// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::mem; use std::rt::rtio::RtioTimer; use std::rt::task::BlockedTask; use homing::{HomeHandle, HomingIO}; use super::{UvHandle, ForbidUnwind, ForbidSwitch, wait_until_woken_after, Loop}; use uvio::UvIoFactory; use uvll; pub struct TimerWatcher { pub handle: *uvll::uv_timer_t, home: HomeHandle, action: Option, blocker: Option, id: uint, // see comments in timer_cb } pub enum NextAction { WakeTask, SendOnce(Sender<()>), SendMany(Sender<()>, uint), } impl TimerWatcher { pub fn new(io: &mut UvIoFactory) -> Box { let handle = io.make_handle(); let me = box TimerWatcher::new_home(&io.loop_, handle); me.install() } pub fn new_home(loop_: &Loop, home: HomeHandle) -> TimerWatcher { let handle = UvHandle::alloc(None::, uvll::UV_TIMER); assert_eq!(unsafe { uvll::uv_timer_init(loop_.handle, handle) }, 0); TimerWatcher { handle: handle, action: None, blocker: None, home: home, id: 0, } } pub fn start(&mut self, f: uvll::uv_timer_cb, msecs: u64, period: u64) { assert_eq!(unsafe { uvll::uv_timer_start(self.handle, f, msecs, period) }, 0) } pub fn stop(&mut self) { assert_eq!(unsafe { uvll::uv_timer_stop(self.handle) }, 0) } pub unsafe fn set_data(&mut self, data: *T) { uvll::set_data_for_uv_handle(self.handle, data); } } impl HomingIO for TimerWatcher { fn home<'r>(&'r mut self) -> &'r mut HomeHandle { &mut self.home } } impl UvHandle for TimerWatcher { fn uv_handle(&self) -> *uvll::uv_timer_t { self.handle } } impl RtioTimer for TimerWatcher { fn sleep(&mut self, msecs: u64) { // As with all of the below functions, we must be extra careful when // destroying the previous action. If the previous action was a channel, // destroying it could invoke a context switch. For these situtations, // we must temporarily un-home ourselves, then destroy the action, and // then re-home again. let missile = self.fire_homing_missile(); self.id += 1; self.stop(); let _missile = match mem::replace(&mut self.action, None) { None => missile, // no need to do a homing dance Some(action) => { drop(missile); // un-home ourself drop(action); // destroy the previous action self.fire_homing_missile() // re-home ourself } }; // If the descheduling operation unwinds after the timer has been // started, then we need to call stop on the timer. let _f = ForbidUnwind::new("timer"); self.action = Some(WakeTask); wait_until_woken_after(&mut self.blocker, &self.uv_loop(), || { self.start(timer_cb, msecs, 0); }); self.stop(); } fn oneshot(&mut self, msecs: u64) -> Receiver<()> { let (tx, rx) = channel(); // similarly to the destructor, we must drop the previous action outside // of the homing missile let _prev_action = { let _m = self.fire_homing_missile(); self.id += 1; self.stop(); self.start(timer_cb, msecs, 0); mem::replace(&mut self.action, Some(SendOnce(tx))) }; return rx; } fn period(&mut self, msecs: u64) -> Receiver<()> { let (tx, rx) = channel(); // similarly to the destructor, we must drop the previous action outside // of the homing missile let _prev_action = { let _m = self.fire_homing_missile(); self.id += 1; self.stop(); self.start(timer_cb, msecs, msecs); mem::replace(&mut self.action, Some(SendMany(tx, self.id))) }; return rx; } } extern fn timer_cb(handle: *uvll::uv_timer_t) { let _f = ForbidSwitch::new("timer callback can't switch"); let timer: &mut TimerWatcher = unsafe { UvHandle::from_uv_handle(&handle) }; match timer.action.take_unwrap() { WakeTask => { let task = timer.blocker.take_unwrap(); let _ = task.wake().map(|t| t.reawaken()); } SendOnce(chan) => { let _ = chan.send_opt(()); } SendMany(chan, id) => { let _ = chan.send_opt(()); // Note that the above operation could have performed some form of // scheduling. This means that the timer may have decided to insert // some other action to happen. This 'id' keeps track of the updates // to the timer, so we only reset the action back to sending on this // channel if the id has remained the same. This is essentially a // bug in that we have mutably aliasable memory, but that's libuv // for you. We're guaranteed to all be running on the same thread, // so there's no need for any synchronization here. if timer.id == id { timer.action = Some(SendMany(chan, id)); } } } } impl Drop for TimerWatcher { fn drop(&mut self) { // note that this drop is a little subtle. Dropping a channel which is // held internally may invoke some scheduling operations. We can't take // the channel unless we're on the home scheduler, but once we're on the // home scheduler we should never move. Hence, we take the timer's // action item and then move it outside of the homing block. let _action = { let _m = self.fire_homing_missile(); self.stop(); self.close(); self.action.take() }; } } #[cfg(test)] mod test { use std::rt::rtio::RtioTimer; use super::super::local_loop; use super::TimerWatcher; #[test] fn oneshot() { let mut timer = TimerWatcher::new(local_loop()); let port = timer.oneshot(1); port.recv(); let port = timer.oneshot(1); port.recv(); } #[test] fn override() { let mut timer = TimerWatcher::new(local_loop()); let oport = timer.oneshot(1); let pport = timer.period(1); timer.sleep(1); assert_eq!(oport.recv_opt(), Err(())); assert_eq!(pport.recv_opt(), Err(())); timer.oneshot(1).recv(); } #[test] fn period() { let mut timer = TimerWatcher::new(local_loop()); let port = timer.period(1); port.recv(); port.recv(); let port2 = timer.period(1); port2.recv(); port2.recv(); } #[test] fn sleep() { let mut timer = TimerWatcher::new(local_loop()); timer.sleep(1); timer.sleep(1); } #[test] #[should_fail] fn oneshot_fail() { let mut timer = TimerWatcher::new(local_loop()); let _port = timer.oneshot(1); fail!(); } #[test] #[should_fail] fn period_fail() { let mut timer = TimerWatcher::new(local_loop()); let _port = timer.period(1); fail!(); } #[test] #[should_fail] fn normal_fail() { let _timer = TimerWatcher::new(local_loop()); fail!(); } #[test] fn closing_channel_during_drop_doesnt_kill_everything() { // see issue #10375 let mut timer = TimerWatcher::new(local_loop()); let timer_port = timer.period(1000); spawn(proc() { let _ = timer_port.recv_opt(); }); // when we drop the TimerWatcher we're going to destroy the channel, // which must wake up the task on the other end } #[test] fn reset_doesnt_switch_tasks() { // similar test to the one above. let mut timer = TimerWatcher::new(local_loop()); let timer_port = timer.period(1000); spawn(proc() { let _ = timer_port.recv_opt(); }); drop(timer.oneshot(1)); } #[test] fn reset_doesnt_switch_tasks2() { // similar test to the one above. let mut timer = TimerWatcher::new(local_loop()); let timer_port = timer.period(1000); spawn(proc() { let _ = timer_port.recv_opt(); }); timer.sleep(1); } #[test] fn sender_goes_away_oneshot() { let port = { let mut timer = TimerWatcher::new(local_loop()); timer.oneshot(1000) }; assert_eq!(port.recv_opt(), Err(())); } #[test] fn sender_goes_away_period() { let port = { let mut timer = TimerWatcher::new(local_loop()); timer.period(1000) }; assert_eq!(port.recv_opt(), Err(())); } #[test] fn receiver_goes_away_oneshot() { let mut timer1 = TimerWatcher::new(local_loop()); drop(timer1.oneshot(1)); let mut timer2 = TimerWatcher::new(local_loop()); // while sleeping, the prevous timer should fire and not have its // callback do something terrible. timer2.sleep(2); } #[test] fn receiver_goes_away_period() { let mut timer1 = TimerWatcher::new(local_loop()); drop(timer1.period(1)); let mut timer2 = TimerWatcher::new(local_loop()); // while sleeping, the prevous timer should fire and not have its // callback do something terrible. timer2.sleep(2); } }