackSlotData { kind: StackSlotKind::ExplicitSlot, size: layout.size.bytes() as u32, offset: None, }); CPlace::from_stack_slot(fx, stack_slot, ty) } else { let var = Variable(local); fx.bcx.declare_var(var, fx.cton_type(ty).unwrap()); CPlace::Var(var, layout) }; fx.local_map.insert(local, place); } } pub fn codegen_call<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx>, func: &Operand<'tcx>, args: &[Operand<'tcx>], destination: &Option<(Place<'tcx>, BasicBlock)>, ) { let func = trans_operand(fx, func); let fn_ty = func.layout().ty; let sig = ty_fn_sig(fx.tcx, fn_ty); let return_place = destination .as_ref() .map(|(place, _)| trans_place(fx, place)); // Unpack arguments tuple for closures let args = if sig.abi == Abi::RustCall { assert_eq!(args.len(), 2, "rust-call abi requires two arguments"); let self_arg = trans_operand(fx, &args[0]); let pack_arg = trans_operand(fx, &args[1]); let mut args = Vec::new(); args.push(self_arg); match pack_arg.layout().ty.sty { ty::TyTuple(ref tupled_arguments) => { for (i, _) in tupled_arguments.iter().enumerate() { args.push(pack_arg.value_field(fx, mir::Field::new(i))); } } _ => bug!("argument to function with \"rust-call\" ABI is not a tuple"), } println!( "{:?} {:?}", pack_arg.layout().ty, args.iter().map(|a| a.layout().ty).collect::>() ); args } else { args.into_iter() .map(|arg| trans_operand(fx, arg)) .collect::>() }; if let TypeVariants::TyFnDef(def_id, substs) = fn_ty.sty { if sig.abi == Abi::RustIntrinsic { let intrinsic = fx.tcx.item_name(def_id).as_str(); let intrinsic = &intrinsic[..]; let nil_ty = fx.tcx.mk_nil(); let u64_layout = fx.layout_of(fx.tcx.types.u64); let usize_layout = fx.layout_of(fx.tcx.types.usize); let ret = match return_place { Some(ret) => ret, None => { println!( "codegen_call(fx, {:?}, {:?}, {:?})", func, args, destination ); // Insert non returning intrinsics here match intrinsic { "abort" => { fx.bcx.ins().trap(TrapCode::User(!0 - 1)); } "unreachable" => { fx.bcx.ins().trap(TrapCode::User(!0 - 1)); } _ => unimplemented!("unsupported instrinsic {}", intrinsic), } return; } }; match intrinsic { "assume" => { assert_eq!(args.len(), 1); } "arith_offset" => { assert_eq!(args.len(), 2); let base = args[0].load_value(fx); let offset = args[1].load_value(fx); let res = fx.bcx.ins().iadd(base, offset); let res = CValue::ByVal(res, ret.layout()); ret.write_cvalue(fx, res); } "likely" | "unlikely" => { assert_eq!(args.len(), 1); ret.write_cvalue(fx, args[0]); } "copy" | "copy_nonoverlapping" => { let elem_ty = substs.type_at(0); let elem_size: u64 = fx.layout_of(elem_ty).size.bytes(); let elem_size = fx.bcx.ins().iconst(types::I64, elem_size as i64); assert_eq!(args.len(), 3); let src = args[0]; let dst = args[1]; let count = args[2].load_value(fx); let byte_amount = fx.bcx.ins().imul(count, elem_size); fx.easy_call( "memmove", &[dst, src, CValue::ByVal(byte_amount, usize_layout)], nil_ty, ); } "discriminant_value" => { assert_eq!(args.len(), 1); let discr = crate::base::trans_get_discriminant(fx, args[0], ret.layout()); ret.write_cvalue(fx, discr); } "size_of" => { assert_eq!(args.len(), 0); let size_of = fx.layout_of(substs.type_at(0)).size.bytes(); let size_of = CValue::const_val(fx, usize_layout.ty, size_of as i64); ret.write_cvalue(fx, size_of); } "type_id" => { assert_eq!(args.len(), 0); let type_id = fx.tcx.type_id_hash(substs.type_at(0)); let type_id = CValue::const_val(fx, u64_layout.ty, type_id as i64); ret.write_cvalue(fx, type_id); } "min_align_of" => { assert_eq!(args.len(), 0); let min_align = fx.layout_of(substs.type_at(0)).align.abi(); let min_align = CValue::const_val(fx, usize_layout.ty, min_align as i64); ret.write_cvalue(fx, min_align); } _ if intrinsic.starts_with("unchecked_") => { assert_eq!(args.len(), 2); let bin_op = match intrinsic { "unchecked_div" => BinOp::Div, "unchecked_rem" => BinOp::Rem, "unchecked_shl" => BinOp::Shl, "unchecked_shr" => BinOp::Shr, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match ret.layout().ty.sty { TypeVariants::TyUint(_) => crate::base::trans_int_binop( fx, bin_op, args[0], args[1], ret.layout().ty, false, ), TypeVariants::TyInt(_) => crate::base::trans_int_binop( fx, bin_op, args[0], args[1], ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); } _ if intrinsic.ends_with("_with_overflow") => { assert_eq!(args.len(), 2); assert_eq!(args[0].layout().ty, args[1].layout().ty); let bin_op = match intrinsic { "add_with_overflow" => BinOp::Add, "sub_with_overflow" => BinOp::Sub, "mul_with_overflow" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match args[0].layout().ty.sty { TypeVariants::TyUint(_) => crate::base::trans_checked_int_binop( fx, bin_op, args[0], args[1], ret.layout().ty, false, ), TypeVariants::TyInt(_) => crate::base::trans_checked_int_binop( fx, bin_op, args[0], args[1], ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); } _ if intrinsic.starts_with("overflowing_") => { assert_eq!(args.len(), 2); assert_eq!(args[0].layout().ty, args[1].layout().ty); let bin_op = match intrinsic { "overflowing_add" => BinOp::Add, "overflowing_sub" => BinOp::Sub, "overflowing_mul" => BinOp::Mul, _ => unimplemented!("intrinsic {}", intrinsic), }; let res = match args[0].layout().ty.sty { TypeVariants::TyUint(_) => crate::base::trans_int_binop( fx, bin_op, args[0], args[1], ret.layout().ty, false, ), TypeVariants::TyInt(_) => crate::base::trans_int_binop( fx, bin_op, args[0], args[1], ret.layout().ty, true, ), _ => panic!(), }; ret.write_cvalue(fx, res); } "offset" => { assert_eq!(args.len(), 2); let base = args[0].load_value(fx); let offset = args[1].load_value(fx); let res = fx.bcx.ins().iadd(base, offset); ret.write_cvalue(fx, CValue::ByVal(res, args[0].layout())); } "transmute" => { assert_eq!(args.len(), 1); let src_ty = substs.type_at(0); let dst_ty = substs.type_at(1); assert_eq!(args[0].layout().ty, src_ty); let addr = args[0].force_stack(fx); let dst_layout = fx.layout_of(dst_ty); ret.write_cvalue(fx, CValue::ByRef(addr, dst_layout)) } "uninit" => { assert_eq!(args.len(), 0); let ty = substs.type_at(0); let layout = fx.layout_of(ty); let stack_slot = fx.bcx.create_stack_slot(StackSlotData { kind: StackSlotKind::ExplicitSlot, size: layout.size.bytes() as u32, offset: None, }); let uninit_place = CPlace::from_stack_slot(fx, stack_slot, ty); let uninit_val = uninit_place.to_cvalue(fx); ret.write_cvalue(fx, uninit_val); } "ctlz" | "ctlz_nonzero" => { assert_eq!(args.len(), 1); let arg = args[0].load_value(fx); let res = CValue::ByVal(fx.bcx.ins().clz(arg), args[0].layout()); ret.write_cvalue(fx, res); } "cttz" | "cttz_nonzero" => { assert_eq!(args.len(), 1); let arg = args[0].load_value(fx); let res = CValue::ByVal(fx.bcx.ins().clz(arg), args[0].layout()); ret.write_cvalue(fx, res); } "ctpop" => { assert_eq!(args.len(), 1); let arg = args[0].load_value(fx); let res = CValue::ByVal(fx.bcx.ins().popcnt(arg), args[0].layout()); ret.write_cvalue(fx, res); } _ => unimpl!("unsupported intrinsic {}", intrinsic), } if let Some((_, dest)) = *destination { let ret_ebb = fx.get_ebb(dest); fx.bcx.ins().jump(ret_ebb, &[]); } else { fx.bcx.ins().trap(TrapCode::User(!0)); } return; } } let return_ptr = match return_place { Some(place) => place.expect_addr(), None => fx.bcx.ins().iconst(types::I64, 0), }; let call_args = Some(return_ptr) .into_iter() .chain(args.into_iter().map(|arg| { if fx.cton_type(arg.layout().ty).is_some() { arg.load_value(fx) } else { arg.force_stack(fx) } })).collect::>(); match func { CValue::Func(func, _) => { fx.bcx.ins().call(func, &call_args); } func => { let func_ty = func.layout().ty; let func = func.load_value(fx); let sig = fx .bcx .import_signature(cton_sig_from_fn_ty(fx.tcx, func_ty)); fx.bcx.ins().call_indirect(sig, func, &call_args); } } if let Some((_, dest)) = *destination { let ret_ebb = fx.get_ebb(dest); fx.bcx.ins().jump(ret_ebb, &[]); } else { fx.bcx.ins().trap(TrapCode::User(!0)); } }