// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! An interface for numeric types #[allow(missing_doc)]; use cmp::{Eq, ApproxEq, Ord}; use ops::{Add, Sub, Mul, Div, Rem, Neg}; use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr}; use option::Option; pub mod strconv; /// /// The base trait for numeric types /// pub trait Num: Eq + Zero + One + Neg + Add + Sub + Mul + Div + Rem {} pub trait IntConvertible { fn to_int(&self) -> int; fn from_int(n: int) -> Self; } pub trait Orderable: Ord { // These should be methods on `Ord`, with overridable default implementations. We don't want // to encumber all implementors of Ord by requiring them to implement these functions, but at // the same time we want to be able to take advantage of the speed of the specific numeric // functions (like the `fmin` and `fmax` intrinsics). fn min(&self, other: &Self) -> Self; fn max(&self, other: &Self) -> Self; fn clamp(&self, mn: &Self, mx: &Self) -> Self; } #[inline(always)] pub fn min(a: T, b: T) -> T { a.min(&b) } #[inline(always)] pub fn max(a: T, b: T) -> T { a.max(&b) } pub trait Zero { fn zero() -> Self; // FIXME (#5527): This should be an associated constant fn is_zero(&self) -> bool; } pub trait One { fn one() -> Self; // FIXME (#5527): This should be an associated constant } pub trait Signed: Num + Neg { fn abs(&self) -> Self; fn abs_sub(&self, other: &Self) -> Self; fn signum(&self) -> Self; fn is_positive(&self) -> bool; fn is_negative(&self) -> bool; } #[inline(always)] pub fn abs(value: T) -> T { value.abs() } #[inline(always)] pub fn signum(value: T) -> T { value.signum() } pub trait Unsigned: Num {} pub trait Integer: Num + Orderable + Div + Rem { fn div_rem(&self, other: &Self) -> (Self,Self); fn div_floor(&self, other: &Self) -> Self; fn mod_floor(&self, other: &Self) -> Self; fn div_mod_floor(&self, other: &Self) -> (Self,Self); fn gcd(&self, other: &Self) -> Self; fn lcm(&self, other: &Self) -> Self; fn is_multiple_of(&self, other: &Self) -> bool; fn is_even(&self) -> bool; fn is_odd(&self) -> bool; } pub trait Round { fn floor(&self) -> Self; fn ceil(&self) -> Self; fn round(&self) -> Self; fn trunc(&self) -> Self; fn fract(&self) -> Self; } pub trait Fractional: Num + Orderable + Round + Div { fn recip(&self) -> Self; } pub trait Algebraic { fn pow(&self, n: &Self) -> Self; fn sqrt(&self) -> Self; fn rsqrt(&self) -> Self; fn cbrt(&self) -> Self; fn hypot(&self, other: &Self) -> Self; } #[inline(always)] pub fn sqrt(value: T) -> T { value.sqrt() } pub trait Trigonometric { fn sin(&self) -> Self; fn cos(&self) -> Self; fn tan(&self) -> Self; fn asin(&self) -> Self; fn acos(&self) -> Self; fn atan(&self) -> Self; fn atan2(&self, other: &Self) -> Self; fn sin_cos(&self) -> (Self, Self); } #[inline(always)] pub fn sin(value: T) -> T { value.sin() } #[inline(always)] pub fn cos(value: T) -> T { value.cos() } #[inline(always)] pub fn tan(value: T) -> T { value.tan() } #[inline(always)] pub fn asin(value: T) -> T { value.asin() } #[inline(always)] pub fn acos(value: T) -> T { value.acos() } #[inline(always)] pub fn atan(value: T) -> T { value.atan() } #[inline(always)] pub fn atan2(x: T, y: T) -> T { x.atan2(&y) } pub trait Exponential { fn exp(&self) -> Self; fn exp2(&self) -> Self; fn ln(&self) -> Self; fn log(&self, base: &Self) -> Self; fn log2(&self) -> Self; fn log10(&self) -> Self; } #[inline(always)] pub fn exp(value: T) -> T { value.exp() } #[inline(always)] pub fn exp2(value: T) -> T { value.exp2() } #[inline(always)] pub fn ln(value: T) -> T { value.ln() } #[inline(always)] pub fn log(value: T, base: T) -> T { value.log(&base) } #[inline(always)] pub fn log2(value: T) -> T { value.log2() } #[inline(always)] pub fn log10(value: T) -> T { value.log10() } pub trait Hyperbolic: Exponential { fn sinh(&self) -> Self; fn cosh(&self) -> Self; fn tanh(&self) -> Self; fn asinh(&self) -> Self; fn acosh(&self) -> Self; fn atanh(&self) -> Self; } #[inline(always)] pub fn sinh(value: T) -> T { value.sinh() } #[inline(always)] pub fn cosh(value: T) -> T { value.cosh() } #[inline(always)] pub fn tanh(value: T) -> T { value.tanh() } #[inline(always)] pub fn asinh(value: T) -> T { value.asinh() } #[inline(always)] pub fn acosh(value: T) -> T { value.acosh() } #[inline(always)] pub fn atanh(value: T) -> T { value.atanh() } /// /// Defines constants and methods common to real numbers /// pub trait Real: Signed + Fractional + Algebraic + Trigonometric + Hyperbolic { // Common Constants // FIXME (#5527): These should be associated constants fn pi() -> Self; fn two_pi() -> Self; fn frac_pi_2() -> Self; fn frac_pi_3() -> Self; fn frac_pi_4() -> Self; fn frac_pi_6() -> Self; fn frac_pi_8() -> Self; fn frac_1_pi() -> Self; fn frac_2_pi() -> Self; fn frac_2_sqrtpi() -> Self; fn sqrt2() -> Self; fn frac_1_sqrt2() -> Self; fn e() -> Self; fn log2_e() -> Self; fn log10_e() -> Self; fn ln_2() -> Self; fn ln_10() -> Self; // Angular conversions fn to_degrees(&self) -> Self; fn to_radians(&self) -> Self; } /// /// Methods that are harder to implement and not commonly used. /// pub trait RealExt: Real { // FIXME (#5527): usages of `int` should be replaced with an associated // integer type once these are implemented // Gamma functions fn lgamma(&self) -> (int, Self); fn tgamma(&self) -> Self; // Bessel functions fn j0(&self) -> Self; fn j1(&self) -> Self; fn jn(&self, n: int) -> Self; fn y0(&self) -> Self; fn y1(&self) -> Self; fn yn(&self, n: int) -> Self; } /// /// Collects the bitwise operators under one trait. /// pub trait Bitwise: Not + BitAnd + BitOr + BitXor + Shl + Shr {} pub trait BitCount { fn population_count(&self) -> Self; fn leading_zeros(&self) -> Self; fn trailing_zeros(&self) -> Self; } pub trait Bounded { // FIXME (#5527): These should be associated constants fn min_value() -> Self; fn max_value() -> Self; } /// /// Specifies the available operations common to all of Rust's core numeric primitives. /// These may not always make sense from a purely mathematical point of view, but /// may be useful for systems programming. /// pub trait Primitive: Num + NumCast + Bounded + Neg + Add + Sub + Mul + Div + Rem { // FIXME (#5527): These should be associated constants fn bits() -> uint; fn bytes() -> uint; } /// /// A collection of traits relevant to primitive signed and unsigned integers /// pub trait Int: Integer + Primitive + Bitwise + BitCount {} /// /// Used for representing the classification of floating point numbers /// #[deriving(Eq)] pub enum FPCategory { /// "Not a Number", often obtained by dividing by zero FPNaN, /// Positive or negative infinity FPInfinite , /// Positive or negative zero FPZero, /// De-normalized floating point representation (less precise than `FPNormal`) FPSubnormal, /// A regular floating point number FPNormal, } /// /// Primitive floating point numbers /// pub trait Float: Real + Signed + Primitive + ApproxEq { // FIXME (#5527): These should be associated constants fn NaN() -> Self; fn infinity() -> Self; fn neg_infinity() -> Self; fn neg_zero() -> Self; fn is_NaN(&self) -> bool; fn is_infinite(&self) -> bool; fn is_finite(&self) -> bool; fn is_normal(&self) -> bool; fn classify(&self) -> FPCategory; fn mantissa_digits() -> uint; fn digits() -> uint; fn epsilon() -> Self; fn min_exp() -> int; fn max_exp() -> int; fn min_10_exp() -> int; fn max_10_exp() -> int; fn ldexp(x: Self, exp: int) -> Self; fn frexp(&self) -> (Self, int); fn exp_m1(&self) -> Self; fn ln_1p(&self) -> Self; fn mul_add(&self, a: Self, b: Self) -> Self; fn next_after(&self, other: Self) -> Self; } /// /// Cast from one machine scalar to another /// /// # Example /// /// ~~~ /// let twenty: f32 = num::cast(0x14); /// assert_eq!(twenty, 20f32); /// ~~~ /// #[inline] pub fn cast(n: T) -> U { NumCast::from(n) } /// /// An interface for casting between machine scalars /// pub trait NumCast { fn from(n: T) -> Self; fn to_u8(&self) -> u8; fn to_u16(&self) -> u16; fn to_u32(&self) -> u32; fn to_u64(&self) -> u64; fn to_uint(&self) -> uint; fn to_i8(&self) -> i8; fn to_i16(&self) -> i16; fn to_i32(&self) -> i32; fn to_i64(&self) -> i64; fn to_int(&self) -> int; fn to_f32(&self) -> f32; fn to_f64(&self) -> f64; fn to_float(&self) -> float; } macro_rules! impl_num_cast( ($T:ty, $conv:ident) => ( impl NumCast for $T { #[inline] fn from(n: N) -> $T { // `$conv` could be generated using `concat_idents!`, but that // macro seems to be broken at the moment n.$conv() } #[inline] fn to_u8(&self) -> u8 { *self as u8 } #[inline] fn to_u16(&self) -> u16 { *self as u16 } #[inline] fn to_u32(&self) -> u32 { *self as u32 } #[inline] fn to_u64(&self) -> u64 { *self as u64 } #[inline] fn to_uint(&self) -> uint { *self as uint } #[inline] fn to_i8(&self) -> i8 { *self as i8 } #[inline] fn to_i16(&self) -> i16 { *self as i16 } #[inline] fn to_i32(&self) -> i32 { *self as i32 } #[inline] fn to_i64(&self) -> i64 { *self as i64 } #[inline] fn to_int(&self) -> int { *self as int } #[inline] fn to_f32(&self) -> f32 { *self as f32 } #[inline] fn to_f64(&self) -> f64 { *self as f64 } #[inline] fn to_float(&self) -> float { *self as float } } ) ) impl_num_cast!(u8, to_u8) impl_num_cast!(u16, to_u16) impl_num_cast!(u32, to_u32) impl_num_cast!(u64, to_u64) impl_num_cast!(uint, to_uint) impl_num_cast!(i8, to_i8) impl_num_cast!(i16, to_i16) impl_num_cast!(i32, to_i32) impl_num_cast!(i64, to_i64) impl_num_cast!(int, to_int) impl_num_cast!(f32, to_f32) impl_num_cast!(f64, to_f64) impl_num_cast!(float, to_float) pub trait ToStrRadix { pub fn to_str_radix(&self, radix: uint) -> ~str; } pub trait FromStrRadix { pub fn from_str_radix(str: &str, radix: uint) -> Option; } /// /// Calculates a power to a given radix, optimized for uint `pow` and `radix`. /// /// Returns `radix^pow` as `T`. /// /// Note: /// Also returns `1` for `0^0`, despite that technically being an /// undefined number. The reason for this is twofold: /// - If code written to use this function cares about that special case, it's /// probably going to catch it before making the call. /// - If code written to use this function doesn't care about it, it's /// probably assuming that `x^0` always equals `1`. /// pub fn pow_with_uint+Mul>(radix: uint, pow: uint) -> T { let _0: T = Zero::zero(); let _1: T = One::one(); if pow == 0u { return _1; } if radix == 0u { return _0; } let mut my_pow = pow; let mut total = _1; let mut multiplier = cast(radix); while (my_pow > 0u) { if my_pow % 2u == 1u { total = total * multiplier; } my_pow = my_pow / 2u; multiplier = multiplier * multiplier; } total } impl Zero for @mut T { fn zero() -> @mut T { @mut Zero::zero() } fn is_zero(&self) -> bool { (**self).is_zero() } } impl Zero for @T { fn zero() -> @T { @Zero::zero() } fn is_zero(&self) -> bool { (**self).is_zero() } } impl Zero for ~T { fn zero() -> ~T { ~Zero::zero() } fn is_zero(&self) -> bool { (**self).is_zero() } } /// Helper function for testing numeric operations #[cfg(test)] pub fn test_num(ten: T, two: T) { assert_eq!(ten.add(&two), cast(12)); assert_eq!(ten.sub(&two), cast(8)); assert_eq!(ten.mul(&two), cast(20)); assert_eq!(ten.div(&two), cast(5)); assert_eq!(ten.rem(&two), cast(0)); assert_eq!(ten.add(&two), ten + two); assert_eq!(ten.sub(&two), ten - two); assert_eq!(ten.mul(&two), ten * two); assert_eq!(ten.div(&two), ten / two); assert_eq!(ten.rem(&two), ten % two); } macro_rules! test_cast_20( ($_20:expr) => ({ let _20 = $_20; assert_eq!(20u, _20.to_uint()); assert_eq!(20u8, _20.to_u8()); assert_eq!(20u16, _20.to_u16()); assert_eq!(20u32, _20.to_u32()); assert_eq!(20u64, _20.to_u64()); assert_eq!(20i, _20.to_int()); assert_eq!(20i8, _20.to_i8()); assert_eq!(20i16, _20.to_i16()); assert_eq!(20i32, _20.to_i32()); assert_eq!(20i64, _20.to_i64()); assert_eq!(20f, _20.to_float()); assert_eq!(20f32, _20.to_f32()); assert_eq!(20f64, _20.to_f64()); assert_eq!(_20, NumCast::from(20u)); assert_eq!(_20, NumCast::from(20u8)); assert_eq!(_20, NumCast::from(20u16)); assert_eq!(_20, NumCast::from(20u32)); assert_eq!(_20, NumCast::from(20u64)); assert_eq!(_20, NumCast::from(20i)); assert_eq!(_20, NumCast::from(20i8)); assert_eq!(_20, NumCast::from(20i16)); assert_eq!(_20, NumCast::from(20i32)); assert_eq!(_20, NumCast::from(20i64)); assert_eq!(_20, NumCast::from(20f)); assert_eq!(_20, NumCast::from(20f32)); assert_eq!(_20, NumCast::from(20f64)); assert_eq!(_20, cast(20u)); assert_eq!(_20, cast(20u8)); assert_eq!(_20, cast(20u16)); assert_eq!(_20, cast(20u32)); assert_eq!(_20, cast(20u64)); assert_eq!(_20, cast(20i)); assert_eq!(_20, cast(20i8)); assert_eq!(_20, cast(20i16)); assert_eq!(_20, cast(20i32)); assert_eq!(_20, cast(20i64)); assert_eq!(_20, cast(20f)); assert_eq!(_20, cast(20f32)); assert_eq!(_20, cast(20f64)); }) ) #[test] fn test_u8_cast() { test_cast_20!(20u8) } #[test] fn test_u16_cast() { test_cast_20!(20u16) } #[test] fn test_u32_cast() { test_cast_20!(20u32) } #[test] fn test_u64_cast() { test_cast_20!(20u64) } #[test] fn test_uint_cast() { test_cast_20!(20u) } #[test] fn test_i8_cast() { test_cast_20!(20i8) } #[test] fn test_i16_cast() { test_cast_20!(20i16) } #[test] fn test_i32_cast() { test_cast_20!(20i32) } #[test] fn test_i64_cast() { test_cast_20!(20i64) } #[test] fn test_int_cast() { test_cast_20!(20i) } #[test] fn test_f32_cast() { test_cast_20!(20f32) } #[test] fn test_f64_cast() { test_cast_20!(20f64) } #[test] fn test_float_cast() { test_cast_20!(20f) }