/* Module: str String manipulation. */ export eq, lteq, hash, is_empty, is_not_empty, is_whitespace, byte_len, byte_len_range, index, rindex, find, starts_with, ends_with, substr, slice, split, splitn, split_str, split_func, split_char, lines, lines_any, words, concat, connect, to_lower, to_upper, replace, char_slice, trim_left, trim_right, trim, unshift_char, shift_char, pop_char, push_char, is_utf8, from_chars, to_chars, char_len, char_len_range, char_at, bytes, is_ascii, shift_byte, pop_byte, unsafe_from_byte, unsafe_from_bytes, from_char, char_range_at, from_cstr, sbuf, as_buf, push_byte, utf8_char_width, safe_slice, contains, iter_chars, chars_iter, bytes_iter, words_iter, lines_iter, loop_chars, loop_chars_sub, escape, any, all, map, windowed; #[abi = "cdecl"] native mod rustrt { fn rust_str_push(&s: str, ch: u8); } /* Function: eq Bytewise string equality */ pure fn eq(&&a: str, &&b: str) -> bool { a == b } /* Function: lteq Bytewise less than or equal */ pure fn lteq(&&a: str, &&b: str) -> bool { a <= b } /* Function: hash String hash function */ fn hash(&&s: str) -> uint { // djb hash. // FIXME: replace with murmur. let u: uint = 5381u; for c: u8 in s { u *= 33u; u += c as uint; } ret u; } // UTF-8 tags and ranges const tag_cont_u8: u8 = 128u8; const tag_cont: uint = 128u; const max_one_b: uint = 128u; const tag_two_b: uint = 192u; const max_two_b: uint = 2048u; const tag_three_b: uint = 224u; const max_three_b: uint = 65536u; const tag_four_b: uint = 240u; const max_four_b: uint = 2097152u; const tag_five_b: uint = 248u; const max_five_b: uint = 67108864u; const tag_six_b: uint = 252u; /* Function: is_utf8 Determines if a vector uf bytes contains valid UTF-8 */ fn is_utf8(v: [u8]) -> bool { let i = 0u; let total = vec::len::(v); while i < total { let chsize = utf8_char_width(v[i]); if chsize == 0u { ret false; } if i + chsize > total { ret false; } i += 1u; while chsize > 1u { if v[i] & 192u8 != tag_cont_u8 { ret false; } i += 1u; chsize -= 1u; } } ret true; } /* Function: is_ascii Determines if a string contains only ASCII characters */ fn is_ascii(s: str) -> bool { let i: uint = byte_len(s); while i > 0u { i -= 1u; if s[i] & 128u8 != 0u8 { ret false; } } ret true; } /* Predicate: is_empty Returns true if the string has length 0 */ pure fn is_empty(s: str) -> bool { for c: u8 in s { ret false; } ret true; } /* Predicate: is_not_empty Returns true if the string has length greater than 0 */ pure fn is_not_empty(s: str) -> bool { !is_empty(s) } /* Function: is_whitespace Returns true if the string contains only whitespace */ fn is_whitespace(s: str) -> bool { ret loop_chars(s, char::is_whitespace); } /* Function: byte_len Returns the length in bytes of a string */ pure fn byte_len(s: str) -> uint unsafe { let v: [u8] = unsafe::reinterpret_cast(s); let vlen = vec::len(v); unsafe::leak(v); // There should always be a null terminator assert (vlen > 0u); ret vlen - 1u; } /* Function: byte_len_range As byte_len but for a substring Parameters: s - A string byte_offset - The byte offset at which to start in the string char_len - The number of chars (not bytes!) in the range Returns: The number of bytes in the substring starting at `byte_offset` and containing `char_len` chars. Safety note: This function fails if `byte_offset` or `char_len` do not represent valid positions in `s` */ fn byte_len_range(s: str, byte_offset: uint, char_len: uint) -> uint { let i = byte_offset; let chars = 0u; while chars < char_len { let chsize = utf8_char_width(s[i]); assert (chsize > 0u); i += chsize; chars += 1u; } ret i - byte_offset; } /* Function: bytes Converts a string to a vector of bytes. The result vector is not null-terminated. */ fn bytes(s: str) -> [u8] unsafe { let v = unsafe::reinterpret_cast(s); let vcopy = vec::slice(v, 0u, vec::len(v) - 1u); unsafe::leak(v); ret vcopy; } /* Function: unsafe_from_bytes Converts a vector of bytes to a string. Does not verify that the vector contains valid UTF-8. */ fn unsafe_from_bytes(v: [const u8]) -> str unsafe { let vcopy: [u8] = v + [0u8]; let scopy: str = unsafe::reinterpret_cast(vcopy); unsafe::leak(vcopy); ret scopy; } /* Function: unsafe_from_byte Converts a byte to a string. Does not verify that the byte is valid UTF-8. */ fn unsafe_from_byte(u: u8) -> str { unsafe_from_bytes([u]) } fn push_utf8_bytes(&s: str, ch: char) { let code = ch as uint; let bytes = if code < max_one_b { [code as u8] } else if code < max_two_b { [code >> 6u & 31u | tag_two_b as u8, code & 63u | tag_cont as u8] } else if code < max_three_b { [code >> 12u & 15u | tag_three_b as u8, code >> 6u & 63u | tag_cont as u8, code & 63u | tag_cont as u8] } else if code < max_four_b { [code >> 18u & 7u | tag_four_b as u8, code >> 12u & 63u | tag_cont as u8, code >> 6u & 63u | tag_cont as u8, code & 63u | tag_cont as u8] } else if code < max_five_b { [code >> 24u & 3u | tag_five_b as u8, code >> 18u & 63u | tag_cont as u8, code >> 12u & 63u | tag_cont as u8, code >> 6u & 63u | tag_cont as u8, code & 63u | tag_cont as u8] } else { [code >> 30u & 1u | tag_six_b as u8, code >> 24u & 63u | tag_cont as u8, code >> 18u & 63u | tag_cont as u8, code >> 12u & 63u | tag_cont as u8, code >> 6u & 63u | tag_cont as u8, code & 63u | tag_cont as u8] }; push_bytes(s, bytes); } /* Function: from_char Convert a char to a string */ fn from_char(ch: char) -> str { let buf = ""; push_utf8_bytes(buf, ch); ret buf; } /* Function: from_chars Convert a vector of chars to a string */ fn from_chars(chs: [char]) -> str { let buf = ""; for ch: char in chs { push_utf8_bytes(buf, ch); } ret buf; } /* Function: utf8_char_width Given a first byte, determine how many bytes are in this UTF-8 character */ pure fn utf8_char_width(b: u8) -> uint { let byte: uint = b as uint; if byte < 128u { ret 1u; } if byte < 192u { ret 0u; // Not a valid start byte } if byte < 224u { ret 2u; } if byte < 240u { ret 3u; } if byte < 248u { ret 4u; } if byte < 252u { ret 5u; } ret 6u; } /* Function: char_range_at Pluck a character out of a string and return the index of the next character. This function can be used to iterate over the unicode characters of a string. Example: > let s = "中华Việt Nam"; > let i = 0u; > while i < str::byte_len(s) { > let {ch, next} = str::char_range_at(s, i); > std::io::println(#fmt("%u: %c",i,ch)); > i = next; > } Example output: 0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m Parameters: s - The string i - The byte offset of the char to extract Returns: A record {ch: char, next: uint} containing the char value and the byte index of the next unicode character. Failure: If `i` is greater than or equal to the length of the string. If `i` is not the index of the beginning of a valid UTF-8 character. */ fn char_range_at(s: str, i: uint) -> {ch: char, next: uint} { let b0 = s[i]; let w = utf8_char_width(b0); assert (w != 0u); if w == 1u { ret {ch: b0 as char, next: i + 1u}; } let val = 0u; let end = i + w; let i = i + 1u; while i < end { let byte = s[i]; assert (byte & 192u8 == tag_cont_u8); val <<= 6u; val += byte & 63u8 as uint; i += 1u; } // Clunky way to get the right bits from the first byte. Uses two shifts, // the first to clip off the marker bits at the left of the byte, and then // a second (as uint) to get it to the right position. val += (b0 << (w + 1u as u8) as uint) << ((w - 1u) * 6u - w - 1u); ret {ch: val as char, next: i}; } /* Function: char_at Pluck a character out of a string */ fn char_at(s: str, i: uint) -> char { ret char_range_at(s, i).ch; } /* Function: iter_chars Iterate over the characters in a string */ fn iter_chars(s: str, it: fn(char)) { let pos = 0u, len = byte_len(s); while (pos < len) { let {ch, next} = char_range_at(s, pos); pos = next; it(ch); } } /* Function: chars_iter Iterate over the characters in a string FIXME: A synonym to iter_chars */ fn chars_iter(ss: str, it: fn&(char)) { iter_chars(ss, it) } /* Function: bytes_iter Iterate over the bytes in a string FIXME: Should it really include the last byte '\0'? */ fn bytes_iter(ss: str, it: fn&(u8)) { let pos = 0u; let len = byte_len(ss); while (pos < len) { it(ss[pos]); pos += 1u; } } /* Function: loop_chars Loop through a string, char by char Parameters: s - A string to traverse. It may be empty. it - A block to execute with each consecutive character of `s`. Return `true` to continue, `false` to stop. Returns: `true` If execution proceeded correctly, `false` if it was interrupted, that is if `it` returned `false` at any point. */ fn loop_chars(s: str, it: fn(char) -> bool) -> bool{ ret loop_chars_sub(s, 0u, byte_len(s), it); } /* Function: loop_chars_sub Loop through a substring, char by char Parameters: s - A string to traverse. It may be empty. byte_offset - The byte offset at which to start in the string. byte_len - The number of bytes to traverse in the string it - A block to execute with each consecutive character of `s`. Return `true` to continue, `false` to stop. Returns: `true` If execution proceeded correctly, `false` if it was interrupted, that is if `it` returned `false` at any point. Safety note: - This function does not check whether the substring is valid. - This function fails if `byte_offset` or `byte_len` do not represent valid positions inside `s` */ fn loop_chars_sub(s: str, byte_offset: uint, byte_len: uint, it: fn(char) -> bool) -> bool { let i = byte_offset; let result = true; while i < byte_len { let {ch, next} = char_range_at(s, i); if !it(ch) {result = false; break;} i = next; } ret result; } /* Function: char_len Count the number of unicode characters in a string */ fn char_len(s: str) -> uint { ret char_len_range(s, 0u, byte_len(s)); } /* Function: char_len_range As char_len but for a slice of a string Parameters: s - A valid string byte_start - The position inside `s` where to start counting in bytes. byte_len - The number of bytes of `s` to take into account. Returns: The number of Unicode characters in `s` in segment [byte_start, byte_start+len( . Safety note: - This function does not check whether the substring is valid. - This function fails if `byte_offset` or `byte_len` do not represent valid positions inside `s` */ fn char_len_range(s: str, byte_start: uint, byte_len: uint) -> uint { let i = byte_start; let len = 0u; while i < byte_len { let chsize = utf8_char_width(s[i]); assert (chsize > 0u); len += 1u; i += chsize; } assert (i == byte_len); ret len; } /* Function: to_chars Convert a string to a vector of characters */ fn to_chars(s: str) -> [char] { let buf: [char] = []; let i = 0u; let len = byte_len(s); while i < len { let cur = char_range_at(s, i); buf += [cur.ch]; i = cur.next; } ret buf; } /* Function: push_char Append a character to a string */ fn push_char(&s: str, ch: char) { s += from_char(ch); } /* Function: pop_char Remove the final character from a string and return it. Failure: If the string does not contain any characters. */ fn pop_char(&s: str) -> char { let end = byte_len(s); while end > 0u && s[end - 1u] & 192u8 == tag_cont_u8 { end -= 1u; } assert (end > 0u); let ch = char_at(s, end - 1u); s = substr(s, 0u, end - 1u); ret ch; } /* Function: shift_char Remove the first character from a string and return it. Failure: If the string does not contain any characters. */ fn shift_char(&s: str) -> char { let r = char_range_at(s, 0u); s = substr(s, r.next, byte_len(s) - r.next); ret r.ch; } /* Function: unshift_char Prepend a char to a string */ fn unshift_char(&s: str, ch: char) { s = from_char(ch) + s; } /* Function: index Returns the index of the first matching byte. Returns -1 if no match is found. */ fn index(s: str, c: u8) -> int { let i: int = 0; for k: u8 in s { if k == c { ret i; } i += 1; } ret -1; } /* Function: rindex Returns the index of the last matching byte. Returns -1 if no match is found. */ fn rindex(s: str, c: u8) -> int { let n: int = byte_len(s) as int; while n >= 0 { if s[n] == c { ret n; } n -= 1; } ret n; } /* Function: find Finds the index of the first matching substring. Returns -1 if `haystack` does not contain `needle`. Parameters: haystack - The string to look in needle - The string to look for Returns: The index of the first occurance of `needle`, or -1 if not found. */ fn find(haystack: str, needle: str) -> int { let haystack_len: int = byte_len(haystack) as int; let needle_len: int = byte_len(needle) as int; if needle_len == 0 { ret 0; } fn match_at(haystack: str, needle: str, i: int) -> bool { let j: int = i; for c: u8 in needle { if haystack[j] != c { ret false; } j += 1; } ret true; } let i: int = 0; while i <= haystack_len - needle_len { if match_at(haystack, needle, i) { ret i; } i += 1; } ret -1; } /* Function: contains Returns true if one string contains another Parameters: haystack - The string to look in needle - The string to look for */ fn contains(haystack: str, needle: str) -> bool { 0 <= find(haystack, needle) } /* Function: starts_with Returns true if one string starts with another Parameters: haystack - The string to look in needle - The string to look for */ fn starts_with(haystack: str, needle: str) -> bool { let haystack_len: uint = byte_len(haystack); let needle_len: uint = byte_len(needle); if needle_len == 0u { ret true; } if needle_len > haystack_len { ret false; } ret eq(substr(haystack, 0u, needle_len), needle); } /* Function: ends_with Returns true if one string ends with another haystack - The string to look in needle - The string to look for */ fn ends_with(haystack: str, needle: str) -> bool { let haystack_len: uint = byte_len(haystack); let needle_len: uint = byte_len(needle); ret if needle_len == 0u { true } else if needle_len > haystack_len { false } else { eq(substr(haystack, haystack_len - needle_len, needle_len), needle) }; } /* Function: substr Take a substring of another. Returns a string containing `len` bytes starting at byte offset `begin`. This function is not unicode-safe. Failure: If `begin` + `len` is is greater than the byte length of the string */ fn substr(s: str, begin: uint, len: uint) -> str { ret slice(s, begin, begin + len); } /* Function: slice Takes a bytewise slice from a string. Returns the substring from [`begin`..`end`). This function is not unicode-safe. Failure: - If begin is greater than end. - If end is greater than the length of the string. */ fn slice(s: str, begin: uint, end: uint) -> str unsafe { // FIXME: Typestate precondition assert (begin <= end); assert (end <= byte_len(s)); let v: [u8] = unsafe::reinterpret_cast(s); let v2 = vec::slice(v, begin, end); unsafe::leak(v); v2 += [0u8]; let s2: str = unsafe::reinterpret_cast(v2); unsafe::leak(v2); ret s2; } /* Function: safe_slice */ fn safe_slice(s: str, begin: uint, end: uint) : uint::le(begin, end) -> str { // would need some magic to make this a precondition assert (end <= byte_len(s)); ret slice(s, begin, end); } /* Function: shift_byte Removes the first byte from a string and returns it. This function is not unicode-safe. */ fn shift_byte(&s: str) -> u8 { let len = byte_len(s); assert (len > 0u); let b = s[0]; s = substr(s, 1u, len - 1u); ret b; } /* Function: pop_byte Removes the last byte from a string and returns it. This function is not unicode-safe. */ fn pop_byte(&s: str) -> u8 { let len = byte_len(s); assert (len > 0u); let b = s[len - 1u]; s = substr(s, 0u, len - 1u); ret b; } /* Function: push_byte Appends a byte to a string. This function is not unicode-safe. */ fn push_byte(&s: str, b: u8) { rustrt::rust_str_push(s, b); } /* Function: push_bytes Appends a vector of bytes to a string. This function is not unicode-safe. */ fn push_bytes(&s: str, bytes: [u8]) { for byte in bytes { rustrt::rust_str_push(s, byte); } } /* Function: split Split a string at each occurance of a given separator Returns: A vector containing all the strings between each occurance of the separator FIXME: should be renamed to split_byte */ fn split(s: str, sep: u8) -> [str] { let v: [str] = []; let accum: str = ""; let ends_with_sep: bool = false; for c: u8 in s { if c == sep { v += [accum]; accum = ""; ends_with_sep = true; } else { accum += unsafe_from_byte(c); ends_with_sep = false; } } if byte_len(accum) != 0u || ends_with_sep { v += [accum]; } ret v; } /* Function: splitn Split a string at each occurance of a given separator up to count times. Returns: A vector containing all the strings between each occurance of the separator */ fn splitn(s: str, sep: u8, count: uint) -> [str] { let v = []; let accum = ""; let n = count; let ends_with_sep: bool = false; for c in s { if n > 0u && c == sep { n -= 1u; v += [accum]; accum = ""; ends_with_sep = true; } else { accum += unsafe_from_byte(c); ends_with_sep = false; } } if byte_len(accum) != 0u || ends_with_sep { v += [accum]; } ret v; } /* Function: split_str Splits a string at each occurrence of the given separator string. Empty leading fields are suppressed, and empty trailing fields are preserved. Returns: A vector containing all the strings between each occurrence of the separator. FIXME: should behave like split and split_char: assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", "."); */ fn split_str(s: str, sep: str) -> [str] { assert byte_len(sep) > 0u; let v: [str] = [], accum = "", sep_match = 0u, leading = true; for c: u8 in s { // Did we match the entire separator? if sep_match == byte_len(sep) { if !leading { v += [accum]; } accum = ""; sep_match = 0u; } if c == sep[sep_match] { sep_match += 1u; } else { sep_match = 0u; accum += unsafe_from_byte(c); leading = false; } } if byte_len(accum) > 0u { v += [accum]; } if sep_match == byte_len(sep) { v += [""]; } ret v; } /* Function: split_func Splits a string into substrings using a function (unicode safe) FIXME: will be renamed to split. */ fn split_func(ss: str, sepfn: fn&(cc: char)->bool) -> [str] { let vv: [str] = []; let accum: str = ""; let ends_with_sep: bool = false; str::iter_chars(ss, {|cc| if sepfn(cc) { vv += [accum]; accum = ""; ends_with_sep = true; } else { str::push_char(accum, cc); ends_with_sep = false; } }); if char_len(accum) >= 0u || ends_with_sep { vv += [accum]; } ret vv; } /* Function: split_char Splits a string into a vector of the substrings separated by a given character */ fn split_char(ss: str, cc: char) -> [str] { split_func(ss, {|kk| kk == cc}) } /* Function: lines Splits a string into a vector of the substrings separated by LF ('\n') */ fn lines(ss: str) -> [str] { split_func(ss, {|cc| cc == '\n'}) } /* Function: lines_any Splits a string into a vector of the substrings separated by LF ('\n') and/or CR LF ('\r\n') */ fn lines_any(ss: str) -> [str] { vec::map(lines(ss), {|s| trim_right(s)}) } /* Function: words Splits a string into a vector of the substrings separated by whitespace */ fn words(ss: str) -> [str] { ret vec::filter( split_func(ss, {|cc| char::is_whitespace(cc)}), {|w| 0u < str::char_len(w)}); } /* Function: words_iter Apply a function to each word */ fn words_iter(ss: str, ff: fn&(&&str)) { vec::iter(words(ss), ff) } /* Function: lines_iter Apply a function to each lines (by '\n') */ fn lines_iter(ss: str, ff: fn&(&&str)) { vec::iter(lines(ss), ff) } /* Function: concat Concatenate a vector of strings */ fn concat(v: [str]) -> str { let s: str = ""; for ss: str in v { s += ss; } ret s; } /* Function: connect Concatenate a vector of strings, placing a given separator between each */ fn connect(v: [str], sep: str) -> str { let s: str = ""; let first: bool = true; for ss: str in v { if first { first = false; } else { s += sep; } s += ss; } ret s; } /* Function: to_lower Convert a string to lowercase */ fn to_lower(s: str) -> str { let outstr = ""; iter_chars(s) { |c| push_char(outstr, char::to_lower(c)); } ret outstr; } /* Function: to_upper Convert a string to uppercase */ fn to_upper(s: str) -> str { let outstr = ""; iter_chars(s) { |c| push_char(outstr, char::to_upper(c)); } ret outstr; } // FIXME: This is super-inefficient /* Function: replace Replace all occurances of one string with another Parameters: s - The string containing substrings to replace from - The string to replace to - The replacement string Returns: The original string with all occurances of `from` replaced with `to` */ fn replace(s: str, from: str, to: str) : is_not_empty(from) -> str { // FIXME (694): Shouldn't have to check this check (is_not_empty(from)); if byte_len(s) == 0u { ret ""; } else if starts_with(s, from) { ret to + replace(slice(s, byte_len(from), byte_len(s)), from, to); } else { let idx = find(s, from); if idx == -1 { ret s; } ret char_slice(s, 0u, idx as uint) + to + replace(char_slice(s, idx as uint + char_len(from), char_len(s)), from, to); } } // FIXME: Also not efficient /* Function: char_slice Unicode-safe slice. Returns a slice of the given string containing the characters in the range [`begin`..`end`). `begin` and `end` are character indexes, not byte indexes. Failure: - If begin is greater than end - If end is greater than the character length of the string */ fn char_slice(s: str, begin: uint, end: uint) -> str { from_chars(vec::slice(to_chars(s), begin, end)) } /* Function: trim_left Returns a string with leading whitespace removed. */ fn trim_left(s: str) -> str { fn count_whities(s: [char]) -> uint { let i = 0u; while i < vec::len(s) { if !char::is_whitespace(s[i]) { break; } i += 1u; } ret i; } let chars = to_chars(s); let whities = count_whities(chars); ret from_chars(vec::slice(chars, whities, vec::len(chars))); } /* Function: trim_right Returns a string with trailing whitespace removed. */ fn trim_right(s: str) -> str { fn count_whities(s: [char]) -> uint { let i = vec::len(s); while 0u < i { if !char::is_whitespace(s[i - 1u]) { break; } i -= 1u; } ret i; } let chars = to_chars(s); let whities = count_whities(chars); ret from_chars(vec::slice(chars, 0u, whities)); } /* Function: trim Returns a string with leading and trailing whitespace removed */ fn trim(s: str) -> str { trim_left(trim_right(s)) } /* Type: sbuf An unsafe buffer of bytes. Corresponds to a C char pointer. */ type sbuf = *u8; // NB: This is intentionally unexported because it's easy to misuse (there's // no guarantee that the string is rooted). Instead, use as_buf below. unsafe fn buf(s: str) -> sbuf { let saddr = ptr::addr_of(s); let vaddr: *[u8] = unsafe::reinterpret_cast(saddr); let buf = vec::to_ptr(*vaddr); ret buf; } /* Function: as_buf Work with the byte buffer of a string. Allows for unsafe manipulation of strings, which is useful for native interop. Example: > let s = str::as_buf("PATH", { |path_buf| libc::getenv(path_buf) }); */ fn as_buf(s: str, f: fn(sbuf) -> T) -> T unsafe { let buf = buf(s); f(buf) } /* Function: from_cstr Create a Rust string from a null-terminated C string */ unsafe fn from_cstr(cstr: sbuf) -> str { let res = ""; let start = cstr; let curr = start; let i = 0u; while *curr != 0u8 { push_byte(res, *curr); i += 1u; curr = ptr::offset(start, i); } ret res; } /* Function: escape_char Escapes a single character. */ fn escape_char(c: char) -> str { alt c { '"' { "\\\"" } '\\' { "\\\\" } '\n' { "\\n" } '\t' { "\\t" } '\r' { "\\r" } // FIXME: uncomment this when extfmt is moved to core // in a snapshot. // '\x00' to '\x1f' { #fmt["\\x%02x", c as uint] } v { from_char(c) } } } /* Function: escape Escapes special characters inside the string, making it safe for transfer. */ fn escape(s: str) -> str { let r = ""; loop_chars(s, { |c| r += escape_char(c); true }); r } /* Function: all Return true if a predicate matches all characters or if the string contains no characters // FIXME: a synonym to loop_chars */ fn all(ss: str, ff: fn&(char) -> bool) -> bool { str::loop_chars(ss, ff) } /* Function: any Return true if a predicate matches any character (and false if it matches none or there are no characters) */ fn any(ss: str, pred: fn&(char) -> bool) -> bool { !all(ss, {|cc| !pred(cc)}) } /* Function: map Apply a function to each character */ fn map(ss: str, ff: fn&(char) -> char) -> str { let result = ""; str::iter_chars(ss, {|cc| str::push_char(result, ff(cc)); }); ret result; } /* Function: windowed Create a vector of substrings of size `nn` */ fn windowed(nn: uint, ss: str) -> [str] { let ww = []; let len = str::char_len(ss); assert 1u <= nn; let ii = 0u; while ii+nn <= len { let w = char_slice( ss, ii, ii+nn ); vec::push(ww,w); ii += 1u; } ret ww; } #[cfg(test)] mod tests { #[test] fn test_eq() { assert (eq("", "")); assert (eq("foo", "foo")); assert (!eq("foo", "bar")); } #[test] fn test_lteq() { assert (lteq("", "")); assert (lteq("", "foo")); assert (lteq("foo", "foo")); assert (!eq("foo", "bar")); } #[test] fn test_bytes_len() { assert (byte_len("") == 0u); assert (byte_len("hello world") == 11u); assert (byte_len("\x63") == 1u); assert (byte_len("\xa2") == 2u); assert (byte_len("\u03c0") == 2u); assert (byte_len("\u2620") == 3u); assert (byte_len("\U0001d11e") == 4u); } #[test] fn test_index_and_rindex() { assert (index("hello", 'e' as u8) == 1); assert (index("hello", 'o' as u8) == 4); assert (index("hello", 'z' as u8) == -1); assert (rindex("hello", 'l' as u8) == 3); assert (rindex("hello", 'h' as u8) == 0); assert (rindex("hello", 'z' as u8) == -1); } #[test] fn test_split() { fn t(s: str, c: char, u: [str]) { log(debug, "split: " + s); let v = split(s, c as u8); #debug("split to: "); log(debug, v); assert (vec::all2(v, u, { |a,b| a == b })); } t("abc.hello.there", '.', ["abc", "hello", "there"]); t(".hello.there", '.', ["", "hello", "there"]); t("...hello.there.", '.', ["", "", "", "hello", "there", ""]); } #[test] fn test_splitn() { fn t(s: str, c: char, n: uint, u: [str]) { log(debug, "splitn: " + s); let v = splitn(s, c as u8, n); #debug("split to: "); log(debug, v); #debug("comparing vs. "); log(debug, u); assert (vec::all2(v, u, { |a,b| a == b })); } t("abc.hello.there", '.', 0u, ["abc.hello.there"]); t("abc.hello.there", '.', 1u, ["abc", "hello.there"]); t("abc.hello.there", '.', 2u, ["abc", "hello", "there"]); t("abc.hello.there", '.', 3u, ["abc", "hello", "there"]); t(".hello.there", '.', 0u, [".hello.there"]); t(".hello.there", '.', 1u, ["", "hello.there"]); t("...hello.there.", '.', 3u, ["", "", "", "hello.there."]); t("...hello.there.", '.', 5u, ["", "", "", "hello", "there", ""]); } #[test] fn test_split_str() { fn t(s: str, sep: str, i: int, k: str) { let v = split_str(s, sep); assert eq(v[i], k); } //FIXME: should behave like split and split_char: //assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", "."); t("abc::hello::there", "::", 0, "abc"); t("abc::hello::there", "::", 1, "hello"); t("abc::hello::there", "::", 2, "there"); t("::hello::there", "::", 0, "hello"); t("hello::there::", "::", 2, ""); t("::hello::there::", "::", 2, ""); t("ประเทศไทย中华Việt Nam", "中华", 0, "ประเทศไทย"); t("ประเทศไทย中华Việt Nam", "中华", 1, "Việt Nam"); } #[test] fn test_split_func () { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == split_func (data, {|cc| cc == '华'}); assert ["", "", "XXX", "YYY", ""] == split_func("zzXXXzYYYz", char::is_lowercase); assert ["zz", "", "", "z", "", "", "z"] == split_func("zzXXXzYYYz", char::is_uppercase); assert ["",""] == split_func("z", {|cc| cc == 'z'}); assert [""] == split_func("", {|cc| cc == 'z'}); assert ["ok"] == split_func("ok", {|cc| cc == 'z'}); } #[test] fn test_split_char () { let data = "ประเทศไทย中华Việt Nam"; assert ["ประเทศไทย中", "Việt Nam"] == split_char(data, '华'); assert ["", "", "XXX", "YYY", ""] == split_char("zzXXXzYYYz", 'z'); assert ["",""] == split_char("z", 'z'); assert [""] == split_char("", 'z'); assert ["ok"] == split_char("ok", 'z'); } #[test] fn test_lines () { let lf = "\nMary had a little lamb\nLittle lamb\n"; let crlf = "\r\nMary had a little lamb\r\nLittle lamb\r\n"; assert ["", "Mary had a little lamb", "Little lamb", ""] == lines(lf); assert ["", "Mary had a little lamb", "Little lamb", ""] == lines_any(lf); assert ["\r", "Mary had a little lamb\r", "Little lamb\r", ""] == lines(crlf); assert ["", "Mary had a little lamb", "Little lamb", ""] == lines_any(crlf); assert [""] == lines (""); assert [""] == lines_any(""); assert ["",""] == lines ("\n"); assert ["",""] == lines_any("\n"); assert ["banana"] == lines ("banana"); assert ["banana"] == lines_any("banana"); } #[test] fn test_words () { let data = "\nMary had a little lamb\nLittle lamb\n"; assert ["Mary","had","a","little","lamb","Little","lamb"] == words(data); assert ["ok"] == words("ok"); assert [] == words(""); } #[test] fn test_find() { fn t(haystack: str, needle: str, i: int) { let j: int = find(haystack, needle); log(debug, "searched for " + needle); log(debug, j); assert (i == j); } t("this is a simple", "is a", 5); t("this is a simple", "is z", -1); t("this is a simple", "", 0); t("this is a simple", "simple", 10); t("this", "simple", -1); } #[test] fn test_substr() { fn t(a: str, b: str, start: int) { assert (eq(substr(a, start as uint, byte_len(b)), b)); } t("hello", "llo", 2); t("hello", "el", 1); t("substr should not be a challenge", "not", 14); } #[test] fn test_concat() { fn t(v: [str], s: str) { assert (eq(concat(v), s)); } t(["you", "know", "I'm", "no", "good"], "youknowI'mnogood"); let v: [str] = []; t(v, ""); t(["hi"], "hi"); } #[test] fn test_connect() { fn t(v: [str], sep: str, s: str) { assert (eq(connect(v, sep), s)); } t(["you", "know", "I'm", "no", "good"], " ", "you know I'm no good"); let v: [str] = []; t(v, " ", ""); t(["hi"], " ", "hi"); } #[test] fn test_to_upper() { // to_upper doesn't understand unicode yet, // but we need to at least preserve it let unicode = "\u65e5\u672c"; let input = "abcDEF" + unicode + "xyz:.;"; let expected = "ABCDEF" + unicode + "XYZ:.;"; let actual = to_upper(input); assert (eq(expected, actual)); } #[test] fn test_slice() { assert (eq("ab", slice("abc", 0u, 2u))); assert (eq("bc", slice("abc", 1u, 3u))); assert (eq("", slice("abc", 1u, 1u))); fn a_million_letter_a() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "aaaaaaaaaa"; i += 1; } ret rs; } fn half_a_million_letter_a() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "aaaaa"; i += 1; } ret rs; } assert (eq(half_a_million_letter_a(), slice(a_million_letter_a(), 0u, 500000u))); } #[test] fn test_starts_with() { assert (starts_with("", "")); assert (starts_with("abc", "")); assert (starts_with("abc", "a")); assert (!starts_with("a", "abc")); assert (!starts_with("", "abc")); } #[test] fn test_ends_with() { assert (ends_with("", "")); assert (ends_with("abc", "")); assert (ends_with("abc", "c")); assert (!ends_with("a", "abc")); assert (!ends_with("", "abc")); } #[test] fn test_is_empty() { assert (is_empty("")); assert (!is_empty("a")); } #[test] fn test_is_not_empty() { assert (is_not_empty("a")); assert (!is_not_empty("")); } #[test] fn test_replace() { let a = "a"; check (is_not_empty(a)); assert (replace("", a, "b") == ""); assert (replace("a", a, "b") == "b"); assert (replace("ab", a, "b") == "bb"); let test = "test"; check (is_not_empty(test)); assert (replace(" test test ", test, "toast") == " toast toast "); assert (replace(" test test ", test, "") == " "); } #[test] fn test_char_slice() { assert (eq("ab", char_slice("abc", 0u, 2u))); assert (eq("bc", char_slice("abc", 1u, 3u))); assert (eq("", char_slice("abc", 1u, 1u))); assert (eq("\u65e5", char_slice("\u65e5\u672c", 0u, 1u))); let data = "ประเทศไทย中华"; assert (eq("ป", char_slice(data, 0u, 1u))); assert (eq("ร", char_slice(data, 1u, 2u))); assert (eq("华", char_slice(data, 10u, 11u))); assert (eq("", char_slice(data, 1u, 1u))); fn a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华华华华华华"; i += 1; } ret rs; } fn half_a_million_letter_X() -> str { let i = 0; let rs = ""; while i < 100000 { rs += "华华华华华"; i += 1; } ret rs; } assert (eq(half_a_million_letter_X(), char_slice(a_million_letter_X(), 0u, 500000u))); } #[test] fn test_trim_left() { assert (trim_left("") == ""); assert (trim_left("a") == "a"); assert (trim_left(" ") == ""); assert (trim_left(" blah") == "blah"); assert (trim_left(" \u3000 wut") == "wut"); assert (trim_left("hey ") == "hey "); } #[test] fn test_trim_right() { assert (trim_right("") == ""); assert (trim_right("a") == "a"); assert (trim_right(" ") == ""); assert (trim_right("blah ") == "blah"); assert (trim_right("wut \u3000 ") == "wut"); assert (trim_right(" hey") == " hey"); } #[test] fn test_trim() { assert (trim("") == ""); assert (trim("a") == "a"); assert (trim(" ") == ""); assert (trim(" blah ") == "blah"); assert (trim("\nwut \u3000 ") == "wut"); assert (trim(" hey dude ") == "hey dude"); } #[test] fn test_is_whitespace() { assert (is_whitespace("")); assert (is_whitespace(" ")); assert (is_whitespace("\u2009")); // Thin space assert (is_whitespace(" \n\t ")); assert (!is_whitespace(" _ ")); } #[test] fn test_is_ascii() { assert (is_ascii("")); assert (is_ascii("a")); assert (!is_ascii("\u2009")); } #[test] fn test_shift_byte() { let s = "ABC"; let b = shift_byte(s); assert (s == "BC"); assert (b == 65u8); } #[test] fn test_pop_byte() { let s = "ABC"; let b = pop_byte(s); assert (s == "AB"); assert (b == 67u8); } #[test] fn test_unsafe_from_bytes() { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8]; let b = unsafe_from_bytes(a); assert (b == "AAAAAAA"); } #[test] fn test_from_cstr() unsafe { let a = [65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::to_ptr(a); let c = from_cstr(b); assert (c == "AAAAAAA"); } #[test] fn test_as_buf() unsafe { let a = "Abcdefg"; let b = as_buf(a, {|buf| assert (*buf == 65u8); 100 }); assert (b == 100); } #[test] fn test_as_buf_small() unsafe { let a = "A"; let b = as_buf(a, {|buf| assert (*buf == 65u8); 100 }); assert (b == 100); } #[test] fn test_as_buf2() unsafe { let s = "hello"; let sb = as_buf(s, {|b| b }); let s_cstr = from_cstr(sb); assert (eq(s_cstr, s)); } #[test] fn vec_str_conversions() { let s1: str = "All mimsy were the borogoves"; let v: [u8] = bytes(s1); let s2: str = unsafe_from_bytes(v); let i: uint = 0u; let n1: uint = byte_len(s1); let n2: uint = vec::len::(v); assert (n1 == n2); while i < n1 { let a: u8 = s1[i]; let b: u8 = s2[i]; log(debug, a); log(debug, b); assert (a == b); i += 1u; } } #[test] fn test_contains() { assert contains("abcde", "bcd"); assert contains("abcde", "abcd"); assert contains("abcde", "bcde"); assert contains("abcde", ""); assert contains("", ""); assert !contains("abcde", "def"); assert !contains("", "a"); } #[test] fn test_iter_chars() { let i = 0; iter_chars("x\u03c0y") {|ch| alt i { 0 { assert ch == 'x'; } 1 { assert ch == '\u03c0'; } 2 { assert ch == 'y'; } } i += 1; } iter_chars("") {|_ch| fail; } // should not fail } #[test] fn test_chars_iter() { let i = 0; chars_iter("x\u03c0y") {|ch| alt i { 0 { assert ch == 'x'; } 1 { assert ch == '\u03c0'; } 2 { assert ch == 'y'; } } i += 1; } chars_iter("") {|_ch| fail; } // should not fail } #[test] fn test_bytes_iter() { let i = 0; bytes_iter("xyz") {|bb| alt i { 0 { assert bb == 'x' as u8; } 1 { assert bb == 'y' as u8; } 2 { assert bb == 'z' as u8; } } i += 1; } bytes_iter("") {|bb| assert bb == 0u8; } } #[test] fn test_words_iter() { let data = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; words_iter(data) {|ww| alt ii { 0 { assert "Mary" == ww; } 1 { assert "had" == ww; } 2 { assert "a" == ww; } 3 { assert "little" == ww; } _ { () } } ii += 1; } words_iter("") {|_x| fail; } // should not fail } #[test] fn test_lines_iter () { let lf = "\nMary had a little lamb\nLittle lamb\n"; let ii = 0; lines_iter(lf) {|x| alt ii { 0 { assert "" == x; } 1 { assert "Mary had a little lamb" == x; } 2 { assert "Little lamb" == x; } 3 { assert "" == x; } _ { () } } ii += 1; } } #[test] fn test_escape() { assert(escape("abcdef") == "abcdef"); assert(escape("abc\\def") == "abc\\\\def"); assert(escape("abc\ndef") == "abc\\ndef"); assert(escape("abc\"def") == "abc\\\"def"); } #[test] fn test_map() { assert "" == map("", char::to_upper); assert "YMCA" == map("ymca", char::to_upper); } #[test] fn test_all() { assert true == all("", char::is_uppercase); assert false == all("ymca", char::is_uppercase); assert true == all("YMCA", char::is_uppercase); assert false == all("yMCA", char::is_uppercase); assert false == all("YMCy", char::is_uppercase); } #[test] fn test_any() { assert false == any("", char::is_uppercase); assert false == any("ymca", char::is_uppercase); assert true == any("YMCA", char::is_uppercase); assert true == any("yMCA", char::is_uppercase); assert true == any("YMCy", char::is_uppercase); } #[test] fn test_windowed() { let data = "ประเทศไทย中"; assert ["ประ", "ระเ", "ะเท", "เทศ", "ทศไ", "ศไท", "ไทย", "ทย中"] == windowed(3u, data); assert [data] == windowed(10u, data); assert [] == windowed(6u, "abcd"); } #[test] #[should_fail] fn test_windowed_() { let _x = windowed(0u, "abcd"); } }