//! Operations and constants for `f64` // PORT import cmath::c_double::*; import cmath::c_double_targ_consts::*; // Even though this module exports everything defined in it, // because it contains re-exports, we also have to explicitly // export locally defined things. That's a bit annoying. export add, sub, mul, div, rem, lt, le, eq, ne, ge, gt; export is_positive, is_negative, is_nonpositive, is_nonnegative; export is_zero, is_infinite, is_finite; export NaN, is_NaN, infinity, neg_infinity; export consts; export logarithm; export acos, asin, atan, atan2, cbrt, ceil, copysign, cos, cosh, floor; export erf, erfc, exp, expm1, exp2, abs, abs_sub; export mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp; export lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix; export modf, pow, round, sin, sinh, sqrt, tan, tanh, tgamma, trunc; export signbit; export epsilon; export j0, j1, jn, y0, y1, yn; export num; // These are not defined inside consts:: for consistency with // the integer types // PORT check per architecture // FIXME (#1433): obtain these in a different way const radix: uint = 2u; const mantissa_digits: uint = 53u; const digits: uint = 15u; const epsilon: f64 = 2.2204460492503131e-16_f64; const min_value: f64 = 2.2250738585072014e-308_f64; const max_value: f64 = 1.7976931348623157e+308_f64; const min_exp: int = -1021; const max_exp: int = 1024; const min_10_exp: int = -307; const max_10_exp: int = 308; const NaN: f64 = 0.0_f64/0.0_f64; const infinity: f64 = 1.0_f64/0.0_f64; const neg_infinity: f64 = -1.0_f64/0.0_f64; pure fn is_NaN(f: f64) -> bool { f != f } pure fn add(x: f64, y: f64) -> f64 { return x + y; } pure fn sub(x: f64, y: f64) -> f64 { return x - y; } pure fn mul(x: f64, y: f64) -> f64 { return x * y; } pure fn div(x: f64, y: f64) -> f64 { return x / y; } pure fn rem(x: f64, y: f64) -> f64 { return x % y; } pure fn lt(x: f64, y: f64) -> bool { return x < y; } pure fn le(x: f64, y: f64) -> bool { return x <= y; } pure fn eq(x: f64, y: f64) -> bool { return x == y; } pure fn ne(x: f64, y: f64) -> bool { return x != y; } pure fn ge(x: f64, y: f64) -> bool { return x >= y; } pure fn gt(x: f64, y: f64) -> bool { return x > y; } pure fn sqrt(x: f64) -> f64 { cmath::c_double::sqrt(x as libc::c_double) as f64 } /// Returns true if `x` is a positive number, including +0.0f640 and +Infinity pure fn is_positive(x: f64) -> bool { return x > 0.0f64 || (1.0f64/x) == infinity; } /// Returns true if `x` is a negative number, including -0.0f640 and -Infinity pure fn is_negative(x: f64) -> bool { return x < 0.0f64 || (1.0f64/x) == neg_infinity; } /** * Returns true if `x` is a negative number, including -0.0f640 and -Infinity * * This is the same as `f64::is_negative`. */ pure fn is_nonpositive(x: f64) -> bool { return x < 0.0f64 || (1.0f64/x) == neg_infinity; } /** * Returns true if `x` is a positive number, including +0.0f640 and +Infinity * * This is the same as `f64::positive`. */ pure fn is_nonnegative(x: f64) -> bool { return x > 0.0f64 || (1.0f64/x) == infinity; } /// Returns true if `x` is a zero number (positive or negative zero) pure fn is_zero(x: f64) -> bool { return x == 0.0f64 || x == -0.0f64; } /// Returns true if `x`is an infinite number pure fn is_infinite(x: f64) -> bool { return x == infinity || x == neg_infinity; } /// Returns true if `x`is a finite number pure fn is_finite(x: f64) -> bool { return !(is_NaN(x) || is_infinite(x)); } // FIXME (#1999): add is_normal, is_subnormal, and fpclassify /* Module: consts */ mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // constants from cmath. /// Archimedes' constant const pi: f64 = 3.14159265358979323846264338327950288_f64; /// pi/2.0 const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64; /// pi/4.0 const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64; /// 1.0/pi const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64; /// 2.0/pi const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64; /// 2.0/sqrt(pi) const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64; /// sqrt(2.0) const sqrt2: f64 = 1.41421356237309504880168872420969808_f64; /// 1.0/sqrt(2.0) const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64; /// Euler's number const e: f64 = 2.71828182845904523536028747135266250_f64; /// log2(e) const log2_e: f64 = 1.44269504088896340735992468100189214_f64; /// log10(e) const log10_e: f64 = 0.434294481903251827651128918916605082_f64; /// ln(2.0) const ln_2: f64 = 0.693147180559945309417232121458176568_f64; /// ln(10.0) const ln_10: f64 = 2.30258509299404568401799145468436421_f64; } pure fn signbit(x: f64) -> int { if is_negative(x) { return 1; } else { return 0; } } #[cfg(target_os="linux")] #[cfg(target_os="macos")] #[cfg(target_os="win32")] pure fn logarithm(n: f64, b: f64) -> f64 { return log2(n) / log2(b); } #[cfg(target_os="freebsd")] pure fn logarithm(n: f64, b: f64) -> f64 { // FIXME (#2000): check if it is good to use log2 instead of ln here; in // theory should be faster since the radix is 2 return ln(n) / ln(b); } #[cfg(target_os="freebsd")] pure fn log2(n: f64) -> f64 { return ln(n) / consts::ln_2; } impl f64: num::Num { pure fn add(&&other: f64) -> f64 { return self + other; } pure fn sub(&&other: f64) -> f64 { return self - other; } pure fn mul(&&other: f64) -> f64 { return self * other; } pure fn div(&&other: f64) -> f64 { return self / other; } pure fn modulo(&&other: f64) -> f64 { return self % other; } pure fn neg() -> f64 { return -self; } pure fn to_int() -> int { return self as int; } pure fn from_int(n: int) -> f64 { return n as f64; } } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //