// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[allow(missing_doc)]; use digest::Digest; use json; use sha1::Sha1; use serialize::{Encoder, Encodable, Decoder, Decodable}; use arc::{Arc,RWArc}; use treemap::TreeMap; use std::cell::Cell; use std::comm::{PortOne, oneshot, send_one, recv_one}; use std::either::{Either, Left, Right}; use std::io; use std::run; use std::task; /** * * This is a loose clone of the [fbuild build system](https://github.com/felix-lang/fbuild), * made a touch more generic (not wired to special cases on files) and much * less metaprogram-y due to rust's comparative weakness there, relative to * python. * * It's based around _imperative builds_ that happen to have some function * calls cached. That is, it's _just_ a mechanism for describing cached * functions. This makes it much simpler and smaller than a "build system" * that produces an IR and evaluates it. The evaluation order is normal * function calls. Some of them just return really quickly. * * A cached function consumes and produces a set of _works_. A work has a * name, a kind (that determines how the value is to be checked for * freshness) and a value. Works must also be (de)serializable. Some * examples of works: * * kind name value * ------------------------ * cfg os linux * file foo.c * url foo.com * * Works are conceptually single units, but we store them most of the time * in maps of the form (type,name) => value. These are WorkMaps. * * A cached function divides the works it's interested in into inputs and * outputs, and subdivides those into declared (input) works and * discovered (input and output) works. * * A _declared_ input or is one that is given to the workcache before * any work actually happens, in the "prep" phase. Even when a function's * work-doing part (the "exec" phase) never gets called, it has declared * inputs, which can be checked for freshness (and potentially * used to determine that the function can be skipped). * * The workcache checks _all_ works for freshness, but uses the set of * discovered outputs from the _previous_ exec (which it will re-discover * and re-record each time the exec phase runs). * * Therefore the discovered works cached in the db might be a * mis-approximation of the current discoverable works, but this is ok for * the following reason: we assume that if an artifact A changed from * depending on B,C,D to depending on B,C,D,E, then A itself changed (as * part of the change-in-dependencies), so we will be ok. * * Each function has a single discriminated output work called its _result_. * This is only different from other works in that it is returned, by value, * from a call to the cacheable function; the other output works are used in * passing to invalidate dependencies elsewhere in the cache, but do not * otherwise escape from a function invocation. Most functions only have one * output work anyways. * * A database (the central store of a workcache) stores a mappings: * * (fn_name,{declared_input}) => ({discovered_input}, * {discovered_output},result) * * (Note: fbuild, which workcache is based on, has the concept of a declared * output as separate from a discovered output. This distinction exists only * as an artifact of how fbuild works: via annotations on function types * and metaprogramming, with explicit dependency declaration as a fallback. * Workcache is more explicit about dependencies, and as such treats all * outputs the same, as discovered-during-the-last-run.) * */ #[deriving(Clone, Eq, Encodable, Decodable, TotalOrd, TotalEq)] struct WorkKey { kind: ~str, name: ~str } impl WorkKey { pub fn new(kind: &str, name: &str) -> WorkKey { WorkKey { kind: kind.to_owned(), name: name.to_owned(), } } } #[deriving(Clone, Eq, Encodable, Decodable)] struct WorkMap(TreeMap); impl WorkMap { fn new() -> WorkMap { WorkMap(TreeMap::new()) } } struct Database { db_filename: Path, db_cache: TreeMap<~str, ~str>, db_dirty: bool } impl Database { pub fn new(p: Path) -> Database { Database { db_filename: p, db_cache: TreeMap::new(), db_dirty: false } } pub fn prepare(&self, fn_name: &str, declared_inputs: &WorkMap) -> Option<(WorkMap, WorkMap, ~str)> { let k = json_encode(&(fn_name, declared_inputs)); match self.db_cache.find(&k) { None => None, Some(v) => Some(json_decode(*v)) } } pub fn cache(&mut self, fn_name: &str, declared_inputs: &WorkMap, discovered_inputs: &WorkMap, discovered_outputs: &WorkMap, result: &str) { let k = json_encode(&(fn_name, declared_inputs)); let v = json_encode(&(discovered_inputs, discovered_outputs, result)); self.db_cache.insert(k,v); self.db_dirty = true } } struct Logger { // FIXME #4432: Fill in a: () } impl Logger { pub fn new() -> Logger { Logger { a: () } } pub fn info(&self, i: &str) { io::println(~"workcache: " + i); } } #[deriving(Clone)] struct Context { db: RWArc, logger: RWArc, cfg: Arc, freshness: Arcbool>> } struct Prep<'self> { ctxt: &'self Context, fn_name: &'self str, declared_inputs: WorkMap, } struct Exec { discovered_inputs: WorkMap, discovered_outputs: WorkMap } struct Work<'self, T> { prep: &'self Prep<'self>, res: Option>> } fn json_encode>(t: &T) -> ~str { do io::with_str_writer |wr| { let mut encoder = json::Encoder(wr); t.encode(&mut encoder); } } // FIXME(#5121) fn json_decode>(s: &str) -> T { do io::with_str_reader(s) |rdr| { let j = json::from_reader(rdr).unwrap(); let mut decoder = json::Decoder(j); Decodable::decode(&mut decoder) } } fn digest>(t: &T) -> ~str { let mut sha = ~Sha1::new(); (*sha).input_str(json_encode(t)); (*sha).result_str() } fn digest_file(path: &Path) -> ~str { let mut sha = ~Sha1::new(); let s = io::read_whole_file_str(path); (*sha).input_str(*s.get_ref()); (*sha).result_str() } impl Context { pub fn new(db: RWArc, lg: RWArc, cfg: Arc) -> Context { Context { db: db, logger: lg, cfg: cfg, freshness: Arc::new(TreeMap::new()) } } pub fn prep<'a>(&'a self, fn_name: &'a str) -> Prep<'a> { Prep::new(self, fn_name) } pub fn with_prep<'a, T>(&'a self, fn_name: &'a str, blk: &fn(p: &mut Prep) -> T) -> T { let mut p = self.prep(fn_name); blk(&mut p) } } impl<'self> Prep<'self> { fn new(ctxt: &'self Context, fn_name: &'self str) -> Prep<'self> { Prep { ctxt: ctxt, fn_name: fn_name, declared_inputs: WorkMap::new() } } } impl<'self> Prep<'self> { fn declare_input(&mut self, kind:&str, name:&str, val:&str) { self.declared_inputs.insert(WorkKey::new(kind, name), val.to_owned()); } fn is_fresh(&self, cat: &str, kind: &str, name: &str, val: &str) -> bool { let k = kind.to_owned(); let f = self.ctxt.freshness.get().find(&k); let fresh = match f { None => fail!("missing freshness-function for '%s'", kind), Some(f) => (*f)(name, val) }; do self.ctxt.logger.write |lg| { if fresh { lg.info(fmt!("%s %s:%s is fresh", cat, kind, name)); } else { lg.info(fmt!("%s %s:%s is not fresh", cat, kind, name)) } }; fresh } fn all_fresh(&self, cat: &str, map: &WorkMap) -> bool { for (k, v) in map.iter() { if ! self.is_fresh(cat, k.kind, k.name, *v) { return false; } } return true; } fn exec + Decodable>( &'self self, blk: ~fn(&Exec) -> T) -> T { self.exec_work(blk).unwrap() } fn exec_work + Decodable>( // FIXME(#5121) &'self self, blk: ~fn(&Exec) -> T) -> Work<'self, T> { let mut bo = Some(blk); let cached = do self.ctxt.db.read |db| { db.prepare(self.fn_name, &self.declared_inputs) }; let res = match cached { Some((ref disc_in, ref disc_out, ref res)) if self.all_fresh("declared input",&self.declared_inputs) && self.all_fresh("discovered input", disc_in) && self.all_fresh("discovered output", disc_out) => { Left(json_decode(*res)) } _ => { let (port, chan) = oneshot(); let blk = bo.take_unwrap(); let chan = Cell::new(chan); do task::spawn { let exe = Exec { discovered_inputs: WorkMap::new(), discovered_outputs: WorkMap::new(), }; let chan = chan.take(); let v = blk(&exe); send_one(chan, (exe, v)); } Right(port) } }; Work::new(self, res) } } impl<'self, T:Send + Encodable + Decodable> Work<'self, T> { // FIXME(#5121) pub fn new(p: &'self Prep<'self>, e: Either>) -> Work<'self, T> { Work { prep: p, res: Some(e) } } pub fn unwrap(self) -> T { let Work { prep, res } = self; match res { None => fail!(), Some(Left(v)) => v, Some(Right(port)) => { let (exe, v) = recv_one(port); let s = json_encode(&v); do prep.ctxt.db.write |db| { db.cache(prep.fn_name, &prep.declared_inputs, &exe.discovered_inputs, &exe.discovered_outputs, s); } v } } } } //#[test] fn test() { use std::io::WriterUtil; let pth = Path("foo.c"); { let r = io::file_writer(&pth, [io::Create]); r.get_ref().write_str("int main() { return 0; }"); } let cx = Context::new(RWArc::new(Database::new(Path("db.json"))), RWArc::new(Logger::new()), Arc::new(TreeMap::new())); let s = do cx.with_prep("test1") |prep| { let subcx = cx.clone(); prep.declare_input("file", pth.to_str(), digest_file(&pth)); do prep.exec |_exe| { let out = Path("foo.o"); run::process_status("gcc", [~"foo.c", ~"-o", out.to_str()]); let _proof_of_concept = subcx.prep("subfn"); // Could run sub-rules inside here. out.to_str() } }; io::println(s); }