// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[allow(non_camel_case_types)]; use back::abi; use lib; use lib::llvm::{llvm, ValueRef}; use middle::lang_items::StrDupUniqFnLangItem; use middle::trans::base::*; use middle::trans::base; use middle::trans::build::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::cleanup::CleanupMethods; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::{Dest, Ignore, SaveIn}; use middle::trans::expr; use middle::trans::glue; use middle::trans::machine::{llsize_of, nonzero_llsize_of, llsize_of_alloc}; use middle::trans::type_::Type; use middle::trans::type_of; use middle::ty; use util::ppaux::ty_to_str; use syntax::ast; use syntax::parse::token::InternedString; // Boxed vector types are in some sense currently a "shorthand" for a box // containing an unboxed vector. This expands a boxed vector type into such an // expanded type. It doesn't respect mutability, but that doesn't matter at // this point. pub fn expand_boxed_vec_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let unit_ty = ty::sequence_element_type(tcx, t); let unboxed_vec_ty = ty::mk_mut_unboxed_vec(tcx, unit_ty); match ty::get(t).sty { ty::ty_str(ty::vstore_uniq) | ty::ty_vec(_, ty::vstore_uniq) => { ty::mk_uniq(tcx, unboxed_vec_ty) } _ => tcx.sess.bug("non boxed-vec type \ in tvec::expand_boxed_vec_ty") } } pub fn get_fill(bcx: &Block, vptr: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::get_fill"); Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_fill])) } pub fn set_fill(bcx: &Block, vptr: ValueRef, fill: ValueRef) { Store(bcx, fill, GEPi(bcx, vptr, [0u, abi::vec_elt_fill])); } pub fn get_alloc(bcx: &Block, vptr: ValueRef) -> ValueRef { Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_alloc])) } pub fn get_dataptr(bcx: &Block, vptr: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::get_dataptr"); GEPi(bcx, vptr, [0u, abi::vec_elt_elems, 0u]) } pub fn pointer_add_byte(bcx: &Block, ptr: ValueRef, bytes: ValueRef) -> ValueRef { let _icx = push_ctxt("tvec::pointer_add_byte"); let old_ty = val_ty(ptr); let bptr = PointerCast(bcx, ptr, Type::i8p()); return PointerCast(bcx, InBoundsGEP(bcx, bptr, [bytes]), old_ty); } pub fn alloc_raw<'a>( bcx: &'a Block<'a>, unit_ty: ty::t, fill: ValueRef, alloc: ValueRef, heap: heap) -> Result<'a> { let _icx = push_ctxt("tvec::alloc_uniq"); let ccx = bcx.ccx(); let vecbodyty = ty::mk_mut_unboxed_vec(bcx.tcx(), unit_ty); let vecsize = Add(bcx, alloc, llsize_of(ccx, ccx.opaque_vec_type)); if heap == heap_exchange { let Result { bcx: bcx, val: val } = malloc_raw_dyn(bcx, vecbodyty, heap_exchange, vecsize); Store(bcx, fill, GEPi(bcx, val, [0u, abi::vec_elt_fill])); Store(bcx, alloc, GEPi(bcx, val, [0u, abi::vec_elt_alloc])); return rslt(bcx, val); } else { let base::MallocResult {bcx, smart_ptr: bx, body} = base::malloc_general_dyn(bcx, vecbodyty, heap, vecsize); Store(bcx, fill, GEPi(bcx, body, [0u, abi::vec_elt_fill])); Store(bcx, alloc, GEPi(bcx, body, [0u, abi::vec_elt_alloc])); return rslt(bcx, bx); } } pub fn alloc_uniq_raw<'a>( bcx: &'a Block<'a>, unit_ty: ty::t, fill: ValueRef, alloc: ValueRef) -> Result<'a> { alloc_raw(bcx, unit_ty, fill, alloc, heap_exchange) } pub fn alloc_uniq_vec<'a>( bcx: &'a Block<'a>, unit_ty: ty::t, elts: uint) -> Result<'a> { let _icx = push_ctxt("tvec::alloc_uniq"); let ccx = bcx.ccx(); let llunitty = type_of::type_of(ccx, unit_ty); let unit_sz = nonzero_llsize_of(ccx, llunitty); let fill = Mul(bcx, C_uint(ccx, elts), unit_sz); let alloc = if elts < 4u { Mul(bcx, C_int(ccx, 4), unit_sz) } else { fill }; let Result {bcx: bcx, val: vptr} = alloc_raw(bcx, unit_ty, fill, alloc, heap_exchange); return rslt(bcx, vptr); } pub fn make_drop_glue_unboxed<'a>( bcx: &'a Block<'a>, vptr: ValueRef, vec_ty: ty::t) -> &'a Block<'a> { let _icx = push_ctxt("tvec::make_drop_glue_unboxed"); let tcx = bcx.tcx(); let unit_ty = ty::sequence_element_type(tcx, vec_ty); if ty::type_needs_drop(tcx, unit_ty) { iter_vec_unboxed(bcx, vptr, vec_ty, glue::drop_ty) } else { bcx } } pub struct VecTypes { vec_ty: ty::t, unit_ty: ty::t, llunit_ty: Type, llunit_size: ValueRef, llunit_alloc_size: u64 } impl VecTypes { pub fn to_str(&self, ccx: &CrateContext) -> ~str { format!("VecTypes \\{vec_ty={}, unit_ty={}, llunit_ty={}, llunit_size={}, \ llunit_alloc_size={}\\}", ty_to_str(ccx.tcx, self.vec_ty), ty_to_str(ccx.tcx, self.unit_ty), ccx.tn.type_to_str(self.llunit_ty), ccx.tn.val_to_str(self.llunit_size), self.llunit_alloc_size) } } pub fn trans_fixed_vstore<'a>( bcx: &'a Block<'a>, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: expr::Dest) -> &'a Block<'a> { //! // // [...] allocates a fixed-size array and moves it around "by value". // In this case, it means that the caller has already given us a location // to store the array of the suitable size, so all we have to do is // generate the content. debug!("trans_fixed_vstore(vstore_expr={}, dest={:?})", bcx.expr_to_str(vstore_expr), dest.to_str(bcx.ccx())); let vt = vec_types_from_expr(bcx, vstore_expr); return match dest { Ignore => write_content(bcx, &vt, vstore_expr, content_expr, dest), SaveIn(lldest) => { // lldest will have type *[T x N], but we want the type *T, // so use GEP to convert: let lldest = GEPi(bcx, lldest, [0, 0]); write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(lldest)) } }; } pub fn trans_slice_vstore<'a>( bcx: &'a Block<'a>, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: expr::Dest) -> &'a Block<'a> { /*! * &[...] allocates memory on the stack and writes the values into it, * returning a slice (pair of ptr, len). &"..." is similar except that * the memory can be statically allocated. */ let fcx = bcx.fcx; let ccx = fcx.ccx; let mut bcx = bcx; debug!("trans_slice_vstore(vstore_expr={}, dest={})", bcx.expr_to_str(vstore_expr), dest.to_str(ccx)); // Handle the &"..." case: match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { return trans_lit_str(bcx, content_expr, s.clone(), dest) } _ => {} } } _ => {} } // Handle the &[...] case: let vt = vec_types_from_expr(bcx, vstore_expr); let count = elements_required(bcx, content_expr); debug!("vt={}, count={:?}", vt.to_str(ccx), count); let llcount = C_uint(ccx, count); let llfixed; if count == 0 { // Zero-length array: just use NULL as the data pointer llfixed = C_null(vt.llunit_ty.ptr_to()); } else { // Make a fixed-length backing array and allocate it on the stack. llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount); // Arrange for the backing array to be cleaned up. let fixed_ty = ty::mk_vec(bcx.tcx(), ty::mt {ty: vt.unit_ty, mutbl: ast::MutMutable}, ty::vstore_fixed(count)); let llfixed_ty = type_of::type_of(bcx.ccx(), fixed_ty).ptr_to(); let llfixed_casted = BitCast(bcx, llfixed, llfixed_ty); let cleanup_scope = cleanup::temporary_scope(bcx.tcx(), content_expr.id); fcx.schedule_drop_mem(cleanup_scope, llfixed_casted, fixed_ty); // Generate the content into the backing array. bcx = write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(llfixed)); } // Finally, create the slice pair itself. match dest { Ignore => {} SaveIn(lldest) => { Store(bcx, llfixed, GEPi(bcx, lldest, [0u, abi::slice_elt_base])); Store(bcx, llcount, GEPi(bcx, lldest, [0u, abi::slice_elt_len])); } } return bcx; } pub fn trans_lit_str<'a>( bcx: &'a Block<'a>, lit_expr: &ast::Expr, str_lit: InternedString, dest: Dest) -> &'a Block<'a> { /*! * Literal strings translate to slices into static memory. This is * different from trans_slice_vstore() above because it does need to copy * the content anywhere. */ debug!("trans_lit_str(lit_expr={}, dest={})", bcx.expr_to_str(lit_expr), dest.to_str(bcx.ccx())); match dest { Ignore => bcx, SaveIn(lldest) => { unsafe { let bytes = str_lit.get().len(); let llbytes = C_uint(bcx.ccx(), bytes); let llcstr = C_cstr(bcx.ccx(), str_lit); let llcstr = llvm::LLVMConstPointerCast(llcstr, Type::i8p().to_ref()); Store(bcx, llcstr, GEPi(bcx, lldest, [0u, abi::slice_elt_base])); Store(bcx, llbytes, GEPi(bcx, lldest, [0u, abi::slice_elt_len])); bcx } } } } pub fn trans_uniq_vstore<'a>(bcx: &'a Block<'a>, vstore_expr: &ast::Expr, content_expr: &ast::Expr) -> DatumBlock<'a, Expr> { /*! * ~[...] and ~"..." allocate boxes in the exchange heap and write * the array elements into them. */ debug!("trans_uniq_vstore(vstore_expr={})", bcx.expr_to_str(vstore_expr)); let fcx = bcx.fcx; // Handle ~"". match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { let llptrval = C_cstr(bcx.ccx(), (*s).clone()); let llptrval = PointerCast(bcx, llptrval, Type::i8p()); let llsizeval = C_uint(bcx.ccx(), s.get().len()); let typ = ty::mk_str(bcx.tcx(), ty::vstore_uniq); let lldestval = rvalue_scratch_datum(bcx, typ, ""); let alloc_fn = langcall(bcx, Some(lit.span), "", StrDupUniqFnLangItem); let bcx = callee::trans_lang_call( bcx, alloc_fn, [ llptrval, llsizeval ], Some(expr::SaveIn(lldestval.val))).bcx; return DatumBlock(bcx, lldestval).to_expr_datumblock(); } _ => {} } } _ => {} } let vt = vec_types_from_expr(bcx, vstore_expr); let count = elements_required(bcx, content_expr); let Result {bcx, val} = alloc_uniq_vec(bcx, vt.unit_ty, count); // Create a temporary scope lest execution should fail while // constructing the vector. let temp_scope = fcx.push_custom_cleanup_scope(); fcx.schedule_free_value(cleanup::CustomScope(temp_scope), val, heap_exchange); let dataptr = get_dataptr(bcx, val); debug!("alloc_uniq_vec() returned val={}, dataptr={}", bcx.val_to_str(val), bcx.val_to_str(dataptr)); let bcx = write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(dataptr)); fcx.pop_custom_cleanup_scope(temp_scope); return immediate_rvalue_bcx(bcx, val, vt.vec_ty).to_expr_datumblock(); } pub fn write_content<'a>( bcx: &'a Block<'a>, vt: &VecTypes, vstore_expr: &ast::Expr, content_expr: &ast::Expr, dest: Dest) -> &'a Block<'a> { let _icx = push_ctxt("tvec::write_content"); let fcx = bcx.fcx; let mut bcx = bcx; debug!("write_content(vt={}, dest={}, vstore_expr={:?})", vt.to_str(bcx.ccx()), dest.to_str(bcx.ccx()), bcx.expr_to_str(vstore_expr)); match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => { match dest { Ignore => return bcx, SaveIn(lldest) => { let bytes = s.get().len(); let llbytes = C_uint(bcx.ccx(), bytes); let llcstr = C_cstr(bcx.ccx(), (*s).clone()); base::call_memcpy(bcx, lldest, llcstr, llbytes, 1); return bcx; } } } _ => { bcx.tcx().sess.span_bug(content_expr.span, "unexpected evec content"); } } } ast::ExprVec(ref elements, _) => { match dest { Ignore => { for element in elements.iter() { bcx = expr::trans_into(bcx, *element, Ignore); } } SaveIn(lldest) => { let temp_scope = fcx.push_custom_cleanup_scope(); for (i, element) in elements.iter().enumerate() { let lleltptr = GEPi(bcx, lldest, [i]); debug!("writing index {:?} with lleltptr={:?}", i, bcx.val_to_str(lleltptr)); bcx = expr::trans_into(bcx, *element, SaveIn(lleltptr)); fcx.schedule_drop_mem( cleanup::CustomScope(temp_scope), lleltptr, vt.unit_ty); } fcx.pop_custom_cleanup_scope(temp_scope); } } return bcx; } ast::ExprRepeat(element, count_expr, _) => { match dest { Ignore => { return expr::trans_into(bcx, element, Ignore); } SaveIn(lldest) => { let count = ty::eval_repeat_count(&bcx.tcx(), count_expr); if count == 0 { return bcx; } // Some cleanup would be required in the case in which failure happens // during a copy. But given that copy constructors are not overridable, // this can only happen as a result of OOM. So we just skip out on the // cleanup since things would *probably* be broken at that point anyways. let elem = unpack_datum!(bcx, expr::trans(bcx, element)); assert!(!ty::type_moves_by_default(bcx.tcx(), elem.ty)); let bcx = iter_vec_loop(bcx, lldest, vt, C_uint(bcx.ccx(), count), |set_bcx, lleltptr, _| { elem.shallow_copy_and_take(set_bcx, lleltptr) }); elem.add_clean_if_rvalue(bcx, element.id); bcx } } } _ => { bcx.tcx().sess.span_bug(content_expr.span, "unexpected vec content"); } } } pub fn vec_types_from_expr(bcx: &Block, vec_expr: &ast::Expr) -> VecTypes { let vec_ty = node_id_type(bcx, vec_expr.id); vec_types(bcx, vec_ty) } pub fn vec_types(bcx: &Block, vec_ty: ty::t) -> VecTypes { let ccx = bcx.ccx(); let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty); let llunit_ty = type_of::type_of(ccx, unit_ty); let llunit_size = nonzero_llsize_of(ccx, llunit_ty); let llunit_alloc_size = llsize_of_alloc(ccx, llunit_ty); VecTypes {vec_ty: vec_ty, unit_ty: unit_ty, llunit_ty: llunit_ty, llunit_size: llunit_size, llunit_alloc_size: llunit_alloc_size} } pub fn elements_required(bcx: &Block, content_expr: &ast::Expr) -> uint { //! Figure out the number of elements we need to store this content match content_expr.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(ref s, _) => s.get().len(), _ => { bcx.tcx().sess.span_bug(content_expr.span, "unexpected evec content") } } }, ast::ExprVec(ref es, _) => es.len(), ast::ExprRepeat(_, count_expr, _) => { ty::eval_repeat_count(&bcx.tcx(), count_expr) } _ => bcx.tcx().sess.span_bug(content_expr.span, "unexpected vec content") } } pub fn get_base_and_byte_len(bcx: &Block, llval: ValueRef, vec_ty: ty::t) -> (ValueRef, ValueRef) { /*! * Converts a vector into the slice pair. The vector should be * stored in `llval` which should be by ref. If you have a datum, * you would probably prefer to call * `Datum::get_base_and_byte_len()`. */ let ccx = bcx.ccx(); let vt = vec_types(bcx, vec_ty); let vstore = match ty::get(vt.vec_ty).sty { ty::ty_str(vst) | ty::ty_vec(_, vst) => vst, _ => ty::vstore_uniq }; match vstore { ty::vstore_fixed(n) => { let base = GEPi(bcx, llval, [0u, 0u]); let len = Mul(bcx, C_uint(ccx, n), vt.llunit_size); (base, len) } ty::vstore_slice(_) => { assert!(!type_is_immediate(bcx.ccx(), vt.vec_ty)); let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base])); let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len])); let len = Mul(bcx, count, vt.llunit_size); (base, len) } ty::vstore_uniq => { assert!(type_is_immediate(bcx.ccx(), vt.vec_ty)); let body = Load(bcx, llval); (get_dataptr(bcx, body), get_fill(bcx, body)) } } } pub fn get_base_and_len(bcx: &Block, llval: ValueRef, vec_ty: ty::t) -> (ValueRef, ValueRef) { /*! * Converts a vector into the slice pair. The vector should be * stored in `llval` which should be by-reference. If you have a * datum, you would probably prefer to call * `Datum::get_base_and_len()` which will handle any conversions * for you. */ let ccx = bcx.ccx(); let vt = vec_types(bcx, vec_ty); let vstore = match ty::get(vt.vec_ty).sty { ty::ty_str(vst) | ty::ty_vec(_, vst) => vst, _ => ty::vstore_uniq }; match vstore { ty::vstore_fixed(n) => { let base = GEPi(bcx, llval, [0u, 0u]); (base, C_uint(ccx, n)) } ty::vstore_slice(_) => { assert!(!type_is_immediate(bcx.ccx(), vt.vec_ty)); let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base])); let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len])); (base, count) } ty::vstore_uniq => { assert!(type_is_immediate(bcx.ccx(), vt.vec_ty)); let body = Load(bcx, llval); (get_dataptr(bcx, body), UDiv(bcx, get_fill(bcx, body), vt.llunit_size)) } } } pub type iter_vec_block<'r,'b> = 'r |&'b Block<'b>, ValueRef, ty::t| -> &'b Block<'b>; pub fn iter_vec_loop<'r, 'b>( bcx: &'b Block<'b>, data_ptr: ValueRef, vt: &VecTypes, count: ValueRef, f: iter_vec_block<'r,'b>) -> &'b Block<'b> { let _icx = push_ctxt("tvec::iter_vec_loop"); let fcx = bcx.fcx; let next_bcx = fcx.new_temp_block("expr_repeat: while next"); let loop_bcx = fcx.new_temp_block("expr_repeat"); let cond_bcx = fcx.new_temp_block("expr_repeat: loop cond"); let body_bcx = fcx.new_temp_block("expr_repeat: body: set"); let inc_bcx = fcx.new_temp_block("expr_repeat: body: inc"); Br(bcx, loop_bcx.llbb); let loop_counter = { // i = 0 let i = alloca(loop_bcx, bcx.ccx().int_type, "__i"); Store(loop_bcx, C_uint(bcx.ccx(), 0), i); Br(loop_bcx, cond_bcx.llbb); i }; { // i < count let lhs = Load(cond_bcx, loop_counter); let rhs = count; let cond_val = ICmp(cond_bcx, lib::llvm::IntULT, lhs, rhs); CondBr(cond_bcx, cond_val, body_bcx.llbb, next_bcx.llbb); } { // loop body let i = Load(body_bcx, loop_counter); let lleltptr = if vt.llunit_alloc_size == 0 { data_ptr } else { InBoundsGEP(body_bcx, data_ptr, [i]) }; let body_bcx = f(body_bcx, lleltptr, vt.unit_ty); Br(body_bcx, inc_bcx.llbb); } { // i += 1 let i = Load(inc_bcx, loop_counter); let plusone = Add(inc_bcx, i, C_uint(bcx.ccx(), 1)); Store(inc_bcx, plusone, loop_counter); Br(inc_bcx, cond_bcx.llbb); } next_bcx } pub fn iter_vec_raw<'r, 'b>( bcx: &'b Block<'b>, data_ptr: ValueRef, vec_ty: ty::t, fill: ValueRef, f: iter_vec_block<'r,'b>) -> &'b Block<'b> { let _icx = push_ctxt("tvec::iter_vec_raw"); let fcx = bcx.fcx; let vt = vec_types(bcx, vec_ty); if vt.llunit_alloc_size == 0 { // Special-case vectors with elements of size 0 so they don't go out of bounds (#9890) iter_vec_loop(bcx, data_ptr, &vt, fill, f) } else { // Calculate the last pointer address we want to handle. // FIXME (#3729): Optimize this when the size of the unit type is // statically known to not use pointer casts, which tend to confuse // LLVM. let data_end_ptr = pointer_add_byte(bcx, data_ptr, fill); // Now perform the iteration. let header_bcx = fcx.new_temp_block("iter_vec_loop_header"); Br(bcx, header_bcx.llbb); let data_ptr = Phi(header_bcx, val_ty(data_ptr), [data_ptr], [bcx.llbb]); let not_yet_at_end = ICmp(header_bcx, lib::llvm::IntULT, data_ptr, data_end_ptr); let body_bcx = fcx.new_temp_block("iter_vec_loop_body"); let next_bcx = fcx.new_temp_block("iter_vec_next"); CondBr(header_bcx, not_yet_at_end, body_bcx.llbb, next_bcx.llbb); let body_bcx = f(body_bcx, data_ptr, vt.unit_ty); AddIncomingToPhi(data_ptr, InBoundsGEP(body_bcx, data_ptr, [C_int(bcx.ccx(), 1)]), body_bcx.llbb); Br(body_bcx, header_bcx.llbb); next_bcx } } pub fn iter_vec_uniq<'r, 'b>( bcx: &'b Block<'b>, vptr: ValueRef, vec_ty: ty::t, fill: ValueRef, f: iter_vec_block<'r,'b>) -> &'b Block<'b> { let _icx = push_ctxt("tvec::iter_vec_uniq"); let data_ptr = get_dataptr(bcx, vptr); iter_vec_raw(bcx, data_ptr, vec_ty, fill, f) } pub fn iter_vec_unboxed<'r, 'b>( bcx: &'b Block<'b>, body_ptr: ValueRef, vec_ty: ty::t, f: iter_vec_block<'r,'b>) -> &'b Block<'b> { let _icx = push_ctxt("tvec::iter_vec_unboxed"); let fill = get_fill(bcx, body_ptr); let dataptr = get_dataptr(bcx, body_ptr); return iter_vec_raw(bcx, dataptr, vec_ty, fill, f); }