//! For each definition, we track the following data. A definition //! here is defined somewhat circularly as "something with a `DefId`", //! but it generally corresponds to things like structs, enums, etc. //! There are also some rather random cases (like const initializer //! expressions) that are mostly just leftovers. pub use crate::def_id::DefPathHash; use crate::def_id::{CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX, LOCAL_CRATE}; use crate::hir; use crate::hir_id::DUMMY_HIR_ID; use rustc_ast::ast; use rustc_ast::crate_disambiguator::CrateDisambiguator; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::stable_hasher::StableHasher; use rustc_index::vec::IndexVec; use rustc_span::hygiene::ExpnId; use rustc_span::symbol::{sym, Symbol}; use rustc_span::Span; use log::debug; use std::fmt::Write; use std::hash::Hash; /// The `DefPathTable` maps `DefIndex`es to `DefKey`s and vice versa. /// Internally the `DefPathTable` holds a tree of `DefKey`s, where each `DefKey` /// stores the `DefIndex` of its parent. /// There is one `DefPathTable` for each crate. #[derive(Clone, Default, RustcDecodable, RustcEncodable)] pub struct DefPathTable { index_to_key: IndexVec, def_path_hashes: IndexVec, } impl DefPathTable { fn allocate(&mut self, key: DefKey, def_path_hash: DefPathHash) -> DefIndex { let index = { let index = DefIndex::from(self.index_to_key.len()); debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index); self.index_to_key.push(key); index }; self.def_path_hashes.push(def_path_hash); debug_assert!(self.def_path_hashes.len() == self.index_to_key.len()); index } pub fn next_id(&self) -> DefIndex { DefIndex::from(self.index_to_key.len()) } #[inline(always)] pub fn def_key(&self, index: DefIndex) -> DefKey { self.index_to_key[index] } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { let hash = self.def_path_hashes[index]; debug!("def_path_hash({:?}) = {:?}", index, hash); hash } pub fn add_def_path_hashes_to(&self, cnum: CrateNum, out: &mut FxHashMap) { out.extend(self.def_path_hashes.iter().enumerate().map(|(index, &hash)| { let def_id = DefId { krate: cnum, index: DefIndex::from(index) }; (hash, def_id) })); } pub fn size(&self) -> usize { self.index_to_key.len() } } /// The definition table containing node definitions. /// It holds the `DefPathTable` for local `DefId`s/`DefPath`s and it also stores a /// mapping from `NodeId`s to local `DefId`s. #[derive(Clone, Default)] pub struct Definitions { table: DefPathTable, def_id_to_span: IndexVec, // FIXME(eddyb) don't go through `ast::NodeId` to convert between `HirId` // and `LocalDefId` - ideally all `LocalDefId`s would be HIR owners. node_id_to_def_id: FxHashMap, def_id_to_node_id: IndexVec, pub(super) node_id_to_hir_id: IndexVec, /// The reverse mapping of `node_id_to_hir_id`. pub(super) hir_id_to_node_id: FxHashMap, /// If `ExpnId` is an ID of some macro expansion, /// then `DefId` is the normal module (`mod`) in which the expanded macro was defined. parent_modules_of_macro_defs: FxHashMap, /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`. expansions_that_defined: FxHashMap, next_disambiguator: FxHashMap<(LocalDefId, DefPathData), u32>, /// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId` /// we know what parent node that fragment should be attached to thanks to this table. invocation_parents: FxHashMap, /// Indices of unnamed struct or variant fields with unresolved attributes. placeholder_field_indices: FxHashMap, } /// A unique identifier that we can use to lookup a definition /// precisely. It combines the index of the definition's parent (if /// any) with a `DisambiguatedDefPathData`. #[derive(Copy, Clone, PartialEq, Debug, RustcEncodable, RustcDecodable)] pub struct DefKey { /// The parent path. pub parent: Option, /// The identifier of this node. pub disambiguated_data: DisambiguatedDefPathData, } impl DefKey { fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash { let mut hasher = StableHasher::new(); // We hash a `0u8` here to disambiguate between regular `DefPath` hashes, // and the special "root_parent" below. 0u8.hash(&mut hasher); parent_hash.hash(&mut hasher); let DisambiguatedDefPathData { ref data, disambiguator } = self.disambiguated_data; ::std::mem::discriminant(data).hash(&mut hasher); if let Some(name) = data.get_opt_name() { // Get a stable hash by considering the symbol chars rather than // the symbol index. name.as_str().hash(&mut hasher); } disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } fn root_parent_stable_hash( crate_name: &str, crate_disambiguator: CrateDisambiguator, ) -> DefPathHash { let mut hasher = StableHasher::new(); // Disambiguate this from a regular `DefPath` hash; see `compute_stable_hash()` above. 1u8.hash(&mut hasher); crate_name.hash(&mut hasher); crate_disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } } /// A pair of `DefPathData` and an integer disambiguator. The integer is /// normally `0`, but in the event that there are multiple defs with the /// same `parent` and `data`, we use this field to disambiguate /// between them. This introduces some artificial ordering dependency /// but means that if you have, e.g., two impls for the same type in /// the same module, they do get distinct `DefId`s. #[derive(Copy, Clone, PartialEq, Debug, RustcEncodable, RustcDecodable)] pub struct DisambiguatedDefPathData { pub data: DefPathData, pub disambiguator: u32, } #[derive(Clone, Debug, RustcEncodable, RustcDecodable)] pub struct DefPath { /// The path leading from the crate root to the item. pub data: Vec, /// The crate root this path is relative to. pub krate: CrateNum, } impl DefPath { pub fn is_local(&self) -> bool { self.krate == LOCAL_CRATE } pub fn make(krate: CrateNum, start_index: DefIndex, mut get_key: FN) -> DefPath where FN: FnMut(DefIndex) -> DefKey, { let mut data = vec![]; let mut index = Some(start_index); loop { debug!("DefPath::make: krate={:?} index={:?}", krate, index); let p = index.unwrap(); let key = get_key(p); debug!("DefPath::make: key={:?}", key); match key.disambiguated_data.data { DefPathData::CrateRoot => { assert!(key.parent.is_none()); break; } _ => { data.push(key.disambiguated_data); index = key.parent; } } } data.reverse(); DefPath { data, krate } } /// Returns a string representation of the `DefPath` without /// the crate-prefix. This method is useful if you don't have /// a `TyCtxt` available. pub fn to_string_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); for component in &self.data { write!(s, "::{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap(); } s } /// Returns a filename-friendly string for the `DefPath`, with the /// crate-prefix. pub fn to_string_friendly(&self, crate_imported_name: F) -> String where F: FnOnce(CrateNum) -> Symbol, { let crate_name_str = crate_imported_name(self.krate).as_str(); let mut s = String::with_capacity(crate_name_str.len() + self.data.len() * 16); write!(s, "::{}", crate_name_str).unwrap(); for component in &self.data { if component.disambiguator == 0 { write!(s, "::{}", component.data.as_symbol()).unwrap(); } else { write!(s, "{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap(); } } s } /// Returns a filename-friendly string of the `DefPath`, without /// the crate-prefix. This method is useful if you don't have /// a `TyCtxt` available. pub fn to_filename_friendly_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); let mut opt_delimiter = None; for component in &self.data { opt_delimiter.map(|d| s.push(d)); opt_delimiter = Some('-'); if component.disambiguator == 0 { write!(s, "{}", component.data.as_symbol()).unwrap(); } else { write!(s, "{}[{}]", component.data.as_symbol(), component.disambiguator).unwrap(); } } s } } #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub enum DefPathData { // Root: these should only be used for the root nodes, because // they are treated specially by the `def_path` function. /// The crate root (marker). CrateRoot, // Catch-all for random `DefId` things like `DUMMY_NODE_ID`. Misc, // Different kinds of items and item-like things: /// An impl. Impl, /// Something in the type namespace. TypeNs(Symbol), /// Something in the value namespace. ValueNs(Symbol), /// Something in the macro namespace. MacroNs(Symbol), /// Something in the lifetime namespace. LifetimeNs(Symbol), /// A closure expression. ClosureExpr, // Subportions of items: /// Implicit constructor for a unit or tuple-like struct or enum variant. Ctor, /// A constant expression (see `{ast,hir}::AnonConst`). AnonConst, /// An `impl Trait` type node. ImplTrait, } impl Definitions { pub fn def_path_table(&self) -> &DefPathTable { &self.table } /// Gets the number of definitions. pub fn def_index_count(&self) -> usize { self.table.index_to_key.len() } pub fn def_key(&self, id: LocalDefId) -> DefKey { self.table.def_key(id.local_def_index) } #[inline(always)] pub fn def_path_hash(&self, id: LocalDefId) -> DefPathHash { self.table.def_path_hash(id.local_def_index) } /// Returns the path from the crate root to `index`. The root /// nodes are not included in the path (i.e., this will be an /// empty vector for the crate root). For an inlined item, this /// will be the path of the item in the external crate (but the /// path will begin with the path to the external crate). pub fn def_path(&self, id: LocalDefId) -> DefPath { DefPath::make(LOCAL_CRATE, id.local_def_index, |index| { self.def_key(LocalDefId { local_def_index: index }) }) } #[inline] pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option { self.node_id_to_def_id.get(&node).copied() } #[inline] pub fn local_def_id(&self, node: ast::NodeId) -> LocalDefId { self.opt_local_def_id(node).unwrap() } #[inline] pub fn as_local_node_id(&self, def_id: DefId) -> Option { if let Some(def_id) = def_id.as_local() { let node_id = self.def_id_to_node_id[def_id]; if node_id != ast::DUMMY_NODE_ID { return Some(node_id); } } None } #[inline] pub fn as_local_hir_id(&self, def_id: DefId) -> Option { if let Some(def_id) = def_id.as_local() { let hir_id = self.local_def_id_to_hir_id(def_id); if hir_id != DUMMY_HIR_ID { Some(hir_id) } else { None } } else { None } } #[inline] pub fn hir_id_to_node_id(&self, hir_id: hir::HirId) -> ast::NodeId { self.hir_id_to_node_id[&hir_id] } #[inline] pub fn node_id_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId { self.node_id_to_hir_id[node_id] } #[inline] pub fn local_def_id_to_hir_id(&self, id: LocalDefId) -> hir::HirId { let node_id = self.def_id_to_node_id[id]; self.node_id_to_hir_id[node_id] } /// Retrieves the span of the given `DefId` if `DefId` is in the local crate. #[inline] pub fn opt_span(&self, def_id: DefId) -> Option { if let Some(def_id) = def_id.as_local() { Some(self.def_id_to_span[def_id]) } else { None } } /// Adds a root definition (no parent) and a few other reserved definitions. pub fn create_root_def( &mut self, crate_name: &str, crate_disambiguator: CrateDisambiguator, ) -> LocalDefId { let key = DefKey { parent: None, disambiguated_data: DisambiguatedDefPathData { data: DefPathData::CrateRoot, disambiguator: 0, }, }; let parent_hash = DefKey::root_parent_stable_hash(crate_name, crate_disambiguator); let def_path_hash = key.compute_stable_hash(parent_hash); // Create the definition. let root = LocalDefId { local_def_index: self.table.allocate(key, def_path_hash) }; assert_eq!(root.local_def_index, CRATE_DEF_INDEX); assert_eq!(self.def_id_to_node_id.push(ast::CRATE_NODE_ID), root); assert_eq!(self.def_id_to_span.push(rustc_span::DUMMY_SP), root); self.node_id_to_def_id.insert(ast::CRATE_NODE_ID, root); self.set_invocation_parent(ExpnId::root(), root); root } /// Adds a definition with a parent definition. pub fn create_def_with_parent( &mut self, parent: LocalDefId, node_id: ast::NodeId, data: DefPathData, expn_id: ExpnId, span: Span, ) -> LocalDefId { debug!( "create_def_with_parent(parent={:?}, node_id={:?}, data={:?})", parent, node_id, data ); assert!( !self.node_id_to_def_id.contains_key(&node_id), "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}", node_id, data, self.table.def_key(self.node_id_to_def_id[&node_id].local_def_index), ); // The root node must be created with `create_root_def()`. assert!(data != DefPathData::CrateRoot); // Find the next free disambiguator for this key. let disambiguator = { let next_disamb = self.next_disambiguator.entry((parent, data)).or_insert(0); let disambiguator = *next_disamb; *next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow"); disambiguator }; let key = DefKey { parent: Some(parent.local_def_index), disambiguated_data: DisambiguatedDefPathData { data, disambiguator }, }; let parent_hash = self.table.def_path_hash(parent.local_def_index); let def_path_hash = key.compute_stable_hash(parent_hash); debug!("create_def_with_parent: after disambiguation, key = {:?}", key); // Create the definition. let def_id = LocalDefId { local_def_index: self.table.allocate(key, def_path_hash) }; assert_eq!(self.def_id_to_node_id.push(node_id), def_id); assert_eq!(self.def_id_to_span.push(span), def_id); // Some things for which we allocate `LocalDefId`s don't correspond to // anything in the AST, so they don't have a `NodeId`. For these cases // we don't need a mapping from `NodeId` to `LocalDefId`. if node_id != ast::DUMMY_NODE_ID { debug!("create_def_with_parent: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id); self.node_id_to_def_id.insert(node_id, def_id); } if expn_id != ExpnId::root() { self.expansions_that_defined.insert(def_id, expn_id); } def_id } /// Initializes the `ast::NodeId` to `HirId` mapping once it has been generated during /// AST to HIR lowering. pub fn init_node_id_to_hir_id_mapping(&mut self, mapping: IndexVec) { assert!( self.node_id_to_hir_id.is_empty(), "trying to initialize `NodeId` -> `HirId` mapping twice" ); self.node_id_to_hir_id = mapping; // Build the reverse mapping of `node_id_to_hir_id`. self.hir_id_to_node_id = self .node_id_to_hir_id .iter_enumerated() .map(|(node_id, &hir_id)| (hir_id, node_id)) .collect(); } pub fn expansion_that_defined(&self, id: LocalDefId) -> ExpnId { self.expansions_that_defined.get(&id).copied().unwrap_or(ExpnId::root()) } pub fn parent_module_of_macro_def(&self, expn_id: ExpnId) -> DefId { self.parent_modules_of_macro_defs[&expn_id] } pub fn add_parent_module_of_macro_def(&mut self, expn_id: ExpnId, module: DefId) { self.parent_modules_of_macro_defs.insert(expn_id, module); } pub fn invocation_parent(&self, invoc_id: ExpnId) -> LocalDefId { self.invocation_parents[&invoc_id] } pub fn set_invocation_parent(&mut self, invoc_id: ExpnId, parent: LocalDefId) { let old_parent = self.invocation_parents.insert(invoc_id, parent); assert!(old_parent.is_none(), "parent `LocalDefId` is reset for an invocation"); } pub fn placeholder_field_index(&self, node_id: ast::NodeId) -> usize { self.placeholder_field_indices[&node_id] } pub fn set_placeholder_field_index(&mut self, node_id: ast::NodeId, index: usize) { let old_index = self.placeholder_field_indices.insert(node_id, index); assert!(old_index.is_none(), "placeholder field index is reset for a node ID"); } } impl DefPathData { pub fn get_opt_name(&self) -> Option { use self::DefPathData::*; match *self { TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => Some(name), Impl | CrateRoot | Misc | ClosureExpr | Ctor | AnonConst | ImplTrait => None, } } pub fn as_symbol(&self) -> Symbol { use self::DefPathData::*; match *self { TypeNs(name) | ValueNs(name) | MacroNs(name) | LifetimeNs(name) => name, // Note that this does not show up in user print-outs. CrateRoot => sym::double_braced_crate, Impl => sym::double_braced_impl, Misc => sym::double_braced_misc, ClosureExpr => sym::double_braced_closure, Ctor => sym::double_braced_constructor, AnonConst => sym::double_braced_constant, ImplTrait => sym::double_braced_opaque, } } pub fn to_string(&self) -> String { self.as_symbol().to_string() } }