// TODO(tsion): Remove this. #![allow(unused_imports, dead_code, unused_variables)] use byteorder::{self, ByteOrder}; use rustc::middle::const_eval; use rustc::middle::cstore::CrateStore; use rustc::middle::def_id; use rustc::middle::ty::{self, TyCtxt}; use rustc::mir::mir_map::MirMap; use rustc::mir::repr::{self as mir, Mir}; use std::collections::HashMap; use std::error::Error; use std::fmt; use std::iter; use syntax::ast::Attribute; use syntax::attr::AttrMetaMethods; use memory::{self, Pointer, Repr, Allocation}; const TRACE_EXECUTION: bool = true; #[derive(Clone, Debug)] pub enum EvalError { DanglingPointerDeref, PointerOutOfBounds, } pub type EvalResult = Result; impl Error for EvalError { fn description(&self) -> &str { match *self { EvalError::DanglingPointerDeref => "dangling pointer was dereferenced", EvalError::PointerOutOfBounds => "pointer offset outside bounds of allocation", } } fn cause(&self) -> Option<&Error> { None } } impl fmt::Display for EvalError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } // #[derive(Clone, Debug, PartialEq)] // enum Value { // Uninit, // Bool(bool), // Int(i64), // FIXME(tsion): Should be bit-width aware. // Pointer(Pointer), // Adt { variant: usize, data_ptr: Pointer }, // Func(def_id::DefId), // } /// A stack frame. #[derive(Debug)] struct Frame { /// A pointer for writing the return value of the current call, if it's not a diverging call. return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. locals: Vec, /// The offset of the first variable in `self.locals`. var_offset: usize, /// The offset of the first temporary in `self.locals`. temp_offset: usize, } impl Frame { fn arg_ptr(&self, i: u32) -> Pointer { self.locals[i as usize].clone() } fn var_ptr(&self, i: u32) -> Pointer { self.locals[self.var_offset + i as usize].clone() } fn temp_ptr(&self, i: u32) -> Pointer { self.locals[self.temp_offset + i as usize].clone() } } struct Interpreter<'a, 'tcx: 'a> { tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>, memory: memory::Memory, stack: Vec, } impl<'a, 'tcx> Interpreter<'a, 'tcx> { fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self { Interpreter { tcx: tcx, mir_map: mir_map, memory: memory::Memory::new(), stack: Vec::new(), } } fn push_stack_frame(&mut self, mir: &Mir, args: &[&mir::Operand], return_ptr: Option) -> EvalResult<()> { let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); assert_eq!(args.len(), num_args); let arg_tys = mir.arg_decls.iter().map(|a| a.ty); let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); let locals: Vec = arg_tys.chain(var_tys).chain(temp_tys).map(|ty| { self.memory.allocate(Repr::from_ty(ty)) }).collect(); for (dest, operand) in locals[..num_args].iter().zip(args) { let src = try!(self.operand_to_ptr(operand)); try!(self.memory.copy(&src, dest, dest.repr.size())); } self.stack.push(Frame { return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, }); Ok(()) } fn pop_stack_frame(&mut self) { let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(tsion): Deallocate local variables. } fn call(&mut self, mir: &Mir, args: &[&mir::Operand], return_ptr: Option) -> EvalResult<()> { try!(self.push_stack_frame(mir, args, return_ptr)); let mut block = mir::START_BLOCK; loop { if TRACE_EXECUTION { println!("Entering block: {:?}", block); } let block_data = mir.basic_block_data(block); for stmt in &block_data.statements { if TRACE_EXECUTION { println!("{:?}", stmt); } match stmt.kind { mir::StatementKind::Assign(ref lvalue, ref rvalue) => { let ptr = try!(self.lvalue_to_ptr(lvalue)); try!(self.eval_rvalue_into(rvalue, &ptr)); } } } if TRACE_EXECUTION { println!("{:?}", block_data.terminator()); } match *block_data.terminator() { mir::Terminator::Return => break, mir::Terminator::Goto { target } => block = target, // mir::Terminator::Call { ref func, ref args, ref destination, .. } => { // let ptr = destination.as_ref().map(|&(ref lv, _)| self.lvalue_to_ptr(lv)); // let func_val = self.operand_to_ptr(func); // if let Value::Func(def_id) = func_val { // let mir_data; // let mir = match self.tcx.map.as_local_node_id(def_id) { // Some(node_id) => self.mir_map.map.get(&node_id).unwrap(), // None => { // let cstore = &self.tcx.sess.cstore; // mir_data = cstore.maybe_get_item_mir(self.tcx, def_id).unwrap(); // &mir_data // } // }; // let arg_vals: Vec = // args.iter().map(|arg| self.operand_to_ptr(arg)).collect(); // self.call(mir, &arg_vals, ptr); // if let Some((_, target)) = *destination { // block = target; // } // } else { // panic!("tried to call a non-function value: {:?}", func_val); // } // } // mir::Terminator::If { ref cond, targets: (then_target, else_target) } => { // match self.operand_to_ptr(cond) { // Value::Bool(true) => block = then_target, // Value::Bool(false) => block = else_target, // cond_val => panic!("Non-boolean `if` condition value: {:?}", cond_val), // } // } // mir::Terminator::SwitchInt { ref discr, ref values, ref targets, .. } => { // let discr_val = self.read_lvalue(discr); // let index = values.iter().position(|v| discr_val == self.const_to_ptr(v)) // .expect("discriminant matched no values"); // block = targets[index]; // } // mir::Terminator::Switch { ref discr, ref targets, .. } => { // let discr_val = self.read_lvalue(discr); // if let Value::Adt { variant, .. } = discr_val { // block = targets[variant]; // } else { // panic!("Switch on non-Adt value: {:?}", discr_val); // } // } mir::Terminator::Drop { target, .. } => { // TODO: Handle destructors and dynamic drop. block = target; } mir::Terminator::Resume => unimplemented!(), _ => unimplemented!(), } } self.pop_stack_frame(); Ok(()) } fn lvalue_to_ptr(&self, lvalue: &mir::Lvalue) -> EvalResult { let frame = self.stack.last().expect("no call frames exists"); let ptr = match *lvalue { mir::Lvalue::ReturnPointer => frame.return_ptr.clone() .expect("ReturnPointer used in a function with no return value"), mir::Lvalue::Arg(i) => frame.arg_ptr(i), mir::Lvalue::Var(i) => frame.var_ptr(i), mir::Lvalue::Temp(i) => frame.temp_ptr(i), ref l => panic!("can't handle lvalue: {:?}", l), }; Ok(ptr) // mir::Lvalue::Projection(ref proj) => { // let base_ptr = self.lvalue_to_ptr(&proj.base); // match proj.elem { // mir::ProjectionElem::Field(field, _) => { // base_ptr.offset(field.index()) // } // mir::ProjectionElem::Downcast(_, variant) => { // let adt_val = self.read_pointer(base_ptr); // if let Value::Adt { variant: actual_variant, data_ptr } = adt_val { // debug_assert_eq!(variant, actual_variant); // data_ptr // } else { // panic!("Downcast attempted on non-ADT: {:?}", adt_val) // } // } // mir::ProjectionElem::Deref => { // let ptr_val = self.read_pointer(base_ptr); // if let Value::Pointer(ptr) = ptr_val { // ptr // } else { // panic!("Deref attempted on non-pointer: {:?}", ptr_val) // } // } // mir::ProjectionElem::Index(ref _operand) => unimplemented!(), // mir::ProjectionElem::ConstantIndex { .. } => unimplemented!(), // } // } // _ => unimplemented!(), // } } fn eval_binary_op(&mut self, bin_op: mir::BinOp, left: Pointer, right: Pointer, dest: &Pointer) -> EvalResult<()> { match (&left.repr, &right.repr, &dest.repr) { (&Repr::Int, &Repr::Int, &Repr::Int) => { let l = try!(self.memory.read_int(&left)); let r = try!(self.memory.read_int(&right)); let n = match bin_op { mir::BinOp::Add => l + r, mir::BinOp::Sub => l - r, mir::BinOp::Mul => l * r, mir::BinOp::Div => l / r, mir::BinOp::Rem => l % r, mir::BinOp::BitXor => l ^ r, mir::BinOp::BitAnd => l & r, mir::BinOp::BitOr => l | r, mir::BinOp::Shl => l << r, mir::BinOp::Shr => l >> r, _ => unimplemented!(), // mir::BinOp::Eq => Value::Bool(l == r), // mir::BinOp::Lt => Value::Bool(l < r), // mir::BinOp::Le => Value::Bool(l <= r), // mir::BinOp::Ne => Value::Bool(l != r), // mir::BinOp::Ge => Value::Bool(l >= r), // mir::BinOp::Gt => Value::Bool(l > r), }; self.memory.write_int(dest, n) } (l, r, o) => panic!("unhandled binary operation: {:?}({:?}, {:?}) into {:?}", bin_op, l, r, o), } } fn eval_rvalue_into(&mut self, rvalue: &mir::Rvalue, dest: &Pointer) -> EvalResult<()> { match *rvalue { mir::Rvalue::Use(ref operand) => { let src = try!(self.operand_to_ptr(operand)); try!(self.memory.copy(&src, dest, src.repr.size())); } mir::Rvalue::BinaryOp(bin_op, ref left, ref right) => { let left_ptr = try!(self.operand_to_ptr(left)); let right_ptr = try!(self.operand_to_ptr(right)); try!(self.eval_binary_op(bin_op, left_ptr, right_ptr, dest)); } mir::Rvalue::UnaryOp(un_op, ref operand) => { let ptr = try!(self.operand_to_ptr(operand)); let m = try!(self.memory.read_int(&ptr)); let n = match (un_op, ptr.repr) { (mir::UnOp::Not, Repr::Int) => !m, (mir::UnOp::Neg, Repr::Int) => -m, (_, ref p) => panic!("unhandled binary operation: {:?}({:?})", un_op, p), }; try!(self.memory.write_int(dest, n)); } mir::Rvalue::Aggregate(mir::AggregateKind::Tuple, ref operands) => { match dest.repr { Repr::Aggregate { ref fields, .. } => { for (field, operand) in fields.iter().zip(operands) { let src = try!(self.operand_to_ptr(operand)); try!(self.memory.copy(&src, &dest.offset(field.offset), src.repr.size())); } } _ => panic!("attempted to write tuple rvalue '{:?}' into non-aggregate pointer '{:?}'", rvalue, dest) } } // mir::Rvalue::Ref(_region, _kind, ref lvalue) => { // Value::Pointer(self.lvalue_to_ptr(lvalue)) // } // mir::Rvalue::Aggregate(mir::AggregateKind::Adt(ref adt_def, variant, _substs), // ref operands) => { // let max_fields = adt_def.variants // .iter() // .map(|v| v.fields.len()) // .max() // .unwrap_or(0); // let ptr = self.allocate_aggregate(max_fields); // for (i, operand) in operands.iter().enumerate() { // let val = self.operand_to_ptr(operand); // self.write_pointer(ptr.offset(i), val); // } // Value::Adt { variant: variant, data_ptr: ptr } // } ref r => panic!("can't handle rvalue: {:?}", r), } Ok(()) } fn operand_to_ptr(&mut self, op: &mir::Operand) -> EvalResult { match *op { mir::Operand::Consume(ref lvalue) => self.lvalue_to_ptr(lvalue), mir::Operand::Constant(ref constant) => { match constant.literal { mir::Literal::Value { ref value } => self.const_to_ptr(value), mir::Literal::Item { def_id, kind, .. } => match kind { // mir::ItemKind::Function | mir::ItemKind::Method => Value::Func(def_id), _ => panic!("can't handle item literal: {:?}", constant.literal), }, } } } } fn const_to_ptr(&mut self, const_val: &const_eval::ConstVal) -> EvalResult { match *const_val { const_eval::ConstVal::Float(_f) => unimplemented!(), const_eval::ConstVal::Int(n) => { let ptr = self.memory.allocate(Repr::Int); try!(self.memory.write_int(&ptr, n)); Ok(ptr) } const_eval::ConstVal::Uint(_u) => unimplemented!(), const_eval::ConstVal::Str(ref _s) => unimplemented!(), const_eval::ConstVal::ByteStr(ref _bs) => unimplemented!(), const_eval::ConstVal::Bool(b) => unimplemented!(), const_eval::ConstVal::Struct(_node_id) => unimplemented!(), const_eval::ConstVal::Tuple(_node_id) => unimplemented!(), const_eval::ConstVal::Function(_def_id) => unimplemented!(), const_eval::ConstVal::Array(_, _) => unimplemented!(), const_eval::ConstVal::Repeat(_, _) => unimplemented!(), } } } pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) { for (&id, mir) in &mir_map.map { for attr in tcx.map.attrs(id) { if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let mut miri = Interpreter::new(tcx, mir_map); let return_ptr = match mir.return_ty { ty::FnConverging(ty) => Some(miri.memory.allocate(Repr::from_ty(ty))), ty::FnDiverging => None, }; miri.call(mir, &[], return_ptr.clone()).unwrap(); if let Some(ret) = return_ptr { println!("Returned: {:?}\n", miri.memory.get(ret.alloc_id).unwrap()); } } } } } fn check_expected(actual: &str, attr: &Attribute) -> bool { if let Some(meta_items) = attr.meta_item_list() { for meta_item in meta_items { if meta_item.check_name("expected") { let expected = meta_item.value_str().unwrap(); if actual == &expected[..] { println!("Test passed!\n"); } else { println!("Actual value:\t{}\nExpected value:\t{}\n", actual, expected); } return true; } } } false }