// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Lints built in to rustc. //! //! This is a sibling of `lint::context` in order to ensure that //! lints implemented here use the same public API as lint plugins. //! //! To add a new lint to rustc, declare it here using `declare_lint!()`. //! Then add code to emit the new lint in the appropriate circumstances. //! You can do that in an existing `LintPass` if it makes sense, or in //! a new `LintPass`, or using `Session::add_lint` elsewhere in the //! compiler. Only do the latter if the check can't be written cleanly //! as a `LintPass`. //! //! If you define a new `LintPass`, you will also need to add it to the //! `add_builtin!` or `add_builtin_with_new!` invocation in `context.rs`. //! Use the former for unit-like structs and the latter for structs with //! a `pub fn new()`. use self::MethodContext::*; use metadata::{csearch, decoder}; use middle::def::*; use middle::subst::Substs; use middle::ty::{self, Ty}; use middle::{def, pat_util, stability}; use middle::const_eval::{eval_const_expr_partial, const_int, const_uint}; use middle::cfg; use util::ppaux::{ty_to_string}; use util::nodemap::{FnvHashMap, NodeSet}; use lint::{Level, Context, LintPass, LintArray, Lint}; use std::collections::BitSet; use std::collections::hash_map::Entry::{Occupied, Vacant}; use std::num::SignedInt; use std::{cmp, slice}; use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64}; use syntax::{abi, ast, ast_map}; use syntax::ast_util::is_shift_binop; use syntax::attr::{self, AttrMetaMethods}; use syntax::codemap::{self, Span}; use syntax::feature_gate::{KNOWN_ATTRIBUTES, AttributeType}; use syntax::parse::token; use syntax::ast::{TyIs, TyUs, TyI8, TyU8, TyI16, TyU16, TyI32, TyU32, TyI64, TyU64}; use syntax::ast_util; use syntax::ptr::P; use syntax::visit::{self, Visitor}; declare_lint! { WHILE_TRUE, Warn, "suggest using `loop { }` instead of `while true { }`" } #[derive(Copy)] pub struct WhileTrue; impl LintPass for WhileTrue { fn get_lints(&self) -> LintArray { lint_array!(WHILE_TRUE) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprWhile(ref cond, _, _) = e.node { if let ast::ExprLit(ref lit) = cond.node { if let ast::LitBool(true) = lit.node { cx.span_lint(WHILE_TRUE, e.span, "denote infinite loops with loop { ... }"); } } } } } declare_lint! { UNUSED_TYPECASTS, Allow, "detects unnecessary type casts that can be removed" } #[derive(Copy)] pub struct UnusedCasts; impl LintPass for UnusedCasts { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_TYPECASTS) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprCast(ref expr, ref ty) = e.node { let t_t = ty::expr_ty(cx.tcx, e); if ty::expr_ty(cx.tcx, &**expr) == t_t { cx.span_lint(UNUSED_TYPECASTS, ty.span, "unnecessary type cast"); } } } } declare_lint! { UNSIGNED_NEGATION, Warn, "using an unary minus operator on unsigned type" } declare_lint! { UNUSED_COMPARISONS, Warn, "comparisons made useless by limits of the types involved" } declare_lint! { OVERFLOWING_LITERALS, Warn, "literal out of range for its type" } declare_lint! { EXCEEDING_BITSHIFTS, Deny, "shift exceeds the type's number of bits" } #[derive(Copy)] pub struct TypeLimits { /// Id of the last visited negated expression negated_expr_id: ast::NodeId, } impl TypeLimits { pub fn new() -> TypeLimits { TypeLimits { negated_expr_id: -1, } } } impl LintPass for TypeLimits { fn get_lints(&self) -> LintArray { lint_array!(UNSIGNED_NEGATION, UNUSED_COMPARISONS, OVERFLOWING_LITERALS, EXCEEDING_BITSHIFTS) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { match e.node { ast::ExprUnary(ast::UnNeg, ref expr) => { match expr.node { ast::ExprLit(ref lit) => { match lit.node { ast::LitInt(_, ast::UnsignedIntLit(_)) => { cx.span_lint(UNSIGNED_NEGATION, e.span, "negation of unsigned int literal may \ be unintentional"); }, _ => () } }, _ => { let t = ty::expr_ty(cx.tcx, &**expr); match t.sty { ty::ty_uint(_) => { cx.span_lint(UNSIGNED_NEGATION, e.span, "negation of unsigned int variable may \ be unintentional"); }, _ => () } } }; // propagate negation, if the negation itself isn't negated if self.negated_expr_id != e.id { self.negated_expr_id = expr.id; } }, ast::ExprParen(ref expr) if self.negated_expr_id == e.id => { self.negated_expr_id = expr.id; }, ast::ExprBinary(binop, ref l, ref r) => { if is_comparison(binop) && !check_limits(cx.tcx, binop, &**l, &**r) { cx.span_lint(UNUSED_COMPARISONS, e.span, "comparison is useless due to type limits"); } if is_shift_binop(binop.node) { let opt_ty_bits = match ty::expr_ty(cx.tcx, &**l).sty { ty::ty_int(t) => Some(int_ty_bits(t, cx.sess().target.int_type)), ty::ty_uint(t) => Some(uint_ty_bits(t, cx.sess().target.uint_type)), _ => None }; if let Some(bits) = opt_ty_bits { let exceeding = if let ast::ExprLit(ref lit) = r.node { if let ast::LitInt(shift, _) = lit.node { shift >= bits } else { false } } else { match eval_const_expr_partial(cx.tcx, &**r, Some(cx.tcx.types.uint)) { Ok(const_int(shift)) => { shift as u64 >= bits }, Ok(const_uint(shift)) => { shift >= bits }, _ => { false } } }; if exceeding { cx.span_lint(EXCEEDING_BITSHIFTS, e.span, "bitshift exceeds the type's number of bits"); } }; } }, ast::ExprLit(ref lit) => { match ty::expr_ty(cx.tcx, e).sty { ty::ty_int(t) => { match lit.node { ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) | ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => { let int_type = if let ast::TyIs(_) = t { cx.sess().target.int_type } else { t }; let (min, max) = int_ty_range(int_type); let negative = self.negated_expr_id == e.id; if (negative && v > (min.abs() as u64)) || (!negative && v > (max.abs() as u64)) { cx.span_lint(OVERFLOWING_LITERALS, e.span, &*format!("literal out of range for {:?}", t)); return; } } _ => panic!() }; }, ty::ty_uint(t) => { let uint_type = if let ast::TyUs(_) = t { cx.sess().target.uint_type } else { t }; let (min, max) = uint_ty_range(uint_type); let lit_val: u64 = match lit.node { ast::LitByte(_v) => return, // _v is u8, within range by definition ast::LitInt(v, _) => v, _ => panic!() }; if lit_val < min || lit_val > max { cx.span_lint(OVERFLOWING_LITERALS, e.span, &*format!("literal out of range for {:?}", t)); } }, ty::ty_float(t) => { let (min, max) = float_ty_range(t); let lit_val: f64 = match lit.node { ast::LitFloat(ref v, _) | ast::LitFloatUnsuffixed(ref v) => { match v.parse().ok() { Some(f) => f, None => return } } _ => panic!() }; if lit_val < min || lit_val > max { cx.span_lint(OVERFLOWING_LITERALS, e.span, &*format!("literal out of range for {:?}", t)); } }, _ => () }; }, _ => () }; fn is_valid(binop: ast::BinOp, v: T, min: T, max: T) -> bool { match binop.node { ast::BiLt => v > min && v <= max, ast::BiLe => v >= min && v < max, ast::BiGt => v >= min && v < max, ast::BiGe => v > min && v <= max, ast::BiEq | ast::BiNe => v >= min && v <= max, _ => panic!() } } fn rev_binop(binop: ast::BinOp) -> ast::BinOp { codemap::respan(binop.span, match binop.node { ast::BiLt => ast::BiGt, ast::BiLe => ast::BiGe, ast::BiGt => ast::BiLt, ast::BiGe => ast::BiLe, _ => return binop }) } // for int & uint, be conservative with the warnings, so that the // warnings are consistent between 32- and 64-bit platforms fn int_ty_range(int_ty: ast::IntTy) -> (i64, i64) { match int_ty { ast::TyIs(_) => (i64::MIN, i64::MAX), ast::TyI8 => (i8::MIN as i64, i8::MAX as i64), ast::TyI16 => (i16::MIN as i64, i16::MAX as i64), ast::TyI32 => (i32::MIN as i64, i32::MAX as i64), ast::TyI64 => (i64::MIN, i64::MAX) } } fn uint_ty_range(uint_ty: ast::UintTy) -> (u64, u64) { match uint_ty { ast::TyUs(_) => (u64::MIN, u64::MAX), ast::TyU8 => (u8::MIN as u64, u8::MAX as u64), ast::TyU16 => (u16::MIN as u64, u16::MAX as u64), ast::TyU32 => (u32::MIN as u64, u32::MAX as u64), ast::TyU64 => (u64::MIN, u64::MAX) } } fn float_ty_range(float_ty: ast::FloatTy) -> (f64, f64) { match float_ty { ast::TyF32 => (f32::MIN as f64, f32::MAX as f64), ast::TyF64 => (f64::MIN, f64::MAX) } } fn int_ty_bits(int_ty: ast::IntTy, target_int_ty: ast::IntTy) -> u64 { match int_ty { ast::TyIs(_) => int_ty_bits(target_int_ty, target_int_ty), ast::TyI8 => i8::BITS as u64, ast::TyI16 => i16::BITS as u64, ast::TyI32 => i32::BITS as u64, ast::TyI64 => i64::BITS as u64 } } fn uint_ty_bits(uint_ty: ast::UintTy, target_uint_ty: ast::UintTy) -> u64 { match uint_ty { ast::TyUs(_) => uint_ty_bits(target_uint_ty, target_uint_ty), ast::TyU8 => u8::BITS as u64, ast::TyU16 => u16::BITS as u64, ast::TyU32 => u32::BITS as u64, ast::TyU64 => u64::BITS as u64 } } fn check_limits(tcx: &ty::ctxt, binop: ast::BinOp, l: &ast::Expr, r: &ast::Expr) -> bool { let (lit, expr, swap) = match (&l.node, &r.node) { (&ast::ExprLit(_), _) => (l, r, true), (_, &ast::ExprLit(_)) => (r, l, false), _ => return true }; // Normalize the binop so that the literal is always on the RHS in // the comparison let norm_binop = if swap { rev_binop(binop) } else { binop }; match ty::expr_ty(tcx, expr).sty { ty::ty_int(int_ty) => { let (min, max) = int_ty_range(int_ty); let lit_val: i64 = match lit.node { ast::ExprLit(ref li) => match li.node { ast::LitInt(v, ast::SignedIntLit(_, ast::Plus)) | ast::LitInt(v, ast::UnsuffixedIntLit(ast::Plus)) => v as i64, ast::LitInt(v, ast::SignedIntLit(_, ast::Minus)) | ast::LitInt(v, ast::UnsuffixedIntLit(ast::Minus)) => -(v as i64), _ => return true }, _ => panic!() }; is_valid(norm_binop, lit_val, min, max) } ty::ty_uint(uint_ty) => { let (min, max): (u64, u64) = uint_ty_range(uint_ty); let lit_val: u64 = match lit.node { ast::ExprLit(ref li) => match li.node { ast::LitInt(v, _) => v, _ => return true }, _ => panic!() }; is_valid(norm_binop, lit_val, min, max) } _ => true } } fn is_comparison(binop: ast::BinOp) -> bool { match binop.node { ast::BiEq | ast::BiLt | ast::BiLe | ast::BiNe | ast::BiGe | ast::BiGt => true, _ => false } } } } declare_lint! { IMPROPER_CTYPES, Warn, "proper use of libc types in foreign modules" } struct ImproperCTypesVisitor<'a, 'tcx: 'a> { cx: &'a Context<'a, 'tcx> } impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> { fn check_def(&mut self, sp: Span, ty_id: ast::NodeId, path_id: ast::NodeId) { match self.cx.tcx.def_map.borrow()[path_id].clone() { def::DefPrimTy(ast::TyInt(ast::TyIs(_))) => { self.cx.span_lint(IMPROPER_CTYPES, sp, "found rust type `isize` in foreign module, while \ libc::c_int or libc::c_long should be used"); } def::DefPrimTy(ast::TyUint(ast::TyUs(_))) => { self.cx.span_lint(IMPROPER_CTYPES, sp, "found rust type `usize` in foreign module, while \ libc::c_uint or libc::c_ulong should be used"); } def::DefTy(..) => { let tty = match self.cx.tcx.ast_ty_to_ty_cache.borrow().get(&ty_id) { Some(&ty::atttce_resolved(t)) => t, _ => panic!("ast_ty_to_ty_cache was incomplete after typeck!") }; if !ty::is_ffi_safe(self.cx.tcx, tty) { self.cx.span_lint(IMPROPER_CTYPES, sp, "found type without foreign-function-safe representation annotation in foreign module, consider \ adding a #[repr(...)] attribute to the type"); } } _ => () } } } impl<'a, 'tcx, 'v> Visitor<'v> for ImproperCTypesVisitor<'a, 'tcx> { fn visit_ty(&mut self, ty: &ast::Ty) { match ty.node { ast::TyPath(_, id) => self.check_def(ty.span, ty.id, id), _ => (), } visit::walk_ty(self, ty); } } #[derive(Copy)] pub struct ImproperCTypes; impl LintPass for ImproperCTypes { fn get_lints(&self) -> LintArray { lint_array!(IMPROPER_CTYPES) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { fn check_ty(cx: &Context, ty: &ast::Ty) { let mut vis = ImproperCTypesVisitor { cx: cx }; vis.visit_ty(ty); } fn check_foreign_fn(cx: &Context, decl: &ast::FnDecl) { for input in &decl.inputs { check_ty(cx, &*input.ty); } if let ast::Return(ref ret_ty) = decl.output { check_ty(cx, &**ret_ty); } } match it.node { ast::ItemForeignMod(ref nmod) if nmod.abi != abi::RustIntrinsic => { for ni in &nmod.items { match ni.node { ast::ForeignItemFn(ref decl, _) => check_foreign_fn(cx, &**decl), ast::ForeignItemStatic(ref t, _) => check_ty(cx, &**t) } } } _ => (), } } } declare_lint! { BOX_POINTERS, Allow, "use of owned (Box type) heap memory" } #[derive(Copy)] pub struct BoxPointers; impl BoxPointers { fn check_heap_type<'a, 'tcx>(&self, cx: &Context<'a, 'tcx>, span: Span, ty: Ty<'tcx>) { let mut n_uniq: usize = 0; ty::fold_ty(cx.tcx, ty, |t| { match t.sty { ty::ty_uniq(_) => { n_uniq += 1; } _ => () }; t }); if n_uniq > 0 { let s = ty_to_string(cx.tcx, ty); let m = format!("type uses owned (Box type) pointers: {}", s); cx.span_lint(BOX_POINTERS, span, &m[]); } } } impl LintPass for BoxPointers { fn get_lints(&self) -> LintArray { lint_array!(BOX_POINTERS) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { ast::ItemFn(..) | ast::ItemTy(..) | ast::ItemEnum(..) | ast::ItemStruct(..) => self.check_heap_type(cx, it.span, ty::node_id_to_type(cx.tcx, it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { ast::ItemStruct(ref struct_def, _) => { for struct_field in &struct_def.fields { self.check_heap_type(cx, struct_field.span, ty::node_id_to_type(cx.tcx, struct_field.node.id)); } } _ => () } } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { let ty = ty::expr_ty(cx.tcx, e); self.check_heap_type(cx, e.span, ty); } } declare_lint! { RAW_POINTER_DERIVE, Warn, "uses of #[derive] with raw pointers are rarely correct" } struct RawPtrDeriveVisitor<'a, 'tcx: 'a> { cx: &'a Context<'a, 'tcx> } impl<'a, 'tcx, 'v> Visitor<'v> for RawPtrDeriveVisitor<'a, 'tcx> { fn visit_ty(&mut self, ty: &ast::Ty) { static MSG: &'static str = "use of `#[derive]` with a raw pointer"; if let ast::TyPtr(..) = ty.node { self.cx.span_lint(RAW_POINTER_DERIVE, ty.span, MSG); } visit::walk_ty(self, ty); } // explicit override to a no-op to reduce code bloat fn visit_expr(&mut self, _: &ast::Expr) {} fn visit_block(&mut self, _: &ast::Block) {} } pub struct RawPointerDerive { checked_raw_pointers: NodeSet, } impl RawPointerDerive { pub fn new() -> RawPointerDerive { RawPointerDerive { checked_raw_pointers: NodeSet(), } } } impl LintPass for RawPointerDerive { fn get_lints(&self) -> LintArray { lint_array!(RAW_POINTER_DERIVE) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if !attr::contains_name(&item.attrs[], "automatically_derived") { return } let did = match item.node { ast::ItemImpl(_, _, _, ref t_ref_opt, _, _) => { // Deriving the Copy trait does not cause a warning if let &Some(ref trait_ref) = t_ref_opt { let def_id = ty::trait_ref_to_def_id(cx.tcx, trait_ref); if Some(def_id) == cx.tcx.lang_items.copy_trait() { return } } match ty::node_id_to_type(cx.tcx, item.id).sty { ty::ty_enum(did, _) => did, ty::ty_struct(did, _) => did, _ => return, } } _ => return, }; if !ast_util::is_local(did) { return } let item = match cx.tcx.map.find(did.node) { Some(ast_map::NodeItem(item)) => item, _ => return, }; if !self.checked_raw_pointers.insert(item.id) { return } match item.node { ast::ItemStruct(..) | ast::ItemEnum(..) => { let mut visitor = RawPtrDeriveVisitor { cx: cx }; visit::walk_item(&mut visitor, &*item); } _ => {} } } } declare_lint! { UNUSED_ATTRIBUTES, Warn, "detects attributes that were not used by the compiler" } #[derive(Copy)] pub struct UnusedAttributes; impl LintPass for UnusedAttributes { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_ATTRIBUTES) } fn check_attribute(&mut self, cx: &Context, attr: &ast::Attribute) { for &(ref name, ty) in KNOWN_ATTRIBUTES { match ty { AttributeType::Whitelisted | AttributeType::Gated(_, _) if attr.check_name(name) => { break; }, _ => () } } if !attr::is_used(attr) { cx.span_lint(UNUSED_ATTRIBUTES, attr.span, "unused attribute"); if KNOWN_ATTRIBUTES.contains(&(&attr.name()[], AttributeType::CrateLevel)) { let msg = match attr.node.style { ast::AttrOuter => "crate-level attribute should be an inner \ attribute: add an exclamation mark: #![foo]", ast::AttrInner => "crate-level attribute should be in the \ root module", }; cx.span_lint(UNUSED_ATTRIBUTES, attr.span, msg); } } } } declare_lint! { pub PATH_STATEMENTS, Warn, "path statements with no effect" } #[derive(Copy)] pub struct PathStatements; impl LintPass for PathStatements { fn get_lints(&self) -> LintArray { lint_array!(PATH_STATEMENTS) } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { match s.node { ast::StmtSemi(ref expr, _) => { match expr.node { ast::ExprPath(_) => cx.span_lint(PATH_STATEMENTS, s.span, "path statement with no effect"), _ => () } } _ => () } } } declare_lint! { pub UNUSED_MUST_USE, Warn, "unused result of a type flagged as #[must_use]" } declare_lint! { pub UNUSED_RESULTS, Allow, "unused result of an expression in a statement" } #[derive(Copy)] pub struct UnusedResults; impl LintPass for UnusedResults { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_MUST_USE, UNUSED_RESULTS) } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { let expr = match s.node { ast::StmtSemi(ref expr, _) => &**expr, _ => return }; if let ast::ExprRet(..) = expr.node { return; } let t = ty::expr_ty(cx.tcx, expr); let mut warned = false; match t.sty { ty::ty_tup(ref tys) if tys.is_empty() => return, ty::ty_bool => return, ty::ty_struct(did, _) | ty::ty_enum(did, _) => { if ast_util::is_local(did) { if let ast_map::NodeItem(it) = cx.tcx.map.get(did.node) { warned |= check_must_use(cx, &it.attrs[], s.span); } } else { let attrs = csearch::get_item_attrs(&cx.sess().cstore, did); warned |= check_must_use(cx, &attrs[], s.span); } } _ => {} } if !warned { cx.span_lint(UNUSED_RESULTS, s.span, "unused result"); } fn check_must_use(cx: &Context, attrs: &[ast::Attribute], sp: Span) -> bool { for attr in attrs { if attr.check_name("must_use") { let mut msg = "unused result which must be used".to_string(); // check for #[must_use="..."] match attr.value_str() { None => {} Some(s) => { msg.push_str(": "); msg.push_str(&s); } } cx.span_lint(UNUSED_MUST_USE, sp, &msg); return true; } } false } } } declare_lint! { pub NON_CAMEL_CASE_TYPES, Warn, "types, variants, traits and type parameters should have camel case names" } #[derive(Copy)] pub struct NonCamelCaseTypes; impl NonCamelCaseTypes { fn check_case(&self, cx: &Context, sort: &str, ident: ast::Ident, span: Span) { fn is_camel_case(ident: ast::Ident) -> bool { let ident = token::get_ident(ident); if ident.is_empty() { return true; } let ident = ident.trim_matches('_'); // start with a non-lowercase letter rather than non-uppercase // ones (some scripts don't have a concept of upper/lowercase) ident.len() > 0 && !ident.char_at(0).is_lowercase() && !ident.contains_char('_') } fn to_camel_case(s: &str) -> String { s.split('_').flat_map(|word| word.chars().enumerate().map(|(i, c)| if i == 0 { c.to_uppercase() } else { c } )).collect() } let s = token::get_ident(ident); if !is_camel_case(ident) { let c = to_camel_case(&s); let m = if c.is_empty() { format!("{} `{}` should have a camel case name such as `CamelCase`", sort, s) } else { format!("{} `{}` should have a camel case name such as `{}`", sort, s, c) }; cx.span_lint(NON_CAMEL_CASE_TYPES, span, &m[]); } } } impl LintPass for NonCamelCaseTypes { fn get_lints(&self) -> LintArray { lint_array!(NON_CAMEL_CASE_TYPES) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { let has_extern_repr = it.attrs.iter().map(|attr| { attr::find_repr_attrs(cx.tcx.sess.diagnostic(), attr).iter() .any(|r| r == &attr::ReprExtern) }).any(|x| x); if has_extern_repr { return } match it.node { ast::ItemTy(..) | ast::ItemStruct(..) => { self.check_case(cx, "type", it.ident, it.span) } ast::ItemTrait(..) => { self.check_case(cx, "trait", it.ident, it.span) } ast::ItemEnum(ref enum_definition, _) => { if has_extern_repr { return } self.check_case(cx, "type", it.ident, it.span); for variant in &enum_definition.variants { self.check_case(cx, "variant", variant.node.name, variant.span); } } _ => () } } fn check_generics(&mut self, cx: &Context, it: &ast::Generics) { for gen in &*it.ty_params { self.check_case(cx, "type parameter", gen.ident, gen.span); } } } #[derive(PartialEq)] enum MethodContext { TraitDefaultImpl, TraitImpl, PlainImpl } fn method_context(cx: &Context, m: &ast::Method) -> MethodContext { let did = ast::DefId { krate: ast::LOCAL_CRATE, node: m.id }; match cx.tcx.impl_or_trait_items.borrow().get(&did).cloned() { None => cx.sess().span_bug(m.span, "missing method descriptor?!"), Some(md) => { match md { ty::MethodTraitItem(md) => { match md.container { ty::TraitContainer(..) => TraitDefaultImpl, ty::ImplContainer(cid) => { match ty::impl_trait_ref(cx.tcx, cid) { Some(..) => TraitImpl, None => PlainImpl } } } } ty::TypeTraitItem(typedef) => { match typedef.container { ty::TraitContainer(..) => TraitDefaultImpl, ty::ImplContainer(cid) => { match ty::impl_trait_ref(cx.tcx, cid) { Some(..) => TraitImpl, None => PlainImpl } } } } } } } } declare_lint! { pub NON_SNAKE_CASE, Warn, "methods, functions, lifetime parameters and modules should have snake case names" } #[derive(Copy)] pub struct NonSnakeCase; impl NonSnakeCase { fn to_snake_case(mut str: &str) -> String { let mut words = vec![]; // Preserve leading underscores str = str.trim_left_matches(|c: char| { if c == '_' { words.push(String::new()); true } else { false } }); for s in str.split('_') { let mut last_upper = false; let mut buf = String::new(); if s.is_empty() { continue; } for ch in s.chars() { if !buf.is_empty() && buf != "'" && ch.is_uppercase() && !last_upper { words.push(buf); buf = String::new(); } last_upper = ch.is_uppercase(); buf.push(ch.to_lowercase()); } words.push(buf); } words.connect("_") } fn check_snake_case(&self, cx: &Context, sort: &str, ident: ast::Ident, span: Span) { fn is_snake_case(ident: ast::Ident) -> bool { let ident = token::get_ident(ident); if ident.is_empty() { return true; } let ident = ident.trim_left_matches('\''); let ident = ident.trim_matches('_'); let mut allow_underscore = true; ident.chars().all(|c| { allow_underscore = match c { '_' if !allow_underscore => return false, '_' => false, c if !c.is_uppercase() => true, _ => return false, }; true }) } let s = token::get_ident(ident); if !is_snake_case(ident) { let sc = NonSnakeCase::to_snake_case(&s); if sc != &s[] { cx.span_lint(NON_SNAKE_CASE, span, &*format!("{} `{}` should have a snake case name such as `{}`", sort, s, sc)); } else { cx.span_lint(NON_SNAKE_CASE, span, &*format!("{} `{}` should have a snake case name", sort, s)); } } } } impl LintPass for NonSnakeCase { fn get_lints(&self) -> LintArray { lint_array!(NON_SNAKE_CASE) } fn check_fn(&mut self, cx: &Context, fk: visit::FnKind, _: &ast::FnDecl, _: &ast::Block, span: Span, _: ast::NodeId) { match fk { visit::FkMethod(ident, _, m) => match method_context(cx, m) { PlainImpl => self.check_snake_case(cx, "method", ident, span), TraitDefaultImpl => self.check_snake_case(cx, "trait method", ident, span), _ => (), }, visit::FkItemFn(ident, _, _, _) => self.check_snake_case(cx, "function", ident, span), _ => (), } } fn check_item(&mut self, cx: &Context, it: &ast::Item) { if let ast::ItemMod(_) = it.node { self.check_snake_case(cx, "module", it.ident, it.span); } } fn check_ty_method(&mut self, cx: &Context, t: &ast::TypeMethod) { self.check_snake_case(cx, "trait method", t.ident, t.span); } fn check_lifetime_def(&mut self, cx: &Context, t: &ast::LifetimeDef) { self.check_snake_case(cx, "lifetime", t.lifetime.name.ident(), t.lifetime.span); } fn check_pat(&mut self, cx: &Context, p: &ast::Pat) { if let &ast::PatIdent(_, ref path1, _) = &p.node { if let Some(&def::DefLocal(_)) = cx.tcx.def_map.borrow().get(&p.id) { self.check_snake_case(cx, "variable", path1.node, p.span); } } } fn check_struct_def(&mut self, cx: &Context, s: &ast::StructDef, _: ast::Ident, _: &ast::Generics, _: ast::NodeId) { for sf in &s.fields { if let ast::StructField_ { kind: ast::NamedField(ident, _), .. } = sf.node { self.check_snake_case(cx, "structure field", ident, sf.span); } } } } declare_lint! { pub NON_UPPER_CASE_GLOBALS, Warn, "static constants should have uppercase identifiers" } #[derive(Copy)] pub struct NonUpperCaseGlobals; impl NonUpperCaseGlobals { fn check_upper_case(cx: &Context, sort: &str, ident: ast::Ident, span: Span) { let s = token::get_ident(ident); if s.chars().any(|c| c.is_lowercase()) { let uc: String = NonSnakeCase::to_snake_case(&s).chars() .map(|c| c.to_uppercase()).collect(); if uc != &s[] { cx.span_lint(NON_UPPER_CASE_GLOBALS, span, &format!("{} `{}` should have an upper case name such as `{}`", sort, s, uc)); } else { cx.span_lint(NON_UPPER_CASE_GLOBALS, span, &format!("{} `{}` should have an upper case name", sort, s)); } } } } impl LintPass for NonUpperCaseGlobals { fn get_lints(&self) -> LintArray { lint_array!(NON_UPPER_CASE_GLOBALS) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { // only check static constants ast::ItemStatic(_, ast::MutImmutable, _) => { NonUpperCaseGlobals::check_upper_case(cx, "static constant", it.ident, it.span); } ast::ItemConst(..) => { NonUpperCaseGlobals::check_upper_case(cx, "constant", it.ident, it.span); } _ => {} } } fn check_pat(&mut self, cx: &Context, p: &ast::Pat) { // Lint for constants that look like binding identifiers (#7526) match (&p.node, cx.tcx.def_map.borrow().get(&p.id)) { (&ast::PatIdent(_, ref path1, _), Some(&def::DefConst(..))) => { NonUpperCaseGlobals::check_upper_case(cx, "constant in pattern", path1.node, p.span); } _ => {} } } } declare_lint! { UNUSED_PARENS, Warn, "`if`, `match`, `while` and `return` do not need parentheses" } #[derive(Copy)] pub struct UnusedParens; impl UnusedParens { fn check_unused_parens_core(&self, cx: &Context, value: &ast::Expr, msg: &str, struct_lit_needs_parens: bool) { if let ast::ExprParen(ref inner) = value.node { let necessary = struct_lit_needs_parens && contains_exterior_struct_lit(&**inner); if !necessary { cx.span_lint(UNUSED_PARENS, value.span, &format!("unnecessary parentheses around {}", msg)[]) } } /// Expressions that syntactically contain an "exterior" struct /// literal i.e. not surrounded by any parens or other /// delimiters, e.g. `X { y: 1 }`, `X { y: 1 }.method()`, `foo /// == X { y: 1 }` and `X { y: 1 } == foo` all do, but `(X { /// y: 1 }) == foo` does not. fn contains_exterior_struct_lit(value: &ast::Expr) -> bool { match value.node { ast::ExprStruct(..) => true, ast::ExprAssign(ref lhs, ref rhs) | ast::ExprAssignOp(_, ref lhs, ref rhs) | ast::ExprBinary(_, ref lhs, ref rhs) => { // X { y: 1 } + X { y: 2 } contains_exterior_struct_lit(&**lhs) || contains_exterior_struct_lit(&**rhs) } ast::ExprUnary(_, ref x) | ast::ExprCast(ref x, _) | ast::ExprField(ref x, _) | ast::ExprTupField(ref x, _) | ast::ExprIndex(ref x, _) => { // &X { y: 1 }, X { y: 1 }.y contains_exterior_struct_lit(&**x) } ast::ExprMethodCall(_, _, ref exprs) => { // X { y: 1 }.bar(...) contains_exterior_struct_lit(&*exprs[0]) } _ => false } } } } impl LintPass for UnusedParens { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_PARENS) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { let (value, msg, struct_lit_needs_parens) = match e.node { ast::ExprIf(ref cond, _, _) => (cond, "`if` condition", true), ast::ExprWhile(ref cond, _, _) => (cond, "`while` condition", true), ast::ExprMatch(ref head, _, source) => match source { ast::MatchSource::Normal => (head, "`match` head expression", true), ast::MatchSource::IfLetDesugar { .. } => (head, "`if let` head expression", true), ast::MatchSource::WhileLetDesugar => (head, "`while let` head expression", true), ast::MatchSource::ForLoopDesugar => (head, "`for` head expression", true), }, ast::ExprRet(Some(ref value)) => (value, "`return` value", false), ast::ExprAssign(_, ref value) => (value, "assigned value", false), ast::ExprAssignOp(_, _, ref value) => (value, "assigned value", false), _ => return }; self.check_unused_parens_core(cx, &**value, msg, struct_lit_needs_parens); } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { let (value, msg) = match s.node { ast::StmtDecl(ref decl, _) => match decl.node { ast::DeclLocal(ref local) => match local.init { Some(ref value) => (value, "assigned value"), None => return }, _ => return }, _ => return }; self.check_unused_parens_core(cx, &**value, msg, false); } } declare_lint! { UNUSED_IMPORT_BRACES, Allow, "unnecessary braces around an imported item" } #[derive(Copy)] pub struct UnusedImportBraces; impl LintPass for UnusedImportBraces { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_IMPORT_BRACES) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { match item.node { ast::ItemUse(ref view_path) => { match view_path.node { ast::ViewPathList(_, ref items) => { if items.len() == 1 { match items[0].node { ast::PathListIdent {ref name, ..} => { let m = format!("braces around {} is unnecessary", &token::get_ident(*name)); cx.span_lint(UNUSED_IMPORT_BRACES, item.span, &m[]); }, _ => () } } } _ => () } }, _ => () } } } declare_lint! { NON_SHORTHAND_FIELD_PATTERNS, Warn, "using `Struct { x: x }` instead of `Struct { x }`" } #[derive(Copy)] pub struct NonShorthandFieldPatterns; impl LintPass for NonShorthandFieldPatterns { fn get_lints(&self) -> LintArray { lint_array!(NON_SHORTHAND_FIELD_PATTERNS) } fn check_pat(&mut self, cx: &Context, pat: &ast::Pat) { let def_map = cx.tcx.def_map.borrow(); if let ast::PatStruct(_, ref v, _) = pat.node { for fieldpat in v.iter() .filter(|fieldpat| !fieldpat.node.is_shorthand) .filter(|fieldpat| def_map.get(&fieldpat.node.pat.id) == Some(&def::DefLocal(fieldpat.node.pat.id))) { if let ast::PatIdent(_, ident, None) = fieldpat.node.pat.node { if ident.node.as_str() == fieldpat.node.ident.as_str() { cx.span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, &format!("the `{}:` in this pattern is redundant and can \ be removed", ident.node.as_str())[]) } } } } } } declare_lint! { pub UNUSED_UNSAFE, Warn, "unnecessary use of an `unsafe` block" } #[derive(Copy)] pub struct UnusedUnsafe; impl LintPass for UnusedUnsafe { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_UNSAFE) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprBlock(ref blk) = e.node { // Don't warn about generated blocks, that'll just pollute the output. if blk.rules == ast::UnsafeBlock(ast::UserProvided) && !cx.tcx.used_unsafe.borrow().contains(&blk.id) { cx.span_lint(UNUSED_UNSAFE, blk.span, "unnecessary `unsafe` block"); } } } } declare_lint! { UNSAFE_BLOCKS, Allow, "usage of an `unsafe` block" } #[derive(Copy)] pub struct UnsafeBlocks; impl LintPass for UnsafeBlocks { fn get_lints(&self) -> LintArray { lint_array!(UNSAFE_BLOCKS) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprBlock(ref blk) = e.node { // Don't warn about generated blocks, that'll just pollute the output. if blk.rules == ast::UnsafeBlock(ast::UserProvided) { cx.span_lint(UNSAFE_BLOCKS, blk.span, "usage of an `unsafe` block"); } } } } declare_lint! { pub UNUSED_MUT, Warn, "detect mut variables which don't need to be mutable" } #[derive(Copy)] pub struct UnusedMut; impl UnusedMut { fn check_unused_mut_pat(&self, cx: &Context, pats: &[P]) { // collect all mutable pattern and group their NodeIDs by their Identifier to // avoid false warnings in match arms with multiple patterns let mut mutables = FnvHashMap(); for p in pats { pat_util::pat_bindings(&cx.tcx.def_map, &**p, |mode, id, _, path1| { let ident = path1.node; if let ast::BindByValue(ast::MutMutable) = mode { if !token::get_ident(ident).starts_with("_") { match mutables.entry(ident.name.usize()) { Vacant(entry) => { entry.insert(vec![id]); }, Occupied(mut entry) => { entry.get_mut().push(id); }, } } } }); } let used_mutables = cx.tcx.used_mut_nodes.borrow(); for (_, v) in &mutables { if !v.iter().any(|e| used_mutables.contains(e)) { cx.span_lint(UNUSED_MUT, cx.tcx.map.span(v[0]), "variable does not need to be mutable"); } } } } impl LintPass for UnusedMut { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_MUT) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { if let ast::ExprMatch(_, ref arms, _) = e.node { for a in arms { self.check_unused_mut_pat(cx, &a.pats[]) } } } fn check_stmt(&mut self, cx: &Context, s: &ast::Stmt) { if let ast::StmtDecl(ref d, _) = s.node { if let ast::DeclLocal(ref l) = d.node { self.check_unused_mut_pat(cx, slice::ref_slice(&l.pat)); } } } fn check_fn(&mut self, cx: &Context, _: visit::FnKind, decl: &ast::FnDecl, _: &ast::Block, _: Span, _: ast::NodeId) { for a in &decl.inputs { self.check_unused_mut_pat(cx, slice::ref_slice(&a.pat)); } } } declare_lint! { UNUSED_ALLOCATION, Warn, "detects unnecessary allocations that can be eliminated" } #[derive(Copy)] pub struct UnusedAllocation; impl LintPass for UnusedAllocation { fn get_lints(&self) -> LintArray { lint_array!(UNUSED_ALLOCATION) } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { match e.node { ast::ExprUnary(ast::UnUniq, _) => (), _ => return } if let Some(adjustment) = cx.tcx.adjustments.borrow().get(&e.id) { if let ty::AdjustDerefRef(ty::AutoDerefRef { ref autoref, .. }) = *adjustment { match autoref { &Some(ty::AutoPtr(_, ast::MutImmutable, None)) => { cx.span_lint(UNUSED_ALLOCATION, e.span, "unnecessary allocation, use & instead"); } &Some(ty::AutoPtr(_, ast::MutMutable, None)) => { cx.span_lint(UNUSED_ALLOCATION, e.span, "unnecessary allocation, use &mut instead"); } _ => () } } } } } declare_lint! { MISSING_DOCS, Allow, "detects missing documentation for public members" } pub struct MissingDoc { /// Stack of IDs of struct definitions. struct_def_stack: Vec, /// True if inside variant definition in_variant: bool, /// Stack of whether #[doc(hidden)] is set /// at each level which has lint attributes. doc_hidden_stack: Vec, } impl MissingDoc { pub fn new() -> MissingDoc { MissingDoc { struct_def_stack: vec!(), in_variant: false, doc_hidden_stack: vec!(false), } } fn doc_hidden(&self) -> bool { *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") } fn check_missing_docs_attrs(&self, cx: &Context, id: Option, attrs: &[ast::Attribute], sp: Span, desc: &'static str) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.sess().opts.test { return } // `#[doc(hidden)]` disables missing_docs check. if self.doc_hidden() { return } // Only check publicly-visible items, using the result from the privacy pass. // It's an option so the crate root can also use this function (it doesn't // have a NodeId). if let Some(ref id) = id { if !cx.exported_items.contains(id) { return; } } let has_doc = attrs.iter().any(|a| { match a.node.value.node { ast::MetaNameValue(ref name, _) if *name == "doc" => true, _ => false } }); if !has_doc { cx.span_lint(MISSING_DOCS, sp, &format!("missing documentation for {}", desc)[]); } } } impl LintPass for MissingDoc { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DOCS) } fn enter_lint_attrs(&mut self, _: &Context, attrs: &[ast::Attribute]) { let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| { attr.check_name("doc") && match attr.meta_item_list() { None => false, Some(l) => attr::contains_name(&l[], "hidden"), } }); self.doc_hidden_stack.push(doc_hidden); } fn exit_lint_attrs(&mut self, _: &Context, _: &[ast::Attribute]) { self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); } fn check_struct_def(&mut self, _: &Context, _: &ast::StructDef, _: ast::Ident, _: &ast::Generics, id: ast::NodeId) { self.struct_def_stack.push(id); } fn check_struct_def_post(&mut self, _: &Context, _: &ast::StructDef, _: ast::Ident, _: &ast::Generics, id: ast::NodeId) { let popped = self.struct_def_stack.pop().expect("empty struct_def_stack"); assert!(popped == id); } fn check_crate(&mut self, cx: &Context, krate: &ast::Crate) { self.check_missing_docs_attrs(cx, None, &krate.attrs[], krate.span, "crate"); } fn check_item(&mut self, cx: &Context, it: &ast::Item) { let desc = match it.node { ast::ItemFn(..) => "a function", ast::ItemMod(..) => "a module", ast::ItemEnum(..) => "an enum", ast::ItemStruct(..) => "a struct", ast::ItemTrait(..) => "a trait", ast::ItemTy(..) => "a type alias", _ => return }; self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs[], it.span, desc); } fn check_fn(&mut self, cx: &Context, fk: visit::FnKind, _: &ast::FnDecl, _: &ast::Block, _: Span, _: ast::NodeId) { if let visit::FkMethod(_, _, m) = fk { // If the method is an impl for a trait, don't doc. if method_context(cx, m) == TraitImpl { return; } // Otherwise, doc according to privacy. This will also check // doc for default methods defined on traits. self.check_missing_docs_attrs(cx, Some(m.id), &m.attrs[], m.span, "a method"); } } fn check_ty_method(&mut self, cx: &Context, tm: &ast::TypeMethod) { self.check_missing_docs_attrs(cx, Some(tm.id), &tm.attrs[], tm.span, "a type method"); } fn check_struct_field(&mut self, cx: &Context, sf: &ast::StructField) { if let ast::NamedField(_, vis) = sf.node.kind { if vis == ast::Public || self.in_variant { let cur_struct_def = *self.struct_def_stack.last() .expect("empty struct_def_stack"); self.check_missing_docs_attrs(cx, Some(cur_struct_def), &sf.node.attrs[], sf.span, "a struct field") } } } fn check_variant(&mut self, cx: &Context, v: &ast::Variant, _: &ast::Generics) { self.check_missing_docs_attrs(cx, Some(v.node.id), &v.node.attrs[], v.span, "a variant"); assert!(!self.in_variant); self.in_variant = true; } fn check_variant_post(&mut self, _: &Context, _: &ast::Variant, _: &ast::Generics) { assert!(self.in_variant); self.in_variant = false; } } #[derive(Copy)] pub struct MissingCopyImplementations; impl LintPass for MissingCopyImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_COPY_IMPLEMENTATIONS) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if !cx.exported_items.contains(&item.id) { return } if cx.tcx .destructor_for_type .borrow() .contains_key(&ast_util::local_def(item.id)) { return } let ty = match item.node { ast::ItemStruct(_, ref ast_generics) => { if ast_generics.is_parameterized() { return } ty::mk_struct(cx.tcx, ast_util::local_def(item.id), cx.tcx.mk_substs(Substs::empty())) } ast::ItemEnum(_, ref ast_generics) => { if ast_generics.is_parameterized() { return } ty::mk_enum(cx.tcx, ast_util::local_def(item.id), cx.tcx.mk_substs(Substs::empty())) } _ => return, }; let parameter_environment = ty::empty_parameter_environment(cx.tcx); if !ty::type_moves_by_default(¶meter_environment, item.span, ty) { return } if ty::can_type_implement_copy(¶meter_environment, item.span, ty).is_ok() { cx.span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, "type could implement `Copy`; consider adding `impl \ Copy`") } } } declare_lint! { MISSING_DEBUG_IMPLEMENTATIONS, Allow, "detects missing implementations of fmt::Debug" } pub struct MissingDebugImplementations { impling_types: Option, } impl MissingDebugImplementations { pub fn new() -> MissingDebugImplementations { MissingDebugImplementations { impling_types: None, } } } impl LintPass for MissingDebugImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DEBUG_IMPLEMENTATIONS) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { if !cx.exported_items.contains(&item.id) { return; } match item.node { ast::ItemStruct(..) | ast::ItemEnum(..) => {}, _ => return, } let debug = match cx.tcx.lang_items.debug_trait() { Some(debug) => debug, None => return, }; if self.impling_types.is_none() { let impls = cx.tcx.trait_impls.borrow(); let impls = match impls.get(&debug) { Some(impls) => { impls.borrow().iter() .filter(|d| d.krate == ast::LOCAL_CRATE) .filter_map(|d| ty::ty_to_def_id(ty::node_id_to_type(cx.tcx, d.node))) .map(|d| d.node) .collect() } None => NodeSet(), }; self.impling_types = Some(impls); debug!("{:?}", self.impling_types); } if !self.impling_types.as_ref().unwrap().contains(&item.id) { cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, "type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \ or a manual implementation") } } } declare_lint! { DEPRECATED, Warn, "detects use of #[deprecated] items" } /// Checks for use of items with `#[deprecated]` attributes #[derive(Copy)] pub struct Stability; impl Stability { fn lint(&self, cx: &Context, _id: ast::DefId, span: Span, stability: &Option) { // deprecated attributes apply in-crate and cross-crate let (lint, label) = match *stability { Some(attr::Stability { deprecated_since: Some(_), .. }) => (DEPRECATED, "deprecated"), _ => return }; output(cx, span, stability, lint, label); fn output(cx: &Context, span: Span, stability: &Option, lint: &'static Lint, label: &'static str) { let msg = match *stability { Some(attr::Stability { reason: Some(ref s), .. }) => { format!("use of {} item: {}", label, *s) } _ => format!("use of {} item", label) }; cx.span_lint(lint, span, &msg[]); } } } impl LintPass for Stability { fn get_lints(&self) -> LintArray { lint_array!(DEPRECATED) } fn check_item(&mut self, cx: &Context, item: &ast::Item) { stability::check_item(cx.tcx, item, false, &mut |id, sp, stab| self.lint(cx, id, sp, stab)); } fn check_expr(&mut self, cx: &Context, e: &ast::Expr) { stability::check_expr(cx.tcx, e, &mut |id, sp, stab| self.lint(cx, id, sp, stab)); } fn check_path(&mut self, cx: &Context, path: &ast::Path, id: ast::NodeId) { stability::check_path(cx.tcx, path, id, &mut |id, sp, stab| self.lint(cx, id, sp, stab)); } } declare_lint! { pub UNCONDITIONAL_RECURSION, Warn, "functions that cannot return without calling themselves" } #[derive(Copy)] pub struct UnconditionalRecursion; impl LintPass for UnconditionalRecursion { fn get_lints(&self) -> LintArray { lint_array![UNCONDITIONAL_RECURSION] } fn check_fn(&mut self, cx: &Context, fn_kind: visit::FnKind, _: &ast::FnDecl, blk: &ast::Block, sp: Span, id: ast::NodeId) { type F = for<'tcx> fn(&ty::ctxt<'tcx>, ast::NodeId, ast::NodeId, ast::Ident, ast::NodeId) -> bool; let (name, checker) = match fn_kind { visit::FkItemFn(name, _, _, _) => (name, id_refers_to_this_fn as F), visit::FkMethod(name, _, _) => (name, id_refers_to_this_method as F), // closures can't recur, so they don't matter. visit::FkFnBlock => return }; let impl_def_id = ty::impl_of_method(cx.tcx, ast_util::local_def(id)) .unwrap_or(ast_util::local_def(ast::DUMMY_NODE_ID)); assert!(ast_util::is_local(impl_def_id)); let impl_node_id = impl_def_id.node; // Walk through this function (say `f`) looking to see if // every possible path references itself, i.e. the function is // called recursively unconditionally. This is done by trying // to find a path from the entry node to the exit node that // *doesn't* call `f` by traversing from the entry while // pretending that calls of `f` are sinks (i.e. ignoring any // exit edges from them). // // NB. this has an edge case with non-returning statements, // like `loop {}` or `panic!()`: control flow never reaches // the exit node through these, so one can have a function // that never actually calls itselfs but is still picked up by // this lint: // // fn f(cond: bool) { // if !cond { panic!() } // could come from `assert!(cond)` // f(false) // } // // In general, functions of that form may be able to call // itself a finite number of times and then diverge. The lint // considers this to be an error for two reasons, (a) it is // easier to implement, and (b) it seems rare to actually want // to have behaviour like the above, rather than // e.g. accidentally recurring after an assert. let cfg = cfg::CFG::new(cx.tcx, blk); let mut work_queue = vec![cfg.entry]; let mut reached_exit_without_self_call = false; let mut self_call_spans = vec![]; let mut visited = BitSet::new(); while let Some(idx) = work_queue.pop() { let cfg_id = idx.node_id(); if idx == cfg.exit { // found a path! reached_exit_without_self_call = true; break } else if visited.contains(&cfg_id) { // already done continue } visited.insert(cfg_id); let node_id = cfg.graph.node_data(idx).id; // is this a recursive call? if node_id != ast::DUMMY_NODE_ID && checker(cx.tcx, impl_node_id, id, name, node_id) { self_call_spans.push(cx.tcx.map.span(node_id)); // this is a self call, so we shouldn't explore past // this node in the CFG. continue } // add the successors of this node to explore the graph further. cfg.graph.each_outgoing_edge(idx, |_, edge| { let target_idx = edge.target(); let target_cfg_id = target_idx.node_id(); if !visited.contains(&target_cfg_id) { work_queue.push(target_idx) } true }); } // check the number of sell calls because a function that // doesn't return (e.g. calls a `-> !` function or `loop { /* // no break */ }`) shouldn't be linted unless it actually // recurs. if !reached_exit_without_self_call && self_call_spans.len() > 0 { cx.span_lint(UNCONDITIONAL_RECURSION, sp, "function cannot return without recurring"); // FIXME #19668: these could be span_lint_note's instead of this manual guard. if cx.current_level(UNCONDITIONAL_RECURSION) != Level::Allow { let sess = cx.sess(); // offer some help to the programmer. for call in &self_call_spans { sess.span_note(*call, "recursive call site") } sess.span_help(sp, "a `loop` may express intention better if this is on purpose") } } // all done return; // Functions for identifying if the given NodeId `id` // represents a call to the function `fn_id`/method // `method_id`. fn id_refers_to_this_fn<'tcx>(tcx: &ty::ctxt<'tcx>, _: ast::NodeId, fn_id: ast::NodeId, _: ast::Ident, id: ast::NodeId) -> bool { tcx.def_map.borrow().get(&id) .map_or(false, |def| { let did = def.def_id(); ast_util::is_local(did) && did.node == fn_id }) } // check if the method call `id` refers to method `method_id` // (with name `method_name` contained in impl `impl_id`). fn id_refers_to_this_method<'tcx>(tcx: &ty::ctxt<'tcx>, impl_id: ast::NodeId, method_id: ast::NodeId, method_name: ast::Ident, id: ast::NodeId) -> bool { let did = match tcx.method_map.borrow().get(&ty::MethodCall::expr(id)) { None => return false, Some(m) => match m.origin { // There's no way to know if a method call via a // vtable is recursion, so we assume it's not. ty::MethodTraitObject(_) => return false, // This `did` refers directly to the method definition. ty::MethodStatic(did) | ty::MethodStaticClosure(did) => did, // MethodTypeParam are methods from traits: // The `impl ... for ...` of this method call // isn't known, e.g. it might be a default method // in a trait, so we get the def-id of the trait // method instead. ty::MethodTypeParam( ty::MethodParam { ref trait_ref, method_num, impl_def_id: None, }) => { ty::trait_item(tcx, trait_ref.def_id, method_num).def_id() } // The `impl` is known, so we check that with a // special case: ty::MethodTypeParam( ty::MethodParam { impl_def_id: Some(impl_def_id), .. }) => { let name = match tcx.map.expect_expr(id).node { ast::ExprMethodCall(ref sp_ident, _, _) => sp_ident.node, _ => tcx.sess.span_bug( tcx.map.span(id), "non-method call expr behaving like a method call?") }; // it matches if it comes from the same impl, // and has the same method name. return ast_util::is_local(impl_def_id) && impl_def_id.node == impl_id && method_name.name == name.name } } }; ast_util::is_local(did) && did.node == method_id } } } declare_lint! { PLUGIN_AS_LIBRARY, Warn, "compiler plugin used as ordinary library in non-plugin crate" } #[derive(Copy)] pub struct PluginAsLibrary; impl LintPass for PluginAsLibrary { fn get_lints(&self) -> LintArray { lint_array![PLUGIN_AS_LIBRARY] } fn check_item(&mut self, cx: &Context, it: &ast::Item) { if cx.sess().plugin_registrar_fn.get().is_some() { // We're compiling a plugin; it's fine to link other plugins. return; } match it.node { ast::ItemExternCrate(..) => (), _ => return, }; let md = match cx.sess().cstore.find_extern_mod_stmt_cnum(it.id) { Some(cnum) => cx.sess().cstore.get_crate_data(cnum), None => { // Probably means we aren't linking the crate for some reason. // // Not sure if / when this could happen. return; } }; if decoder::get_plugin_registrar_fn(md.data()).is_some() { cx.span_lint(PLUGIN_AS_LIBRARY, it.span, "compiler plugin used as an ordinary library"); } } } declare_lint! { pub UNUSED_IMPORTS, Warn, "imports that are never used" } declare_lint! { pub UNUSED_EXTERN_CRATES, Allow, "extern crates that are never used" } declare_lint! { pub UNUSED_QUALIFICATIONS, Allow, "detects unnecessarily qualified names" } declare_lint! { pub UNKNOWN_LINTS, Warn, "unrecognized lint attribute" } declare_lint! { pub UNUSED_VARIABLES, Warn, "detect variables which are not used in any way" } declare_lint! { pub UNUSED_ASSIGNMENTS, Warn, "detect assignments that will never be read" } declare_lint! { pub DEAD_CODE, Warn, "detect unused, unexported items" } declare_lint! { pub UNREACHABLE_CODE, Warn, "detects unreachable code paths" } declare_lint! { pub WARNINGS, Warn, "mass-change the level for lints which produce warnings" } declare_lint! { pub UNUSED_FEATURES, Warn, "unused or unknown features found in crate-level #[feature] directives" } declare_lint! { pub STABLE_FEATURES, Warn, "stable features found in #[feature] directive" } declare_lint! { pub UNKNOWN_CRATE_TYPES, Deny, "unknown crate type found in #[crate_type] directive" } declare_lint! { pub VARIANT_SIZE_DIFFERENCES, Allow, "detects enums with widely varying variant sizes" } declare_lint! { pub FAT_PTR_TRANSMUTES, Allow, "detects transmutes of fat pointers" } declare_lint! { pub MISSING_COPY_IMPLEMENTATIONS, Allow, "detects potentially-forgotten implementations of `Copy`" } /// Does nothing as a lint pass, but registers some `Lint`s /// which are used by other parts of the compiler. #[derive(Copy)] pub struct HardwiredLints; impl LintPass for HardwiredLints { fn get_lints(&self) -> LintArray { lint_array!( UNUSED_IMPORTS, UNUSED_EXTERN_CRATES, UNUSED_QUALIFICATIONS, UNKNOWN_LINTS, UNUSED_VARIABLES, UNUSED_ASSIGNMENTS, DEAD_CODE, UNREACHABLE_CODE, WARNINGS, UNUSED_FEATURES, STABLE_FEATURES, UNKNOWN_CRATE_TYPES, VARIANT_SIZE_DIFFERENCES, FAT_PTR_TRANSMUTES ) } } declare_lint! { PRIVATE_NO_MANGLE_FNS, Warn, "functions marked #[no_mangle] should be exported" } declare_lint! { PRIVATE_NO_MANGLE_STATICS, Warn, "statics marked #[no_mangle] should be exported" } declare_lint! { NO_MANGLE_CONST_ITEMS, Deny, "const items will not have their symbols exported" } #[derive(Copy)] pub struct InvalidNoMangleItems; impl LintPass for InvalidNoMangleItems { fn get_lints(&self) -> LintArray { lint_array!(PRIVATE_NO_MANGLE_FNS, PRIVATE_NO_MANGLE_STATICS, NO_MANGLE_CONST_ITEMS) } fn check_item(&mut self, cx: &Context, it: &ast::Item) { match it.node { ast::ItemFn(..) => { if attr::contains_name(&it.attrs, "no_mangle") && !cx.exported_items.contains(&it.id) { let msg = format!("function {} is marked #[no_mangle], but not exported", it.ident); cx.span_lint(PRIVATE_NO_MANGLE_FNS, it.span, &msg); } }, ast::ItemStatic(..) => { if attr::contains_name(it.attrs.as_slice(), "no_mangle") && !cx.exported_items.contains(&it.id) { let msg = format!("static {} is marked #[no_mangle], but not exported", it.ident); cx.span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, msg.as_slice()); } }, ast::ItemConst(..) => { if attr::contains_name(it.attrs.as_slice(), "no_mangle") { // Const items do not refer to a particular location in memory, and therefore // don't have anything to attach a symbol to let msg = "const items should never be #[no_mangle], consider instead using \ `pub static`"; cx.span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg); } } _ => {}, } } } /// Forbids using the `#[feature(...)]` attribute #[derive(Copy)] pub struct UnstableFeatures; declare_lint!(UNSTABLE_FEATURES, Allow, "enabling unstable features"); impl LintPass for UnstableFeatures { fn get_lints(&self) -> LintArray { lint_array!(UNSTABLE_FEATURES) } fn check_attribute(&mut self, ctx: &Context, attr: &ast::Attribute) { use syntax::attr; if attr::contains_name(&[attr.node.value.clone()], "feature") { ctx.span_lint(UNSTABLE_FEATURES, attr.span, "unstable feature"); } } }