//! See [`PathTransform`]. use crate::helpers::mod_path_to_ast; use either::Either; use hir::{AsAssocItem, HirDisplay, SemanticsScope}; use rustc_hash::FxHashMap; use syntax::{ ast::{self, AstNode}, ted, SyntaxNode, }; #[derive(Default)] struct AstSubsts { types_and_consts: Vec, lifetimes: Vec, } enum TypeOrConst { Either(ast::TypeArg), // indistinguishable type or const param Const(ast::ConstArg), } type LifetimeName = String; /// `PathTransform` substitutes path in SyntaxNodes in bulk. /// /// This is mostly useful for IDE code generation. If you paste some existing /// code into a new context (for example, to add method overrides to an `impl` /// block), you generally want to appropriately qualify the names, and sometimes /// you might want to substitute generic parameters as well: /// /// ``` /// mod x { /// pub struct A; /// pub trait T { fn foo(&self, _: U) -> A; } /// } /// /// mod y { /// use x::T; /// /// impl T<()> for () { /// // If we invoke **Add Missing Members** here, we want to copy-paste `foo`. /// // But we want a slightly-modified version of it: /// fn foo(&self, _: ()) -> x::A<()> {} /// } /// } /// ``` pub struct PathTransform<'a> { generic_def: Option, substs: AstSubsts, target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, } impl<'a> PathTransform<'a> { pub fn trait_impl( target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, trait_: hir::Trait, impl_: ast::Impl, ) -> PathTransform<'a> { PathTransform { source_scope, target_scope, generic_def: Some(trait_.into()), substs: get_syntactic_substs(impl_).unwrap_or_default(), } } pub fn function_call( target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, function: hir::Function, generic_arg_list: ast::GenericArgList, ) -> PathTransform<'a> { PathTransform { source_scope, target_scope, generic_def: Some(function.into()), substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(), } } pub fn generic_transformation( target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, ) -> PathTransform<'a> { PathTransform { source_scope, target_scope, generic_def: None, substs: AstSubsts::default(), } } pub fn apply(&self, syntax: &SyntaxNode) { self.build_ctx().apply(syntax) } pub fn apply_all<'b>(&self, nodes: impl IntoIterator) { let ctx = self.build_ctx(); for node in nodes { ctx.apply(node); } } fn build_ctx(&self) -> Ctx<'a> { let db = self.source_scope.db; let target_module = self.target_scope.module(); let source_module = self.source_scope.module(); let skip = match self.generic_def { // this is a trait impl, so we need to skip the first type parameter (i.e. Self) -- this is a bit hacky Some(hir::GenericDef::Trait(_)) => 1, _ => 0, }; let mut type_substs: FxHashMap = Default::default(); let mut const_substs: FxHashMap = Default::default(); let mut default_types: Vec = Default::default(); self.generic_def .into_iter() .flat_map(|it| it.type_params(db)) .skip(skip) // The actual list of trait type parameters may be longer than the one // used in the `impl` block due to trailing default type parameters. // For that case we extend the `substs` with an empty iterator so we // can still hit those trailing values and check if they actually have // a default type. If they do, go for that type from `hir` to `ast` so // the resulting change can be applied correctly. .zip(self.substs.types_and_consts.iter().map(Some).chain(std::iter::repeat(None))) .for_each(|(k, v)| match (k.split(db), v) { (Either::Right(k), Some(TypeOrConst::Either(v))) => { if let Some(ty) = v.ty() { type_substs.insert(k, ty.clone()); } } (Either::Right(k), None) => { if let Some(default) = k.default(db) { if let Some(default) = &default.display_source_code(db, source_module.into(), false).ok() { type_substs.insert(k, ast::make::ty(default).clone_for_update()); default_types.push(k); } } } (Either::Left(k), Some(TypeOrConst::Either(v))) => { if let Some(ty) = v.ty() { const_substs.insert(k, ty.syntax().clone()); } } (Either::Left(k), Some(TypeOrConst::Const(v))) => { if let Some(expr) = v.expr() { // FIXME: expressions in curly brackets can cause ambiguity after insertion // (e.g. `N * 2` -> `{1 + 1} * 2`; it's unclear whether `{1 + 1}` // is a standalone statement or a part of another expresson) // and sometimes require slight modifications; see // https://doc.rust-lang.org/reference/statements.html#expression-statements const_substs.insert(k, expr.syntax().clone()); } } (Either::Left(k), None) => { if let Some(default) = k.default(db) { let default = ast::make::expr_const_value(&default); const_substs.insert(k, default.syntax().clone_for_update()); // FIXME: transform the default value } } _ => (), // ignore mismatching params }); let lifetime_substs: FxHashMap<_, _> = self .generic_def .into_iter() .flat_map(|it| it.lifetime_params(db)) .zip(self.substs.lifetimes.clone()) .filter_map(|(k, v)| Some((k.name(db).display(db.upcast()).to_string(), v.lifetime()?))) .collect(); let ctx = Ctx { type_substs, const_substs, lifetime_substs, target_module, source_scope: self.source_scope, }; ctx.transform_default_type_substs(default_types); ctx } } struct Ctx<'a> { type_substs: FxHashMap, const_substs: FxHashMap, lifetime_substs: FxHashMap, target_module: hir::Module, source_scope: &'a SemanticsScope<'a>, } fn postorder(item: &SyntaxNode) -> impl Iterator { item.preorder().filter_map(|event| match event { syntax::WalkEvent::Enter(_) => None, syntax::WalkEvent::Leave(node) => Some(node), }) } impl Ctx<'_> { fn apply(&self, item: &SyntaxNode) { // `transform_path` may update a node's parent and that would break the // tree traversal. Thus all paths in the tree are collected into a vec // so that such operation is safe. let paths = postorder(item).filter_map(ast::Path::cast).collect::>(); for path in paths { self.transform_path(path); } postorder(item).filter_map(ast::Lifetime::cast).for_each(|lifetime| { if let Some(subst) = self.lifetime_substs.get(&lifetime.syntax().text().to_string()) { ted::replace(lifetime.syntax(), subst.clone_subtree().clone_for_update().syntax()); } }); } fn transform_default_type_substs(&self, default_types: Vec) { for k in default_types { let v = self.type_substs.get(&k).unwrap(); // `transform_path` may update a node's parent and that would break the // tree traversal. Thus all paths in the tree are collected into a vec // so that such operation is safe. let paths = postorder(&v.syntax()).filter_map(ast::Path::cast).collect::>(); for path in paths { self.transform_path(path); } } } fn transform_path(&self, path: ast::Path) -> Option<()> { if path.qualifier().is_some() { return None; } if path.segment().map_or(false, |s| { s.param_list().is_some() || (s.self_token().is_some() && path.parent_path().is_none()) }) { // don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway // don't try to qualify sole `self` either, they are usually locals, but are returned as modules due to namespace clashing return None; } let resolution = self.source_scope.speculative_resolve(&path)?; match resolution { hir::PathResolution::TypeParam(tp) => { if let Some(subst) = self.type_substs.get(&tp) { let parent = path.syntax().parent()?; if let Some(parent) = ast::Path::cast(parent.clone()) { // Path inside path means that there is an associated // type/constant on the type parameter. It is necessary // to fully qualify the type with `as Trait`. Even // though it might be unnecessary if `subst` is generic // type, always fully qualifying the path is safer // because of potential clash of associated types from // multiple traits let trait_ref = find_trait_for_assoc_item( self.source_scope, tp, parent.segment()?.name_ref()?, ) .and_then(|trait_ref| { let found_path = self.target_module.find_use_path( self.source_scope.db.upcast(), hir::ModuleDef::Trait(trait_ref), false, )?; match ast::make::ty_path(mod_path_to_ast(&found_path)) { ast::Type::PathType(path_ty) => Some(path_ty), _ => None, } }); let segment = ast::make::path_segment_ty(subst.clone(), trait_ref); let qualified = ast::make::path_from_segments(std::iter::once(segment), false); ted::replace(path.syntax(), qualified.clone_for_update().syntax()); } else if let Some(path_ty) = ast::PathType::cast(parent) { ted::replace( path_ty.syntax(), subst.clone_subtree().clone_for_update().syntax(), ); } else { ted::replace( path.syntax(), subst.clone_subtree().clone_for_update().syntax(), ); } } } hir::PathResolution::Def(def) if def.as_assoc_item(self.source_scope.db).is_none() => { if let hir::ModuleDef::Trait(_) = def { if matches!(path.segment()?.kind()?, ast::PathSegmentKind::Type { .. }) { // `speculative_resolve` resolves segments like `` into `Trait`, but just the trait name should // not be used as the replacement of the original // segment. return None; } } let found_path = self.target_module.find_use_path(self.source_scope.db.upcast(), def, false)?; let res = mod_path_to_ast(&found_path).clone_for_update(); if let Some(args) = path.segment().and_then(|it| it.generic_arg_list()) { if let Some(segment) = res.segment() { let old = segment.get_or_create_generic_arg_list(); ted::replace(old.syntax(), args.clone_subtree().syntax().clone_for_update()) } } ted::replace(path.syntax(), res.syntax()) } hir::PathResolution::ConstParam(cp) => { if let Some(subst) = self.const_substs.get(&cp) { ted::replace(path.syntax(), subst.clone_subtree().clone_for_update()); } } hir::PathResolution::Local(_) | hir::PathResolution::SelfType(_) | hir::PathResolution::Def(_) | hir::PathResolution::BuiltinAttr(_) | hir::PathResolution::ToolModule(_) | hir::PathResolution::DeriveHelper(_) => (), } Some(()) } } // FIXME: It would probably be nicer if we could get this via HIR (i.e. get the // trait ref, and then go from the types in the substs back to the syntax). fn get_syntactic_substs(impl_def: ast::Impl) -> Option { let target_trait = impl_def.trait_()?; let path_type = match target_trait { ast::Type::PathType(path) => path, _ => return None, }; let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?; get_type_args_from_arg_list(generic_arg_list) } fn get_type_args_from_arg_list(generic_arg_list: ast::GenericArgList) -> Option { let mut result = AstSubsts::default(); generic_arg_list.generic_args().for_each(|generic_arg| match generic_arg { // Const params are marked as consts on definition only, // being passed to the trait they are indistguishable from type params; // anyway, we don't really need to distinguish them here. ast::GenericArg::TypeArg(type_arg) => { result.types_and_consts.push(TypeOrConst::Either(type_arg)) } // Some const values are recognized correctly. ast::GenericArg::ConstArg(const_arg) => { result.types_and_consts.push(TypeOrConst::Const(const_arg)); } ast::GenericArg::LifetimeArg(l_arg) => result.lifetimes.push(l_arg), _ => (), }); Some(result) } fn find_trait_for_assoc_item( scope: &SemanticsScope<'_>, type_param: hir::TypeParam, assoc_item: ast::NameRef, ) -> Option { let db = scope.db; let trait_bounds = type_param.trait_bounds(db); let assoc_item_name = assoc_item.text(); for trait_ in trait_bounds { let names = trait_.items(db).into_iter().filter_map(|item| match item { hir::AssocItem::TypeAlias(ta) => Some(ta.name(db)), hir::AssocItem::Const(cst) => cst.name(db), _ => None, }); for name in names { if assoc_item_name.as_str() == name.as_text()?.as_str() { // It is fine to return the first match because in case of // multiple possibilities, the exact trait must be disambiguated // in the definition of trait being implemented, so this search // should not be needed. return Some(trait_); } } } None }