// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::*; use ast; use ast_util; use codemap::Span; use opt_vec; use parse::token; use print::pprust; use visit::Visitor; use visit; use std::cell::{Cell, RefCell}; use std::cmp; use collections::HashMap; use std::u32; use std::local_data; pub fn path_name_i(idents: &[Ident]) -> ~str { // FIXME: Bad copies (#2543 -- same for everything else that says "bad") idents.map(|i| { token::get_ident(*i).get().to_str() }).connect("::") } // totally scary function: ignores all but the last element, should have // a different name pub fn path_to_ident(path: &Path) -> Ident { path.segments.last().unwrap().identifier } pub fn local_def(id: NodeId) -> DefId { ast::DefId { krate: LOCAL_CRATE, node: id } } pub fn is_local(did: ast::DefId) -> bool { did.krate == LOCAL_CRATE } pub fn stmt_id(s: &Stmt) -> NodeId { match s.node { StmtDecl(_, id) => id, StmtExpr(_, id) => id, StmtSemi(_, id) => id, StmtMac(..) => fail!("attempted to analyze unexpanded stmt") } } pub fn variant_def_ids(d: Def) -> Option<(DefId, DefId)> { match d { DefVariant(enum_id, var_id, _) => { Some((enum_id, var_id)) } _ => None } } pub fn def_id_of_def(d: Def) -> DefId { match d { DefFn(id, _) | DefStaticMethod(id, _, _) | DefMod(id) | DefForeignMod(id) | DefStatic(id, _) | DefVariant(_, id, _) | DefTy(id) | DefTyParam(id, _) | DefUse(id) | DefStruct(id) | DefTrait(id) | DefMethod(id, _) => { id } DefArg(id, _) | DefLocal(id, _) | DefSelfTy(id) | DefUpvar(id, _, _, _) | DefBinding(id, _) | DefRegion(id) | DefTyParamBinder(id) | DefLabel(id) => { local_def(id) } DefPrimTy(_) => fail!() } } pub fn binop_to_str(op: BinOp) -> ~str { match op { BiAdd => return ~"+", BiSub => return ~"-", BiMul => return ~"*", BiDiv => return ~"/", BiRem => return ~"%", BiAnd => return ~"&&", BiOr => return ~"||", BiBitXor => return ~"^", BiBitAnd => return ~"&", BiBitOr => return ~"|", BiShl => return ~"<<", BiShr => return ~">>", BiEq => return ~"==", BiLt => return ~"<", BiLe => return ~"<=", BiNe => return ~"!=", BiGe => return ~">=", BiGt => return ~">" } } pub fn binop_to_method_name(op: BinOp) -> Option<~str> { match op { BiAdd => return Some(~"add"), BiSub => return Some(~"sub"), BiMul => return Some(~"mul"), BiDiv => return Some(~"div"), BiRem => return Some(~"rem"), BiBitXor => return Some(~"bitxor"), BiBitAnd => return Some(~"bitand"), BiBitOr => return Some(~"bitor"), BiShl => return Some(~"shl"), BiShr => return Some(~"shr"), BiLt => return Some(~"lt"), BiLe => return Some(~"le"), BiGe => return Some(~"ge"), BiGt => return Some(~"gt"), BiEq => return Some(~"eq"), BiNe => return Some(~"ne"), BiAnd | BiOr => return None } } pub fn lazy_binop(b: BinOp) -> bool { match b { BiAnd => true, BiOr => true, _ => false } } pub fn is_shift_binop(b: BinOp) -> bool { match b { BiShl => true, BiShr => true, _ => false } } pub fn unop_to_str(op: UnOp) -> &'static str { match op { UnBox => "@", UnUniq => "~", UnDeref => "*", UnNot => "!", UnNeg => "-", } } pub fn is_path(e: @Expr) -> bool { return match e.node { ExprPath(_) => true, _ => false }; } pub fn int_ty_to_str(t: IntTy) -> ~str { match t { TyI => ~"", TyI8 => ~"i8", TyI16 => ~"i16", TyI32 => ~"i32", TyI64 => ~"i64" } } pub fn int_ty_max(t: IntTy) -> u64 { match t { TyI8 => 0x80u64, TyI16 => 0x8000u64, TyI | TyI32 => 0x80000000u64, // actually ni about TyI TyI64 => 0x8000000000000000u64 } } pub fn uint_ty_to_str(t: UintTy) -> ~str { match t { TyU => ~"u", TyU8 => ~"u8", TyU16 => ~"u16", TyU32 => ~"u32", TyU64 => ~"u64" } } pub fn uint_ty_max(t: UintTy) -> u64 { match t { TyU8 => 0xffu64, TyU16 => 0xffffu64, TyU | TyU32 => 0xffffffffu64, // actually ni about TyU TyU64 => 0xffffffffffffffffu64 } } pub fn float_ty_to_str(t: FloatTy) -> ~str { match t { TyF32 => ~"f32", TyF64 => ~"f64" } } pub fn is_call_expr(e: @Expr) -> bool { match e.node { ExprCall(..) => true, _ => false } } pub fn block_from_expr(e: @Expr) -> P { P(Block { view_items: ~[], stmts: ~[], expr: Some(e), id: e.id, rules: DefaultBlock, span: e.span }) } pub fn ident_to_path(s: Span, identifier: Ident) -> Path { ast::Path { span: s, global: false, segments: ~[ ast::PathSegment { identifier: identifier, lifetimes: opt_vec::Empty, types: opt_vec::Empty, } ], } } pub fn ident_to_pat(id: NodeId, s: Span, i: Ident) -> @Pat { @ast::Pat { id: id, node: PatIdent(BindByValue(MutImmutable), ident_to_path(s, i), None), span: s } } pub fn is_unguarded(a: &Arm) -> bool { match a.guard { None => true, _ => false } } pub fn unguarded_pat(a: &Arm) -> Option<~[@Pat]> { if is_unguarded(a) { Some(/* FIXME (#2543) */ a.pats.clone()) } else { None } } /// Generate a "pretty" name for an `impl` from its type and trait. /// This is designed so that symbols of `impl`'d methods give some /// hint of where they came from, (previously they would all just be /// listed as `__extensions__::method_name::hash`, with no indication /// of the type). pub fn impl_pretty_name(trait_ref: &Option, ty: &Ty) -> Ident { let mut pretty = pprust::ty_to_str(ty); match *trait_ref { Some(ref trait_ref) => { pretty.push_char('.'); pretty.push_str(pprust::path_to_str(&trait_ref.path)); } None => {} } token::gensym_ident(pretty) } pub fn public_methods(ms: ~[@Method]) -> ~[@Method] { ms.move_iter().filter(|m| { match m.vis { Public => true, _ => false } }).collect() } // extract a TypeMethod from a TraitMethod. if the TraitMethod is // a default, pull out the useful fields to make a TypeMethod pub fn trait_method_to_ty_method(method: &TraitMethod) -> TypeMethod { match *method { Required(ref m) => (*m).clone(), Provided(ref m) => { TypeMethod { ident: m.ident, attrs: m.attrs.clone(), purity: m.purity, decl: m.decl, generics: m.generics.clone(), explicit_self: m.explicit_self, id: m.id, span: m.span, } } } } pub fn split_trait_methods(trait_methods: &[TraitMethod]) -> (~[TypeMethod], ~[@Method]) { let mut reqd = ~[]; let mut provd = ~[]; for trt_method in trait_methods.iter() { match *trt_method { Required(ref tm) => reqd.push((*tm).clone()), Provided(m) => provd.push(m) } }; (reqd, provd) } pub fn struct_field_visibility(field: ast::StructField) -> Visibility { match field.node.kind { ast::NamedField(_, visibility) => visibility, ast::UnnamedField => ast::Public } } /// Maps a binary operator to its precedence pub fn operator_prec(op: ast::BinOp) -> uint { match op { // 'as' sits here with 12 BiMul | BiDiv | BiRem => 11u, BiAdd | BiSub => 10u, BiShl | BiShr => 9u, BiBitAnd => 8u, BiBitXor => 7u, BiBitOr => 6u, BiLt | BiLe | BiGe | BiGt => 4u, BiEq | BiNe => 3u, BiAnd => 2u, BiOr => 1u } } /// Precedence of the `as` operator, which is a binary operator /// not appearing in the prior table. pub static as_prec: uint = 12u; pub fn empty_generics() -> Generics { Generics {lifetimes: opt_vec::Empty, ty_params: opt_vec::Empty} } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST #[deriving(Encodable, Decodable)] pub struct IdRange { min: NodeId, max: NodeId, } impl IdRange { pub fn max() -> IdRange { IdRange { min: u32::MAX, max: u32::MIN, } } pub fn empty(&self) -> bool { self.min >= self.max } pub fn add(&mut self, id: NodeId) { self.min = cmp::min(self.min, id); self.max = cmp::max(self.max, id + 1); } } pub trait IdVisitingOperation { fn visit_id(&self, node_id: NodeId); } pub struct IdVisitor<'a, O> { operation: &'a O, pass_through_items: bool, visited_outermost: bool, } impl<'a, O: IdVisitingOperation> IdVisitor<'a, O> { fn visit_generics_helper(&self, generics: &Generics) { for type_parameter in generics.ty_params.iter() { self.operation.visit_id(type_parameter.id) } for lifetime in generics.lifetimes.iter() { self.operation.visit_id(lifetime.id) } } } impl<'a, O: IdVisitingOperation> Visitor<()> for IdVisitor<'a, O> { fn visit_mod(&mut self, module: &Mod, _: Span, node_id: NodeId, env: ()) { self.operation.visit_id(node_id); visit::walk_mod(self, module, env) } fn visit_view_item(&mut self, view_item: &ViewItem, env: ()) { match view_item.node { ViewItemExternMod(_, _, node_id) => { self.operation.visit_id(node_id) } ViewItemUse(ref view_paths) => { for view_path in view_paths.iter() { match view_path.node { ViewPathSimple(_, _, node_id) | ViewPathGlob(_, node_id) => { self.operation.visit_id(node_id) } ViewPathList(_, ref paths, node_id) => { self.operation.visit_id(node_id); for path in paths.iter() { self.operation.visit_id(path.node.id) } } } } } } visit::walk_view_item(self, view_item, env) } fn visit_foreign_item(&mut self, foreign_item: &ForeignItem, env: ()) { self.operation.visit_id(foreign_item.id); visit::walk_foreign_item(self, foreign_item, env) } fn visit_item(&mut self, item: &Item, env: ()) { if !self.pass_through_items { if self.visited_outermost { return } else { self.visited_outermost = true } } self.operation.visit_id(item.id); match item.node { ItemEnum(ref enum_definition, _) => { for variant in enum_definition.variants.iter() { self.operation.visit_id(variant.node.id) } } _ => {} } visit::walk_item(self, item, env); self.visited_outermost = false } fn visit_local(&mut self, local: &Local, env: ()) { self.operation.visit_id(local.id); visit::walk_local(self, local, env) } fn visit_block(&mut self, block: &Block, env: ()) { self.operation.visit_id(block.id); visit::walk_block(self, block, env) } fn visit_stmt(&mut self, statement: &Stmt, env: ()) { self.operation.visit_id(ast_util::stmt_id(statement)); visit::walk_stmt(self, statement, env) } fn visit_pat(&mut self, pattern: &Pat, env: ()) { self.operation.visit_id(pattern.id); visit::walk_pat(self, pattern, env) } fn visit_expr(&mut self, expression: &Expr, env: ()) { { let optional_callee_id = expression.get_callee_id(); for callee_id in optional_callee_id.iter() { self.operation.visit_id(*callee_id) } } self.operation.visit_id(expression.id); visit::walk_expr(self, expression, env) } fn visit_ty(&mut self, typ: &Ty, env: ()) { self.operation.visit_id(typ.id); match typ.node { TyPath(_, _, id) => self.operation.visit_id(id), _ => {} } visit::walk_ty(self, typ, env) } fn visit_generics(&mut self, generics: &Generics, env: ()) { self.visit_generics_helper(generics); visit::walk_generics(self, generics, env) } fn visit_fn(&mut self, function_kind: &visit::FnKind, function_declaration: &FnDecl, block: &Block, span: Span, node_id: NodeId, env: ()) { if !self.pass_through_items { match *function_kind { visit::FkMethod(..) if self.visited_outermost => return, visit::FkMethod(..) => self.visited_outermost = true, _ => {} } } self.operation.visit_id(node_id); match *function_kind { visit::FkItemFn(_, generics, _, _) | visit::FkMethod(_, generics, _) => { self.visit_generics_helper(generics) } visit::FkFnBlock => {} } for argument in function_declaration.inputs.iter() { self.operation.visit_id(argument.id) } visit::walk_fn(self, function_kind, function_declaration, block, span, node_id, env); if !self.pass_through_items { match *function_kind { visit::FkMethod(..) => self.visited_outermost = false, _ => {} } } } fn visit_struct_field(&mut self, struct_field: &StructField, env: ()) { self.operation.visit_id(struct_field.node.id); visit::walk_struct_field(self, struct_field, env) } fn visit_struct_def(&mut self, struct_def: &StructDef, ident: ast::Ident, generics: &ast::Generics, id: NodeId, _: ()) { self.operation.visit_id(id); struct_def.ctor_id.map(|ctor_id| self.operation.visit_id(ctor_id)); visit::walk_struct_def(self, struct_def, ident, generics, id, ()); } fn visit_trait_method(&mut self, tm: &ast::TraitMethod, _: ()) { match *tm { ast::Required(ref m) => self.operation.visit_id(m.id), ast::Provided(ref m) => self.operation.visit_id(m.id), } visit::walk_trait_method(self, tm, ()); } } pub fn visit_ids_for_inlined_item(item: &InlinedItem, operation: &O) { let mut id_visitor = IdVisitor { operation: operation, pass_through_items: true, visited_outermost: false, }; visit::walk_inlined_item(&mut id_visitor, item, ()); } struct IdRangeComputingVisitor { result: Cell, } impl IdVisitingOperation for IdRangeComputingVisitor { fn visit_id(&self, id: NodeId) { let mut id_range = self.result.get(); id_range.add(id); self.result.set(id_range) } } pub fn compute_id_range_for_inlined_item(item: &InlinedItem) -> IdRange { let visitor = IdRangeComputingVisitor { result: Cell::new(IdRange::max()) }; visit_ids_for_inlined_item(item, &visitor); visitor.result.get() } pub fn is_item_impl(item: @ast::Item) -> bool { match item.node { ItemImpl(..) => true, _ => false } } pub fn walk_pat(pat: &Pat, it: |&Pat| -> bool) -> bool { if !it(pat) { return false; } match pat.node { PatIdent(_, _, Some(p)) => walk_pat(p, it), PatStruct(_, ref fields, _) => { fields.iter().advance(|f| walk_pat(f.pat, |p| it(p))) } PatEnum(_, Some(ref s)) | PatTup(ref s) => { s.iter().advance(|&p| walk_pat(p, |p| it(p))) } PatUniq(s) | PatRegion(s) => { walk_pat(s, it) } PatVec(ref before, ref slice, ref after) => { before.iter().advance(|&p| walk_pat(p, |p| it(p))) && slice.iter().advance(|&p| walk_pat(p, |p| it(p))) && after.iter().advance(|&p| walk_pat(p, |p| it(p))) } PatWild | PatWildMulti | PatLit(_) | PatRange(_, _) | PatIdent(_, _, _) | PatEnum(_, _) => { true } } } pub trait EachViewItem { fn each_view_item(&self, f: |&ast::ViewItem| -> bool) -> bool; } struct EachViewItemData<'a> { callback: 'a |&ast::ViewItem| -> bool, } impl<'a> Visitor<()> for EachViewItemData<'a> { fn visit_view_item(&mut self, view_item: &ast::ViewItem, _: ()) { let _ = (self.callback)(view_item); } } impl EachViewItem for ast::Crate { fn each_view_item(&self, f: |&ast::ViewItem| -> bool) -> bool { let mut visit = EachViewItemData { callback: f, }; visit::walk_crate(&mut visit, self, ()); true } } pub fn view_path_id(p: &ViewPath) -> NodeId { match p.node { ViewPathSimple(_, _, id) | ViewPathGlob(_, id) | ViewPathList(_, _, id) => id } } /// Returns true if the given struct def is tuple-like; i.e. that its fields /// are unnamed. pub fn struct_def_is_tuple_like(struct_def: &ast::StructDef) -> bool { struct_def.ctor_id.is_some() } /// Returns true if the given pattern consists solely of an identifier /// and false otherwise. pub fn pat_is_ident(pat: @ast::Pat) -> bool { match pat.node { ast::PatIdent(..) => true, _ => false, } } // HYGIENE FUNCTIONS /// Extend a syntax context with a given mark pub fn new_mark(m:Mrk, tail:SyntaxContext) -> SyntaxContext { new_mark_internal(m,tail,get_sctable()) } // Extend a syntax context with a given mark and table // FIXME #8215 : currently pub to allow testing pub fn new_mark_internal(m: Mrk, tail: SyntaxContext, table: &SCTable) -> SyntaxContext { let key = (tail,m); // FIXME #5074 : can't use more natural style because we're missing // flow-sensitivity. Results in two lookups on a hash table hit. // also applies to new_rename_internal, below. // let try_lookup = table.mark_memo.find(&key); let mut mark_memo = table.mark_memo.borrow_mut(); match mark_memo.get().contains_key(&key) { false => { let new_idx = { let mut table = table.table.borrow_mut(); idx_push(table.get(), Mark(m,tail)) }; mark_memo.get().insert(key,new_idx); new_idx } true => { match mark_memo.get().find(&key) { None => fail!("internal error: key disappeared 2013042901"), Some(idxptr) => {*idxptr} } } } } /// Extend a syntax context with a given rename pub fn new_rename(id:Ident, to:Name, tail:SyntaxContext) -> SyntaxContext { new_rename_internal(id, to, tail, get_sctable()) } // Extend a syntax context with a given rename and sctable // FIXME #8215 : currently pub to allow testing pub fn new_rename_internal(id: Ident, to: Name, tail: SyntaxContext, table: &SCTable) -> SyntaxContext { let key = (tail,id,to); // FIXME #5074 //let try_lookup = table.rename_memo.find(&key); let mut rename_memo = table.rename_memo.borrow_mut(); match rename_memo.get().contains_key(&key) { false => { let new_idx = { let mut table = table.table.borrow_mut(); idx_push(table.get(), Rename(id,to,tail)) }; rename_memo.get().insert(key,new_idx); new_idx } true => { match rename_memo.get().find(&key) { None => fail!("internal error: key disappeared 2013042902"), Some(idxptr) => {*idxptr} } } } } /// Make a fresh syntax context table with EmptyCtxt in slot zero /// and IllegalCtxt in slot one. // FIXME #8215 : currently pub to allow testing pub fn new_sctable_internal() -> SCTable { SCTable { table: RefCell::new(~[EmptyCtxt,IllegalCtxt]), mark_memo: RefCell::new(HashMap::new()), rename_memo: RefCell::new(HashMap::new()), } } // fetch the SCTable from TLS, create one if it doesn't yet exist. pub fn get_sctable() -> @SCTable { local_data_key!(sctable_key: @@SCTable) match local_data::get(sctable_key, |k| k.map(|k| *k)) { None => { let new_table = @@new_sctable_internal(); local_data::set(sctable_key,new_table); *new_table }, Some(intr) => *intr } } /// print out an SCTable for debugging pub fn display_sctable(table : &SCTable) { error!("SC table:"); let table = table.table.borrow(); for (idx,val) in table.get().iter().enumerate() { error!("{:4u} : {:?}",idx,val); } } /// Add a value to the end of a vec, return its index fn idx_push(vec: &mut ~[T], val: T) -> u32 { vec.push(val); (vec.len() - 1) as u32 } /// Resolve a syntax object to a name, per MTWT. pub fn mtwt_resolve(id : Ident) -> Name { let resolve_table = get_resolve_table(); let mut resolve_table = resolve_table.borrow_mut(); resolve_internal(id, get_sctable(), resolve_table.get()) } // FIXME #8215: must be pub for testing pub type ResolveTable = HashMap<(Name,SyntaxContext),Name>; // okay, I admit, putting this in TLS is not so nice: // fetch the SCTable from TLS, create one if it doesn't yet exist. pub fn get_resolve_table() -> @RefCell { local_data_key!(resolve_table_key: @@RefCell) match local_data::get(resolve_table_key, |k| k.map(|k| *k)) { None => { let new_table = @@RefCell::new(HashMap::new()); local_data::set(resolve_table_key, new_table); *new_table }, Some(intr) => *intr } } // Resolve a syntax object to a name, per MTWT. // adding memoization to possibly resolve 500+ seconds in resolve for librustc (!) // FIXME #8215 : currently pub to allow testing pub fn resolve_internal(id : Ident, table : &SCTable, resolve_table : &mut ResolveTable) -> Name { let key = (id.name,id.ctxt); match resolve_table.contains_key(&key) { false => { let resolved = { let result = { let table = table.table.borrow(); table.get()[id.ctxt] }; match result { EmptyCtxt => id.name, // ignore marks here: Mark(_,subctxt) => resolve_internal(Ident{name:id.name, ctxt: subctxt},table,resolve_table), // do the rename if necessary: Rename(Ident{name,ctxt},toname,subctxt) => { let resolvedfrom = resolve_internal(Ident{name:name,ctxt:ctxt},table,resolve_table); let resolvedthis = resolve_internal(Ident{name:id.name,ctxt:subctxt},table,resolve_table); if (resolvedthis == resolvedfrom) && (marksof(ctxt,resolvedthis,table) == marksof(subctxt,resolvedthis,table)) { toname } else { resolvedthis } } IllegalCtxt() => fail!("expected resolvable context, got IllegalCtxt") } }; resolve_table.insert(key,resolved); resolved } true => { // it's guaranteed to be there, because we just checked that it was // there and we never remove anything from the table: *(resolve_table.find(&key).unwrap()) } } } /// Compute the marks associated with a syntax context. pub fn mtwt_marksof(ctxt: SyntaxContext, stopname: Name) -> ~[Mrk] { marksof(ctxt, stopname, get_sctable()) } // the internal function for computing marks // it's not clear to me whether it's better to use a [] mutable // vector or a cons-list for this. pub fn marksof(ctxt: SyntaxContext, stopname: Name, table: &SCTable) -> ~[Mrk] { let mut result = ~[]; let mut loopvar = ctxt; loop { let table_entry = { let table = table.table.borrow(); table.get()[loopvar] }; match table_entry { EmptyCtxt => { return result; }, Mark(mark, tl) => { xorPush(&mut result, mark); loopvar = tl; }, Rename(_,name,tl) => { // see MTWT for details on the purpose of the stopname. // short version: it prevents duplication of effort. if name == stopname { return result; } else { loopvar = tl; } } IllegalCtxt => fail!("expected resolvable context, got IllegalCtxt") } } } /// Return the outer mark for a context with a mark at the outside. /// FAILS when outside is not a mark. pub fn mtwt_outer_mark(ctxt: SyntaxContext) -> Mrk { let sctable = get_sctable(); let table = sctable.table.borrow(); match table.get()[ctxt] { ast::Mark(mrk,_) => mrk, _ => fail!("can't retrieve outer mark when outside is not a mark") } } /// Push a name... unless it matches the one on top, in which /// case pop and discard (so two of the same marks cancel) pub fn xorPush(marks: &mut ~[Mrk], mark: Mrk) { if (marks.len() > 0) && (getLast(marks) == mark) { marks.pop().unwrap(); } else { marks.push(mark); } } // get the last element of a mutable array. // FIXME #4903: , must be a separate procedure for now. pub fn getLast(arr: &~[Mrk]) -> Mrk { *arr.last().unwrap() } // are two paths equal when compared unhygienically? // since I'm using this to replace ==, it seems appropriate // to compare the span, global, etc. fields as well. pub fn path_name_eq(a : &ast::Path, b : &ast::Path) -> bool { (a.span == b.span) && (a.global == b.global) && (segments_name_eq(a.segments, b.segments)) } // are two arrays of segments equal when compared unhygienically? pub fn segments_name_eq(a : &[ast::PathSegment], b : &[ast::PathSegment]) -> bool { if a.len() != b.len() { false } else { for (idx,seg) in a.iter().enumerate() { if (seg.identifier.name != b[idx].identifier.name) // FIXME #7743: ident -> name problems in lifetime comparison? || (seg.lifetimes != b[idx].lifetimes) // can types contain idents? || (seg.types != b[idx].types) { return false; } } true } } // Returns true if this literal is a string and false otherwise. pub fn lit_is_str(lit: @Lit) -> bool { match lit.node { LitStr(..) => true, _ => false, } } #[cfg(test)] mod test { use ast::*; use super::*; use opt_vec; use collections::HashMap; fn ident_to_segment(id : &Ident) -> PathSegment { PathSegment {identifier:id.clone(), lifetimes: opt_vec::Empty, types: opt_vec::Empty} } #[test] fn idents_name_eq_test() { assert!(segments_name_eq([Ident{name:3,ctxt:4}, Ident{name:78,ctxt:82}].map(ident_to_segment), [Ident{name:3,ctxt:104}, Ident{name:78,ctxt:182}].map(ident_to_segment))); assert!(!segments_name_eq([Ident{name:3,ctxt:4}, Ident{name:78,ctxt:82}].map(ident_to_segment), [Ident{name:3,ctxt:104}, Ident{name:77,ctxt:182}].map(ident_to_segment))); } #[test] fn xorpush_test () { let mut s = ~[]; xorPush(&mut s, 14); assert_eq!(s.clone(), ~[14]); xorPush(&mut s, 14); assert_eq!(s.clone(), ~[]); xorPush(&mut s, 14); assert_eq!(s.clone(), ~[14]); xorPush(&mut s, 15); assert_eq!(s.clone(), ~[14, 15]); xorPush(&mut s, 16); assert_eq!(s.clone(), ~[14, 15, 16]); xorPush(&mut s, 16); assert_eq!(s.clone(), ~[14, 15]); xorPush(&mut s, 15); assert_eq!(s.clone(), ~[14]); } fn id(n: Name, s: SyntaxContext) -> Ident { Ident {name: n, ctxt: s} } // because of the SCTable, I now need a tidy way of // creating syntax objects. Sigh. #[deriving(Clone, Eq)] enum TestSC { M(Mrk), R(Ident,Name) } // unfold a vector of TestSC values into a SCTable, // returning the resulting index fn unfold_test_sc(tscs : ~[TestSC], tail: SyntaxContext, table: &SCTable) -> SyntaxContext { tscs.rev_iter().fold(tail, |tail : SyntaxContext, tsc : &TestSC| {match *tsc { M(mrk) => new_mark_internal(mrk,tail,table), R(ident,name) => new_rename_internal(ident,name,tail,table)}}) } // gather a SyntaxContext back into a vector of TestSCs fn refold_test_sc(mut sc: SyntaxContext, table : &SCTable) -> ~[TestSC] { let mut result = ~[]; loop { let table = table.table.borrow(); match table.get()[sc] { EmptyCtxt => {return result;}, Mark(mrk,tail) => { result.push(M(mrk)); sc = tail; continue; }, Rename(id,name,tail) => { result.push(R(id,name)); sc = tail; continue; } IllegalCtxt => fail!("expected resolvable context, got IllegalCtxt") } } } #[test] fn test_unfold_refold(){ let mut t = new_sctable_internal(); let test_sc = ~[M(3),R(id(101,0),14),M(9)]; assert_eq!(unfold_test_sc(test_sc.clone(),EMPTY_CTXT,&mut t),4); { let table = t.table.borrow(); assert_eq!(table.get()[2],Mark(9,0)); assert_eq!(table.get()[3],Rename(id(101,0),14,2)); assert_eq!(table.get()[4],Mark(3,3)); } assert_eq!(refold_test_sc(4,&t),test_sc); } // extend a syntax context with a sequence of marks given // in a vector. v[0] will be the outermost mark. fn unfold_marks(mrks: ~[Mrk], tail: SyntaxContext, table: &SCTable) -> SyntaxContext { mrks.rev_iter().fold(tail, |tail:SyntaxContext, mrk:&Mrk| {new_mark_internal(*mrk,tail,table)}) } #[test] fn unfold_marks_test() { let mut t = new_sctable_internal(); assert_eq!(unfold_marks(~[3,7],EMPTY_CTXT,&mut t),3); { let table = t.table.borrow(); assert_eq!(table.get()[2],Mark(7,0)); assert_eq!(table.get()[3],Mark(3,2)); } } #[test] fn test_marksof () { let stopname = 242; let name1 = 243; let mut t = new_sctable_internal(); assert_eq!(marksof (EMPTY_CTXT,stopname,&t),~[]); // FIXME #5074: ANF'd to dodge nested calls { let ans = unfold_marks(~[4,98],EMPTY_CTXT,&mut t); assert_eq! (marksof (ans,stopname,&t),~[4,98]);} // does xoring work? { let ans = unfold_marks(~[5,5,16],EMPTY_CTXT,&mut t); assert_eq! (marksof (ans,stopname,&t), ~[16]);} // does nested xoring work? { let ans = unfold_marks(~[5,10,10,5,16],EMPTY_CTXT,&mut t); assert_eq! (marksof (ans, stopname,&t), ~[16]);} // rename where stop doesn't match: { let chain = ~[M(9), R(id(name1, new_mark_internal (4, EMPTY_CTXT,&mut t)), 100101102), M(14)]; let ans = unfold_test_sc(chain,EMPTY_CTXT,&mut t); assert_eq! (marksof (ans, stopname, &t), ~[9,14]);} // rename where stop does match { let name1sc = new_mark_internal(4, EMPTY_CTXT, &mut t); let chain = ~[M(9), R(id(name1, name1sc), stopname), M(14)]; let ans = unfold_test_sc(chain,EMPTY_CTXT,&mut t); assert_eq! (marksof (ans, stopname, &t), ~[9]); } } #[test] fn resolve_tests () { let a = 40; let mut t = new_sctable_internal(); let mut rt = HashMap::new(); // - ctxt is MT assert_eq!(resolve_internal(id(a,EMPTY_CTXT),&mut t, &mut rt),a); // - simple ignored marks { let sc = unfold_marks(~[1,2,3],EMPTY_CTXT,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt),a);} // - orthogonal rename where names don't match { let sc = unfold_test_sc(~[R(id(50,EMPTY_CTXT),51),M(12)],EMPTY_CTXT,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt),a);} // - rename where names do match, but marks don't { let sc1 = new_mark_internal(1,EMPTY_CTXT,&mut t); let sc = unfold_test_sc(~[R(id(a,sc1),50), M(1), M(2)], EMPTY_CTXT,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt), a);} // - rename where names and marks match { let sc1 = unfold_test_sc(~[M(1),M(2)],EMPTY_CTXT,&mut t); let sc = unfold_test_sc(~[R(id(a,sc1),50),M(1),M(2)],EMPTY_CTXT,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt), 50); } // - rename where names and marks match by literal sharing { let sc1 = unfold_test_sc(~[M(1),M(2)],EMPTY_CTXT,&mut t); let sc = unfold_test_sc(~[R(id(a,sc1),50)],sc1,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt), 50); } // - two renames of the same var.. can only happen if you use // local-expand to prevent the inner binding from being renamed // during the rename-pass caused by the first: println!("about to run bad test"); { let sc = unfold_test_sc(~[R(id(a,EMPTY_CTXT),50), R(id(a,EMPTY_CTXT),51)], EMPTY_CTXT,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt), 51); } // the simplest double-rename: { let a_to_a50 = new_rename_internal(id(a,EMPTY_CTXT),50,EMPTY_CTXT,&mut t); let a50_to_a51 = new_rename_internal(id(a,a_to_a50),51,a_to_a50,&mut t); assert_eq!(resolve_internal(id(a,a50_to_a51),&mut t, &mut rt),51); // mark on the outside doesn't stop rename: let sc = new_mark_internal(9,a50_to_a51,&mut t); assert_eq!(resolve_internal(id(a,sc),&mut t, &mut rt),51); // but mark on the inside does: let a50_to_a51_b = unfold_test_sc(~[R(id(a,a_to_a50),51), M(9)], a_to_a50, &mut t); assert_eq!(resolve_internal(id(a,a50_to_a51_b),&mut t, &mut rt),50);} } #[test] fn mtwt_resolve_test(){ let a = 40; assert_eq!(mtwt_resolve(id(a,EMPTY_CTXT)),a); } #[test] fn hashing_tests () { let mut t = new_sctable_internal(); assert_eq!(new_mark_internal(12,EMPTY_CTXT,&mut t),2); assert_eq!(new_mark_internal(13,EMPTY_CTXT,&mut t),3); // using the same one again should result in the same index: assert_eq!(new_mark_internal(12,EMPTY_CTXT,&mut t),2); // I'm assuming that the rename table will behave the same.... } #[test] fn resolve_table_hashing_tests() { let mut t = new_sctable_internal(); let mut rt = HashMap::new(); assert_eq!(rt.len(),0); resolve_internal(id(30,EMPTY_CTXT),&mut t, &mut rt); assert_eq!(rt.len(),1); resolve_internal(id(39,EMPTY_CTXT),&mut t, &mut rt); assert_eq!(rt.len(),2); resolve_internal(id(30,EMPTY_CTXT),&mut t, &mut rt); assert_eq!(rt.len(),2); } }