import std::{ufind, map, smallintmap}; import result::result; import std::map::hashmap; import driver::session; import session::session; import syntax::ast; import syntax::ast::*; import syntax::ast_util; import syntax::ast_util::{is_local, split_class_items}; import syntax::codemap::span; import metadata::csearch; import util::common::*; import util::ppaux::region_to_str; import util::ppaux::ty_to_str; import util::ppaux::ty_constr_to_str; import syntax::print::pprust::*; export is_instantiable; export node_id_to_type; export node_id_to_type_params; export arg; export args_eq; export ast_constr_to_constr; export block_ty; export class_items_as_fields; export constr; export constr_general; export constr_table; export ctxt; export def_has_ty_params; export expr_has_ty_params; export expr_ty; export expr_ty_params_and_ty; export expr_is_lval; export field_ty; export fold_ty; export field; export field_idx; export get_field; export get_fields; export fm_var, fm_general, fm_rptr; export get_element_type; export is_binopable; export is_pred_ty; export lookup_class_field, lookup_class_fields; export lookup_class_method_by_name; export lookup_field_type; export lookup_item_type; export lookup_public_fields; export method; export method_idx; export mk_class; export mk_ctxt; export mk_with_id, type_def_id; export mt; export node_type_table; export pat_ty; export sequence_element_type; export sort_methods; export stmt_node_id; export sty; export substitute_type_params; export t; export new_ty_hash; export enum_variants, substd_enum_variants; export iface_methods, store_iface_methods, impl_iface; export enum_variant_with_id; export ty_param_bounds_and_ty; export ty_bool, mk_bool, type_is_bool; export ty_bot, mk_bot, type_is_bot; export ty_box, mk_box, mk_imm_box, type_is_box, type_is_boxed; export ty_constr, mk_constr; export ty_opaque_closure_ptr, mk_opaque_closure_ptr; export ty_opaque_box, mk_opaque_box; export ty_constr_arg; export ty_float, mk_float, mk_mach_float, type_is_fp; export ty_fn, fn_ty, mk_fn; export ty_fn_proto, ty_fn_ret, ty_fn_ret_style; export ty_int, mk_int, mk_mach_int, mk_char; export ty_str, mk_str, type_is_str; export ty_vec, mk_vec, type_is_vec; export ty_nil, mk_nil, type_is_nil; export ty_iface, mk_iface; export ty_res, mk_res; export ty_param, mk_param; export ty_ptr, mk_ptr, mk_mut_ptr, mk_imm_ptr, mk_nil_ptr, type_is_unsafe_ptr; export ty_rptr, mk_rptr; export ty_rec, mk_rec; export ty_enum, mk_enum, type_is_enum; export ty_tup, mk_tup; export ty_type, mk_type; export ty_uint, mk_uint, mk_mach_uint; export ty_uniq, mk_uniq, mk_imm_uniq, type_is_unique_box; export ty_var, mk_var; export ty_self, mk_self; export region, re_block, re_param, re_var; export get, type_has_params, type_has_vars, type_has_rptrs, type_id; export ty_var_id; export ty_to_def_id; export ty_fn_args; export type_constr; export kind, kind_sendable, kind_copyable, kind_noncopyable; export kind_can_be_copied, kind_can_be_sent, proto_kind, kind_lteq, type_kind; export type_err; export type_err_to_str; export type_needs_drop; export type_allows_implicit_copy; export type_is_integral; export type_is_numeric; export type_is_pod; export type_is_scalar; export type_is_immediate; export type_is_sequence; export type_is_signed; export type_is_structural; export type_is_copyable; export type_is_tup_like; export type_is_unique; export type_is_c_like_enum; export type_structurally_contains; export type_structurally_contains_uniques; export type_autoderef; export type_param; export type_needs_unwind_cleanup; export canon_mode; export resolved_mode; export arg_mode; export unify_mode; export set_default_mode; export unify; export variant_info; export walk_ty, maybe_walk_ty; export occurs_check; export closure_kind; export ck_block; export ck_box; export ck_uniq; export param_bound, param_bounds, bound_copy, bound_send, bound_iface; export param_bounds_to_kind; export default_arg_mode_for_ty; export item_path; export item_path_str; export ast_ty_to_ty_cache_entry; export atttce_unresolved, atttce_resolved; export mach_sty; // Data types // Note: after typeck, you should use resolved_mode() to convert this mode // into an rmode, which will take into account the results of mode inference. type arg = {mode: ast::mode, ty: t}; type field = {ident: ast::ident, mt: mt}; type param_bounds = @[param_bound]; type method = {ident: ast::ident, tps: @[param_bounds], fty: fn_ty, purity: ast::purity, privacy: ast::privacy}; type constr_table = hashmap; type mt = {ty: t, mutbl: ast::mutability}; type field_ty = { ident: ident, id: def_id, privacy: ast::privacy, mutability: ast::class_mutability }; // Contains information needed to resolve types and (in the future) look up // the types of AST nodes. type creader_cache = hashmap<{cnum: int, pos: uint, len: uint}, t>; type intern_key = {struct: sty, o_def_id: option}; enum ast_ty_to_ty_cache_entry { atttce_unresolved, /* not resolved yet */ atttce_resolved(t) /* resolved to a type, irrespective of region */ } enum borrowing { bo_none, bo_box(@borrowing), bo_uniq(@borrowing) } type ctxt = @{interner: hashmap, mut next_id: uint, sess: session::session, def_map: resolve::def_map, region_map: @middle::region::region_map, // Stores the types for various nodes in the AST. Note that this table // is not guaranteed to be populated until after typeck. See // typeck::fn_ctxt for details. node_types: node_type_table, // Stores the type parameters which were substituted to obtain the type // of this node. This only applies to nodes that refer to entities // parameterized by type parameters, such as generic fns, types, or // other items. node_type_substs: hashmap, items: ast_map::map, freevars: freevars::freevar_map, tcache: type_cache, rcache: creader_cache, short_names_cache: hashmap, needs_drop_cache: hashmap, needs_unwind_cleanup_cache: hashmap, kind_cache: hashmap, ast_ty_to_ty_cache: hashmap<@ast::ty, ast_ty_to_ty_cache_entry>, enum_var_cache: hashmap, iface_method_cache: hashmap, ty_param_bounds: hashmap, inferred_modes: hashmap, borrowings: hashmap}; type t_box = @{struct: sty, id: uint, has_params: bool, has_vars: bool, has_rptrs: bool, o_def_id: option}; // To reduce refcounting cost, we're representing types as unsafe pointers // throughout the compiler. These are simply casted t_box values. Use ty::get // to cast them back to a box. (Without the cast, compiler performance suffers // ~15%.) This does mean that a t value relies on the ctxt to keep its box // alive, and using ty::get is unsafe when the ctxt is no longer alive. enum t_opaque {} type t = *t_opaque; pure fn get(t: t) -> t_box unsafe { let t2 = unsafe::reinterpret_cast::(t); let t3 = t2; unsafe::forget(t2); t3 } fn type_has_params(t: t) -> bool { get(t).has_params } fn type_has_vars(t: t) -> bool { get(t).has_vars } fn type_has_rptrs(t: t) -> bool { get(t).has_rptrs } fn type_def_id(t: t) -> option { get(t).o_def_id } fn type_id(t: t) -> uint { get(t).id } enum closure_kind { ck_block, ck_box, ck_uniq, } type fn_ty = {proto: ast::proto, inputs: [arg], output: t, ret_style: ret_style, constraints: [@constr]}; enum region { // The region of a block. re_block(node_id), // The self region. Only valid inside classes and typeclass // implementations. re_self, // The inferred region, which also corresponds to &self in typedefs. re_inferred, // A region parameter. re_param(uint), // A region variable. re_var(uint) } // NB: If you change this, you'll probably want to change the corresponding // AST structure in front/ast::rs as well. enum sty { ty_nil, ty_bot, ty_bool, ty_int(ast::int_ty), ty_uint(ast::uint_ty), ty_float(ast::float_ty), ty_str, ty_enum(def_id, [t]), ty_box(mt), ty_uniq(mt), ty_vec(mt), ty_ptr(mt), ty_rptr(region, mt), ty_rec([field]), ty_fn(fn_ty), ty_iface(def_id, [t]), ty_class(def_id, [t]), ty_res(def_id, t, [t]), ty_tup([t]), ty_var(int), // type variable during typechecking ty_param(uint, def_id), // type parameter ty_self([t]), // interface method self type ty_type, // type_desc* ty_opaque_box, // used by monomorphizer to represent any @ box ty_constr(t, [@type_constr]), ty_opaque_closure_ptr(closure_kind), // ptr to env for fn, fn@, fn~ } // In the middle end, constraints have a def_id attached, referring // to the definition of the operator in the constraint. type constr_general = spanned>; type type_constr = constr_general<@path>; type constr = constr_general; // Data structures used in type unification enum type_err { terr_mismatch, terr_ret_style_mismatch(ast::ret_style, ast::ret_style), terr_mutability, terr_proto_mismatch(ast::proto, ast::proto), terr_box_mutability, terr_ptr_mutability, terr_ref_mutability, terr_vec_mutability, terr_tuple_size(uint, uint), terr_ty_param_size(uint, uint), terr_record_size(uint, uint), terr_record_mutability, terr_record_fields(ast::ident, ast::ident), terr_arg_count, terr_mode_mismatch(mode, mode), terr_constr_len(uint, uint), terr_constr_mismatch(@type_constr, @type_constr), terr_regions_differ(bool /* variance */, region, region), } enum param_bound { bound_copy, bound_send, bound_iface(t), } fn param_bounds_to_kind(bounds: param_bounds) -> kind { let mut kind = kind_noncopyable; for bound in *bounds { alt bound { bound_copy { if kind != kind_sendable { kind = kind_copyable; } } bound_send { kind = kind_sendable; } _ {} } } kind } type ty_param_bounds_and_ty = {bounds: @[param_bounds], ty: t}; type type_cache = hashmap; type node_type_table = @smallintmap::smallintmap; fn mk_rcache() -> creader_cache { type val = {cnum: int, pos: uint, len: uint}; fn hash_cache_entry(k: val) -> uint { ret (k.cnum as uint) + k.pos + k.len; } fn eq_cache_entries(a: val, b: val) -> bool { ret a.cnum == b.cnum && a.pos == b.pos && a.len == b.len; } ret map::hashmap(hash_cache_entry, eq_cache_entries); } fn new_ty_hash() -> map::hashmap { map::hashmap({|&&t: t| type_id(t)}, {|&&a: t, &&b: t| type_id(a) == type_id(b)}) } fn mk_ctxt(s: session::session, dm: resolve::def_map, amap: ast_map::map, freevars: freevars::freevar_map, region_map: @middle::region::region_map) -> ctxt { let interner = map::hashmap({|&&k: intern_key| hash_type_structure(k.struct) + option::with_option(k.o_def_id, 0u, ast_util::hash_def_id) }, {|&&a, &&b| a == b}); @{interner: interner, mut next_id: 0u, sess: s, def_map: dm, region_map: region_map, node_types: @smallintmap::mk(), node_type_substs: map::int_hash(), items: amap, freevars: freevars, tcache: new_def_hash(), rcache: mk_rcache(), short_names_cache: new_ty_hash(), needs_drop_cache: new_ty_hash(), needs_unwind_cleanup_cache: new_ty_hash(), kind_cache: new_ty_hash(), ast_ty_to_ty_cache: map::hashmap( ast_util::hash_ty, ast_util::eq_ty), enum_var_cache: new_def_hash(), iface_method_cache: new_def_hash(), ty_param_bounds: map::int_hash(), inferred_modes: map::int_hash(), borrowings: map::int_hash()} } // Type constructors fn mk_t(cx: ctxt, st: sty) -> t { mk_t_with_id(cx, st, none) } // Interns a type/name combination, stores the resulting box in cx.interner, // and returns the box as cast to an unsafe ptr (see comments for t above). fn mk_t_with_id(cx: ctxt, st: sty, o_def_id: option) -> t { let key = {struct: st, o_def_id: o_def_id}; alt cx.interner.find(key) { some(t) { unsafe { ret unsafe::reinterpret_cast(t); } } _ {} } let mut has_params = false, has_vars = false, has_rptrs = false; fn derive_flags(&has_params: bool, &has_vars: bool, &has_rptrs: bool, tt: t) { let t = get(tt); has_params |= t.has_params; has_vars |= t.has_vars; has_rptrs |= t.has_rptrs; } alt st { ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) | ty_str | ty_type | ty_opaque_closure_ptr(_) | ty_opaque_box {} ty_param(_, _) { has_params = true; } ty_var(_) | ty_self(_) { has_vars = true; } ty_enum(_, tys) | ty_iface(_, tys) | ty_class(_, tys) { for tt in tys { derive_flags(has_params, has_vars, has_rptrs, tt); } } ty_box(m) | ty_uniq(m) | ty_vec(m) | ty_ptr(m) { derive_flags(has_params, has_vars, has_rptrs, m.ty); } ty_rptr(_, m) { has_rptrs = true; derive_flags(has_params, has_vars, has_rptrs, m.ty); } ty_rec(flds) { for f in flds { derive_flags(has_params, has_vars, has_rptrs, f.mt.ty); } } ty_tup(ts) { for tt in ts { derive_flags(has_params, has_vars, has_rptrs, tt); } } ty_fn(f) { for a in f.inputs { derive_flags(has_params, has_vars, has_rptrs, a.ty); } derive_flags(has_params, has_vars, has_rptrs, f.output); } ty_res(_, tt, tps) { derive_flags(has_params, has_vars, has_rptrs, tt); for tt in tps { derive_flags(has_params, has_vars, has_rptrs, tt); } } ty_constr(tt, _) { derive_flags(has_params, has_vars, has_rptrs, tt); } } let t = @{struct: st, id: cx.next_id, has_params: has_params, has_vars: has_vars, has_rptrs: has_rptrs, o_def_id: o_def_id}; cx.interner.insert(key, t); cx.next_id += 1u; unsafe { unsafe::reinterpret_cast(t) } } fn mk_nil(cx: ctxt) -> t { mk_t(cx, ty_nil) } fn mk_bot(cx: ctxt) -> t { mk_t(cx, ty_bot) } fn mk_bool(cx: ctxt) -> t { mk_t(cx, ty_bool) } fn mk_int(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i)) } fn mk_float(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f)) } fn mk_uint(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u)) } fn mk_mach_int(cx: ctxt, tm: ast::int_ty) -> t { mk_t(cx, ty_int(tm)) } fn mk_mach_uint(cx: ctxt, tm: ast::uint_ty) -> t { mk_t(cx, ty_uint(tm)) } fn mk_mach_float(cx: ctxt, tm: ast::float_ty) -> t { mk_t(cx, ty_float(tm)) } fn mk_char(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_char)) } fn mk_str(cx: ctxt) -> t { mk_t(cx, ty_str) } fn mk_enum(cx: ctxt, did: ast::def_id, tys: [t]) -> t { mk_t(cx, ty_enum(did, tys)) } fn mk_box(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_box(tm)) } fn mk_imm_box(cx: ctxt, ty: t) -> t { mk_box(cx, {ty: ty, mutbl: ast::m_imm}) } fn mk_uniq(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_uniq(tm)) } fn mk_imm_uniq(cx: ctxt, ty: t) -> t { mk_uniq(cx, {ty: ty, mutbl: ast::m_imm}) } fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) } fn mk_rptr(cx: ctxt, r: region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) } fn mk_mut_ptr(cx: ctxt, ty: t) -> t { mk_ptr(cx, {ty: ty, mutbl: ast::m_mutbl}) } fn mk_imm_ptr(cx: ctxt, ty: t) -> t { mk_ptr(cx, {ty: ty, mutbl: ast::m_imm}) } fn mk_nil_ptr(cx: ctxt) -> t { mk_ptr(cx, {ty: mk_nil(cx), mutbl: ast::m_imm}) } fn mk_vec(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_vec(tm)) } fn mk_rec(cx: ctxt, fs: [field]) -> t { mk_t(cx, ty_rec(fs)) } fn mk_constr(cx: ctxt, t: t, cs: [@type_constr]) -> t { mk_t(cx, ty_constr(t, cs)) } fn mk_tup(cx: ctxt, ts: [t]) -> t { mk_t(cx, ty_tup(ts)) } fn mk_fn(cx: ctxt, fty: fn_ty) -> t { mk_t(cx, ty_fn(fty)) } fn mk_iface(cx: ctxt, did: ast::def_id, tys: [t]) -> t { mk_t(cx, ty_iface(did, tys)) } fn mk_class(cx: ctxt, class_id: ast::def_id, tys: [t]) -> t { mk_t(cx, ty_class(class_id, tys)) } fn mk_res(cx: ctxt, did: ast::def_id, inner: t, tps: [t]) -> t { mk_t(cx, ty_res(did, inner, tps)) } fn mk_var(cx: ctxt, v: int) -> t { mk_t(cx, ty_var(v)) } fn mk_self(cx: ctxt, tps: [t]) -> t { mk_t(cx, ty_self(tps)) } fn mk_param(cx: ctxt, n: uint, k: def_id) -> t { mk_t(cx, ty_param(n, k)) } fn mk_type(cx: ctxt) -> t { mk_t(cx, ty_type) } fn mk_opaque_closure_ptr(cx: ctxt, ck: closure_kind) -> t { mk_t(cx, ty_opaque_closure_ptr(ck)) } fn mk_opaque_box(cx: ctxt) -> t { mk_t(cx, ty_opaque_box) } fn mk_with_id(cx: ctxt, base: t, def_id: ast::def_id) -> t { mk_t_with_id(cx, get(base).struct, some(def_id)) } // Converts s to its machine type equivalent pure fn mach_sty(cfg: @session::config, t: t) -> sty { alt get(t).struct { ty_int(ast::ty_i) { ty_int(cfg.int_type) } ty_uint(ast::ty_u) { ty_uint(cfg.uint_type) } ty_float(ast::ty_f) { ty_float(cfg.float_type) } s { s } } } fn default_arg_mode_for_ty(ty: ty::t) -> ast::rmode { if ty::type_is_immediate(ty) { ast::by_val } else { ast::by_ref } } fn walk_ty(ty: t, f: fn(t)) { maybe_walk_ty(ty, {|t| f(t); true}); } fn maybe_walk_ty(ty: t, f: fn(t) -> bool) { if !f(ty) { ret; } alt get(ty).struct { ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) | ty_str | ty_type | ty_opaque_box | ty_opaque_closure_ptr(_) | ty_var(_) | ty_param(_, _) {} ty_box(tm) | ty_vec(tm) | ty_ptr(tm) | ty_rptr(_, tm) { maybe_walk_ty(tm.ty, f); } ty_enum(_, subtys) | ty_iface(_, subtys) | ty_class(_, subtys) | ty_self(subtys) { for subty: t in subtys { maybe_walk_ty(subty, f); } } ty_rec(fields) { for fl: field in fields { maybe_walk_ty(fl.mt.ty, f); } } ty_tup(ts) { for tt in ts { maybe_walk_ty(tt, f); } } ty_fn(ft) { for a: arg in ft.inputs { maybe_walk_ty(a.ty, f); } maybe_walk_ty(ft.output, f); } ty_res(_, sub, tps) { maybe_walk_ty(sub, f); for tp: t in tps { maybe_walk_ty(tp, f); } } ty_constr(sub, _) { maybe_walk_ty(sub, f); } ty_uniq(tm) { maybe_walk_ty(tm.ty, f); } } } enum fold_mode { fm_var(fn@(int) -> t), fm_param(fn@(uint, def_id) -> t), fm_rptr(fn@(region, bool /* under & */) -> region, bool /* descend into outermost fn */), fm_general(fn@(t) -> t), } fn fold_ty(cx: ctxt, fld: fold_mode, ty_0: t) -> t { fn do_fold(cx: ctxt, fld: fold_mode, ty_0: t, under_rptr: bool) -> t { let mut ty = ty_0; let tb = get(ty); alt fld { fm_var(_) { if !tb.has_vars { ret ty; } } fm_param(_) { if !tb.has_params { ret ty; } } fm_rptr(_,_) { if !tb.has_rptrs { ret ty; } } fm_general(_) {/* no fast path */ } } alt tb.struct { ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) | ty_str | ty_type | ty_opaque_closure_ptr(_) | ty_opaque_box {} ty_box(tm) { ty = mk_box(cx, {ty: do_fold(cx, fld, tm.ty, under_rptr), mutbl: tm.mutbl}); } ty_uniq(tm) { ty = mk_uniq(cx, {ty: do_fold(cx, fld, tm.ty, under_rptr), mutbl: tm.mutbl}); } ty_ptr(tm) { ty = mk_ptr(cx, {ty: do_fold(cx, fld, tm.ty, under_rptr), mutbl: tm.mutbl}); } ty_vec(tm) { ty = mk_vec(cx, {ty: do_fold(cx, fld, tm.ty, under_rptr), mutbl: tm.mutbl}); } ty_enum(tid, subtys) { ty = mk_enum(cx, tid, vec::map(subtys, {|t| do_fold(cx, fld, t, under_rptr) })); } ty_iface(did, subtys) { ty = mk_iface(cx, did, vec::map(subtys, {|t| do_fold(cx, fld, t, under_rptr) })); } ty_self(subtys) { ty = mk_self(cx, vec::map(subtys, {|t| do_fold(cx, fld, t, under_rptr) })); } ty_rec(fields) { let mut new_fields: [field] = []; for fl: field in fields { let new_ty = do_fold(cx, fld, fl.mt.ty, under_rptr); let new_mt = {ty: new_ty, mutbl: fl.mt.mutbl}; new_fields += [{ident: fl.ident, mt: new_mt}]; } ty = mk_rec(cx, new_fields); } ty_tup(ts) { let mut new_ts = []; for tt in ts { new_ts += [do_fold(cx, fld, tt, under_rptr)]; } ty = mk_tup(cx, new_ts); } ty_fn(f) { let mut new_fld; alt fld { fm_rptr(_, false) { // Don't recurse into functions, because regions are // universally quantified, well, universally, at function // boundaries. ret ty; } fm_rptr(f, true) { new_fld = fm_rptr(f, false); } _ { new_fld = fld; } } let mut new_args: [arg] = []; for a: arg in f.inputs { let new_ty = do_fold(cx, new_fld, a.ty, under_rptr); new_args += [{mode: a.mode, ty: new_ty}]; } let new_output = do_fold(cx, new_fld, f.output, under_rptr); ty = mk_fn(cx, {inputs: new_args, output: new_output with f}); } ty_res(did, subty, tps) { let mut new_tps = []; for tp: t in tps { new_tps += [do_fold(cx, fld, tp, under_rptr)]; } ty = mk_res(cx, did, do_fold(cx, fld, subty, under_rptr), new_tps); } ty_var(id) { alt fld { fm_var(folder) { ty = folder(id); } _ {/* no-op */ } } } ty_param(id, did) { alt fld { fm_param(folder) { ty = folder(id, did); } _ {} } } ty_rptr(r, tm) { let region = alt fld { fm_rptr(folder, _) { folder(r, under_rptr) } _ { r } }; ty = mk_rptr(cx, region, {ty: do_fold(cx, fld, tm.ty, true), mutbl: tm.mutbl}); } ty_constr(subty, cs) { ty = mk_constr(cx, do_fold(cx, fld, subty, under_rptr), cs); } _ { cx.sess.bug("unsupported sort of type in fold_ty"); } } alt tb.o_def_id { some(did) { ty = mk_t_with_id(cx, get(ty).struct, some(did)); } _ {} } // If this is a general type fold, then we need to run it now. alt fld { fm_general(folder) { ret folder(ty); } _ { ret ty; } } } ret do_fold(cx, fld, ty_0, false); } // Type utilities fn type_is_nil(ty: t) -> bool { get(ty).struct == ty_nil } fn type_is_bot(ty: t) -> bool { get(ty).struct == ty_bot } fn type_is_bool(ty: t) -> bool { get(ty).struct == ty_bool } fn type_is_structural(ty: t) -> bool { alt get(ty).struct { ty_rec(_) | ty_class(_,_) | ty_tup(_) | ty_enum(_, _) | ty_fn(_) | ty_iface(_, _) | ty_res(_, _, _) { true } _ { false } } } fn type_is_copyable(cx: ctxt, ty: t) -> bool { ret kind_can_be_copied(type_kind(cx, ty)); } fn type_is_sequence(ty: t) -> bool { alt get(ty).struct { ty_str { ret true; } ty_vec(_) { ret true; } _ { ret false; } } } fn type_is_str(ty: t) -> bool { get(ty).struct == ty_str } fn sequence_element_type(cx: ctxt, ty: t) -> t { alt get(ty).struct { ty_str { ret mk_mach_uint(cx, ast::ty_u8); } ty_vec(mt) { ret mt.ty; } _ { cx.sess.bug("sequence_element_type called on non-sequence value"); } } } pure fn type_is_tup_like(ty: t) -> bool { alt get(ty).struct { ty_rec(_) | ty_tup(_) { true } _ { false } } } fn get_element_type(ty: t, i: uint) -> t { alt get(ty).struct { ty_rec(flds) { ret flds[i].mt.ty; } ty_tup(ts) { ret ts[i]; } _ { fail "get_element_type called on invalid type"; } } } pure fn type_is_box(ty: t) -> bool { alt get(ty).struct { ty_box(_) { ret true; } _ { ret false; } } } pure fn type_is_boxed(ty: t) -> bool { alt get(ty).struct { ty_box(_) | ty_opaque_box { true } _ { false } } } pure fn type_is_unique_box(ty: t) -> bool { alt get(ty).struct { ty_uniq(_) { ret true; } _ { ret false; } } } pure fn type_is_unsafe_ptr(ty: t) -> bool { alt get(ty).struct { ty_ptr(_) { ret true; } _ { ret false; } } } pure fn type_is_vec(ty: t) -> bool { ret alt get(ty).struct { ty_vec(_) { true } ty_str { true } _ { false } }; } pure fn type_is_unique(ty: t) -> bool { alt get(ty).struct { ty_uniq(_) { ret true; } ty_vec(_) { true } ty_str { true } _ { ret false; } } } pure fn type_is_scalar(ty: t) -> bool { alt get(ty).struct { ty_nil | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) | ty_type | ty_ptr(_) | ty_rptr(_, _) { true } _ { false } } } // FIXME maybe inline this for speed? fn type_is_immediate(ty: t) -> bool { ret type_is_scalar(ty) || type_is_boxed(ty) || type_is_unique(ty); } fn type_needs_drop(cx: ctxt, ty: t) -> bool { alt cx.needs_drop_cache.find(ty) { some(result) { ret result; } none {/* fall through */ } } let mut accum = false; let result = alt get(ty).struct { // scalar types ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) | ty_type | ty_ptr(_) | ty_rptr(_, _) { false } ty_rec(flds) { for f in flds { if type_needs_drop(cx, f.mt.ty) { accum = true; } } accum } ty_class(did,_) { for f in ty::class_items_as_fields(cx, did) { if type_needs_drop(cx, f.mt.ty) { accum = true; } } accum } ty_tup(elts) { for m in elts { if type_needs_drop(cx, m) { accum = true; } } accum } ty_enum(did, tps) { let variants = enum_variants(cx, did); for variant in *variants { for aty in variant.args { // Perform any type parameter substitutions. let arg_ty = substitute_type_params(cx, tps, aty); if type_needs_drop(cx, arg_ty) { accum = true; } } if accum { break; } } accum } _ { true } }; cx.needs_drop_cache.insert(ty, result); ret result; } // Some things don't need cleanups during unwinding because the // task can free them all at once later. Currently only things // that only contain scalars and shared boxes can avoid unwind // cleanups. fn type_needs_unwind_cleanup(cx: ctxt, ty: t) -> bool { alt cx.needs_unwind_cleanup_cache.find(ty) { some(result) { ret result; } none { } } let tycache = new_ty_hash(); let needs_unwind_cleanup = type_needs_unwind_cleanup_(cx, ty, tycache, false); cx.needs_unwind_cleanup_cache.insert(ty, needs_unwind_cleanup); ret needs_unwind_cleanup; } fn type_needs_unwind_cleanup_(cx: ctxt, ty: t, tycache: map::hashmap, encountered_box: bool) -> bool { // Prevent infinite recursion alt tycache.find(ty) { some(_) { ret false; } none { tycache.insert(ty, ()); } } let mut encountered_box = encountered_box; let mut needs_unwind_cleanup = false; maybe_walk_ty(ty) {|ty| alt get(ty).struct { ty_box(_) | ty_opaque_box { encountered_box = true; true } ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) | ty_rec(_) | ty_tup(_) | ty_ptr(_) { true } ty_enum(did, tps) { for v in *enum_variants(cx, did) { for aty in v.args { let t = substitute_type_params(cx, tps, aty); needs_unwind_cleanup |= type_needs_unwind_cleanup_(cx, t, tycache, encountered_box); } } !needs_unwind_cleanup } ty_uniq(_) | ty_str | ty_vec(_) | ty_res(_, _, _) { // Once we're inside a box, the annihilator will find // it and destroy it. if !encountered_box { needs_unwind_cleanup = true; false } else { true } } _ { needs_unwind_cleanup = true; false } } } ret needs_unwind_cleanup; } enum kind { kind_sendable, kind_copyable, kind_noncopyable, } // Using these query functons is preferable to direct comparison or matching // against the kind constants, as we may modify the kind hierarchy in the // future. pure fn kind_can_be_copied(k: kind) -> bool { ret alt k { kind_sendable { true } kind_copyable { true } kind_noncopyable { false } }; } pure fn kind_can_be_sent(k: kind) -> bool { ret alt k { kind_sendable { true } kind_copyable { false } kind_noncopyable { false } }; } fn proto_kind(p: proto) -> kind { alt p { ast::proto_any { kind_noncopyable } ast::proto_block { kind_noncopyable } ast::proto_box { kind_copyable } ast::proto_uniq { kind_sendable } ast::proto_bare { kind_sendable } } } fn kind_lteq(a: kind, b: kind) -> bool { alt a { kind_noncopyable { true } kind_copyable { b != kind_noncopyable } kind_sendable { b == kind_sendable } } } fn lower_kind(a: kind, b: kind) -> kind { if kind_lteq(a, b) { a } else { b } } fn type_kind(cx: ctxt, ty: t) -> kind { alt cx.kind_cache.find(ty) { some(result) { ret result; } none {/* fall through */ } } // Insert a default in case we loop back on self recursively. cx.kind_cache.insert(ty, kind_sendable); let result = alt get(ty).struct { // Scalar and unique types are sendable ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) | ty_ptr(_) | ty_str { kind_sendable } ty_type { kind_copyable } ty_fn(f) { proto_kind(f.proto) } ty_opaque_closure_ptr(ck_block) { kind_noncopyable } ty_opaque_closure_ptr(ck_box) { kind_copyable } ty_opaque_closure_ptr(ck_uniq) { kind_sendable } // Those with refcounts-to-inner raise pinned to shared, // lower unique to shared. Therefore just set result to shared. ty_box(_) | ty_iface(_, _) | ty_opaque_box { kind_copyable } ty_rptr(_, _) { kind_copyable } // Boxes and unique pointers raise pinned to shared. ty_vec(tm) | ty_uniq(tm) { type_kind(cx, tm.ty) } // Records lower to the lowest of their members. ty_rec(flds) { let mut lowest = kind_sendable; for f in flds { lowest = lower_kind(lowest, type_kind(cx, f.mt.ty)); } lowest } // Tuples lower to the lowest of their members. ty_tup(tys) { let mut lowest = kind_sendable; for ty in tys { lowest = lower_kind(lowest, type_kind(cx, ty)); } lowest } // Enums lower to the lowest of their variants. ty_enum(did, tps) { let mut lowest = kind_sendable; for variant in *enum_variants(cx, did) { for aty in variant.args { // Perform any type parameter substitutions. let arg_ty = substitute_type_params(cx, tps, aty); lowest = lower_kind(lowest, type_kind(cx, arg_ty)); if lowest == kind_noncopyable { break; } } } lowest } // Resources are always noncopyable. ty_res(did, inner, tps) { kind_noncopyable } ty_param(_, did) { param_bounds_to_kind(cx.ty_param_bounds.get(did.node)) } ty_constr(t, _) { type_kind(cx, t) } ty_class(_, _) { fail "FIXME"; } ty_var(_) { fail "FIXME"; } ty_self(_) { kind_noncopyable } }; cx.kind_cache.insert(ty, result); ret result; } // True if instantiating an instance of `ty` requires an instead of `r_ty`. fn is_instantiable(cx: ctxt, r_ty: t) -> bool { fn type_requires(cx: ctxt, seen: @mut [def_id], r_ty: t, ty: t) -> bool { #debug["type_requires(%s, %s)?", ty_to_str(cx, r_ty), ty_to_str(cx, ty)]; let r = { get(r_ty).struct == get(ty).struct || subtypes_require(cx, seen, r_ty, ty) }; #debug["type_requires(%s, %s)? %b", ty_to_str(cx, r_ty), ty_to_str(cx, ty), r]; ret r; } fn subtypes_require(cx: ctxt, seen: @mut [def_id], r_ty: t, ty: t) -> bool { #debug["subtypes_require(%s, %s)?", ty_to_str(cx, r_ty), ty_to_str(cx, ty)]; let r = alt get(ty).struct { ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) | ty_str | ty_fn(_) | ty_var(_) | ty_param(_, _) | ty_self(_) | ty_type | ty_opaque_box | ty_opaque_closure_ptr(_) | ty_vec(_) { false } ty_constr(t, _) { type_requires(cx, seen, r_ty, t) } ty_box(mt) | ty_uniq(mt) | ty_ptr(mt) | ty_rptr(_, mt) { be type_requires(cx, seen, r_ty, mt.ty); } ty_rec(fields) { vec::any(fields) {|field| type_requires(cx, seen, r_ty, field.mt.ty) } } ty_iface(_, _) { false } ty_class(did, _) if vec::contains(*seen, did) { false } ty_class(did, tps) { vec::push(*seen, did); let r = vec::any(lookup_class_fields(cx, did)) {|f| let fty = ty::lookup_item_type(cx, f.id); let sty = substitute_type_params(cx, tps, fty.ty); type_requires(cx, seen, r_ty, sty) }; vec::pop(*seen); r } ty_res(did, _, _) if vec::contains(*seen, did) { false } ty_res(did, sub, tps) { vec::push(*seen, did); let sty = substitute_type_params(cx, tps, sub); let r = type_requires(cx, seen, r_ty, sty); vec::pop(*seen); r } ty_tup(ts) { vec::any(ts) {|t| type_requires(cx, seen, r_ty, t) } } ty_enum(did, _) if vec::contains(*seen, did) { false } ty_enum(did, tps) { vec::push(*seen, did); let vs = enum_variants(cx, did); let r = vec::len(*vs) > 0u && vec::all(*vs) {|variant| vec::any(variant.args) {|aty| let sty = substitute_type_params(cx, tps, aty); type_requires(cx, seen, r_ty, sty) } }; vec::pop(*seen); r } }; #debug["subtypes_require(%s, %s)? %b", ty_to_str(cx, r_ty), ty_to_str(cx, ty), r]; ret r; } let seen = @mut []; !subtypes_require(cx, seen, r_ty, r_ty) } fn type_structurally_contains(cx: ctxt, ty: t, test: fn(sty) -> bool) -> bool { let sty = get(ty).struct; if test(sty) { ret true; } alt sty { ty_enum(did, tps) { for variant in *enum_variants(cx, did) { for aty in variant.args { let sty = substitute_type_params(cx, tps, aty); if type_structurally_contains(cx, sty, test) { ret true; } } } ret false; } ty_rec(fields) { for field in fields { if type_structurally_contains(cx, field.mt.ty, test) { ret true; } } ret false; } ty_tup(ts) { for tt in ts { if type_structurally_contains(cx, tt, test) { ret true; } } ret false; } ty_res(_, sub, tps) { let sty = substitute_type_params(cx, tps, sub); ret type_structurally_contains(cx, sty, test); } _ { ret false; } } } // Returns true for noncopyable types and types where a copy of a value can be // distinguished from the value itself. I.e. types with mut content that's // not shared through a pointer. fn type_allows_implicit_copy(cx: ctxt, ty: t) -> bool { ret !type_structurally_contains(cx, ty, {|sty| alt sty { ty_param(_, _) { true } ty_vec(mt) { mt.mutbl != ast::m_imm } ty_rec(fields) { vec::any(fields, {|f| f.mt.mutbl != ast::m_imm}) } _ { false } } }) && type_kind(cx, ty) != kind_noncopyable; } fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool { ret type_structurally_contains(cx, ty, {|sty| alt sty { ty_uniq(_) { true } ty_vec(_) { true } ty_str { true } _ { false } } }); } fn type_is_integral(ty: t) -> bool { alt get(ty).struct { ty_int(_) | ty_uint(_) | ty_bool { true } _ { false } } } fn type_is_fp(ty: t) -> bool { alt get(ty).struct { ty_float(_) { true } _ { false } } } fn type_is_numeric(ty: t) -> bool { ret type_is_integral(ty) || type_is_fp(ty); } fn type_is_signed(ty: t) -> bool { alt get(ty).struct { ty_int(_) { true } _ { false } } } // Whether a type is Plain Old Data -- meaning it does not contain pointers // that the cycle collector might care about. fn type_is_pod(cx: ctxt, ty: t) -> bool { let mut result = true; alt get(ty).struct { // Scalar types ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) | ty_type | ty_ptr(_) { result = true; } // Boxed types ty_str | ty_box(_) | ty_uniq(_) | ty_vec(_) | ty_fn(_) | ty_iface(_, _) | ty_rptr(_,_) | ty_opaque_box { result = false; } // Structural types ty_enum(did, tps) { let variants = enum_variants(cx, did); for variant: variant_info in *variants { let tup_ty = mk_tup(cx, variant.args); // Perform any type parameter substitutions. let tup_ty = substitute_type_params(cx, tps, tup_ty); if !type_is_pod(cx, tup_ty) { result = false; } } } ty_rec(flds) { for f: field in flds { if !type_is_pod(cx, f.mt.ty) { result = false; } } } ty_tup(elts) { for elt in elts { if !type_is_pod(cx, elt) { result = false; } } } ty_res(_, inner, tps) { result = type_is_pod(cx, substitute_type_params(cx, tps, inner)); } ty_constr(subt, _) { result = type_is_pod(cx, subt); } ty_param(_, _) { result = false; } ty_opaque_closure_ptr(_) { result = true; } _ { cx.sess.bug("unexpected type in type_is_pod"); } } ret result; } fn type_is_enum(ty: t) -> bool { alt get(ty).struct { ty_enum(_, _) { ret true; } _ { ret false;} } } // Whether a type is enum like, that is a enum type with only nullary // constructors fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool { alt get(ty).struct { ty_enum(did, tps) { let variants = enum_variants(cx, did); let some_n_ary = vec::any(*variants, {|v| vec::len(v.args) > 0u}); ret !some_n_ary; } _ { ret false;} } } fn type_param(ty: t) -> option { alt get(ty).struct { ty_param(id, _) { ret some(id); } _ {/* fall through */ } } ret none; } // Returns a vec of all the type variables // occurring in t. It may contain duplicates. fn vars_in_type(ty: t) -> [int] { let mut rslt = []; walk_ty(ty) {|ty| alt get(ty).struct { ty_var(v) { rslt += [v]; } _ { } } } rslt } fn type_autoderef(cx: ctxt, t: t) -> t { let mut t1 = t; loop { alt get(t1).struct { ty_box(mt) | ty_uniq(mt) | ty::ty_rptr(_, mt) { t1 = mt.ty; } ty_res(_, inner, tps) { t1 = substitute_type_params(cx, tps, inner); } ty_enum(did, tps) { let variants = enum_variants(cx, did); if vec::len(*variants) != 1u || vec::len(variants[0].args) != 1u { break; } t1 = substitute_type_params(cx, tps, variants[0].args[0]); } _ { break; } } } ret t1; } // Type hashing. fn hash_type_structure(st: sty) -> uint { fn hash_uint(id: uint, n: uint) -> uint { (id << 2u) + n } fn hash_def(id: uint, did: ast::def_id) -> uint { let h = (id << 2u) + (did.crate as uint); (h << 2u) + (did.node as uint) } fn hash_subty(id: uint, subty: t) -> uint { (id << 2u) + type_id(subty) } fn hash_subtys(id: uint, subtys: [t]) -> uint { let mut h = id; for s in subtys { h = (h << 2u) + type_id(s) } h } fn hash_type_constr(id: uint, c: @type_constr) -> uint { let mut h = id; h = (h << 2u) + hash_def(h, c.node.id); // FIXME this makes little sense for a in c.node.args { alt a.node { carg_base { h += h << 2u; } carg_lit(_) { fail "lit args not implemented yet"; } carg_ident(p) { h += h << 2u; } } } h } fn hash_region(r: region) -> uint { alt r { re_block(_) { 0u } re_self { 1u } re_inferred { 2u } re_param(_) { 3u } re_var(_) { 4u } } } alt st { ty_nil { 0u } ty_bool { 1u } ty_int(t) { alt t { ast::ty_i { 2u } ast::ty_char { 3u } ast::ty_i8 { 4u } ast::ty_i16 { 5u } ast::ty_i32 { 6u } ast::ty_i64 { 7u } } } ty_uint(t) { alt t { ast::ty_u { 8u } ast::ty_u8 { 9u } ast::ty_u16 { 10u } ast::ty_u32 { 11u } ast::ty_u64 { 12u } } } ty_float(t) { alt t { ast::ty_f { 13u } ast::ty_f32 { 14u } ast::ty_f64 { 15u } } } ty_str { 17u } ty_enum(did, tys) { let mut h = hash_def(18u, did); for typ: t in tys { h = hash_subty(h, typ); } h } ty_box(mt) { hash_subty(19u, mt.ty) } ty_vec(mt) { hash_subty(21u, mt.ty) } ty_rec(fields) { let mut h = 26u; for f in fields { h = hash_subty(h, f.mt.ty); } h } ty_tup(ts) { hash_subtys(25u, ts) } ty_fn(f) { let mut h = 27u; for a in f.inputs { h = hash_subty(h, a.ty); } hash_subty(h, f.output) } ty_var(v) { hash_uint(30u, v as uint) } ty_param(pid, did) { hash_def(hash_uint(31u, pid), did) } ty_self(ts) { let mut h = 28u; for t in ts { h = hash_subty(h, t); } h } ty_type { 32u } ty_bot { 34u } ty_ptr(mt) { hash_subty(35u, mt.ty) } ty_rptr(region, mt) { let mut h = (46u << 2u) + hash_region(region); hash_subty(h, mt.ty) } ty_res(did, sub, tps) { let mut h = hash_subty(hash_def(18u, did), sub); hash_subtys(h, tps) } ty_constr(t, cs) { let mut h = hash_subty(36u, t); for c in cs { h = (h << 2u) + hash_type_constr(h, c); } h } ty_uniq(mt) { hash_subty(37u, mt.ty) } ty_iface(did, tys) { let mut h = hash_def(40u, did); for typ: t in tys { h = hash_subty(h, typ); } h } ty_opaque_closure_ptr(ck_block) { 41u } ty_opaque_closure_ptr(ck_box) { 42u } ty_opaque_closure_ptr(ck_uniq) { 43u } ty_opaque_box { 44u } ty_class(did, tys) { let mut h = hash_def(45u, did); for typ: t in tys { h = hash_subty(h, typ); } h } } } fn arg_eq(eq: fn(T, T) -> bool, a: @sp_constr_arg, b: @sp_constr_arg) -> bool { alt a.node { ast::carg_base { alt b.node { ast::carg_base { ret true; } _ { ret false; } } } ast::carg_ident(s) { alt b.node { ast::carg_ident(t) { ret eq(s, t); } _ { ret false; } } } ast::carg_lit(l) { alt b.node { ast::carg_lit(m) { ret const_eval::lit_eq(l, m); } _ { ret false; } } } } } fn args_eq(eq: fn(T, T) -> bool, a: [@sp_constr_arg], b: [@sp_constr_arg]) -> bool { let mut i: uint = 0u; for arg: @sp_constr_arg in a { if !arg_eq(eq, arg, b[i]) { ret false; } i += 1u; } ret true; } fn constr_eq(c: @constr, d: @constr) -> bool { fn eq_int(&&x: uint, &&y: uint) -> bool { ret x == y; } ret path_to_str(c.node.path) == path_to_str(d.node.path) && // FIXME: hack args_eq(eq_int, c.node.args, d.node.args); } fn constrs_eq(cs: [@constr], ds: [@constr]) -> bool { if vec::len(cs) != vec::len(ds) { ret false; } let mut i = 0u; for c: @constr in cs { if !constr_eq(c, ds[i]) { ret false; } i += 1u; } ret true; } fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t { alt smallintmap::find(*cx.node_types, id as uint) { some(t) { t } none { cx.sess.bug(#fmt("node_id_to_type: unbound node ID %s", ast_map::node_id_to_str(cx.items, id))); } } } fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> [t] { alt cx.node_type_substs.find(id) { none { ret []; } some(ts) { ret ts; } } } fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool { ret cx.node_type_substs.contains_key(id); } // Type accessors for substructures of types fn ty_fn_args(fty: t) -> [arg] { alt get(fty).struct { ty_fn(f) { f.inputs } _ { fail "ty_fn_args() called on non-fn type"; } } } fn ty_fn_proto(fty: t) -> ast::proto { alt get(fty).struct { ty_fn(f) { f.proto } _ { fail "ty_fn_proto() called on non-fn type"; } } } pure fn ty_fn_ret(fty: t) -> t { alt get(fty).struct { ty_fn(f) { f.output } _ { fail "ty_fn_ret() called on non-fn type"; } } } fn ty_fn_ret_style(fty: t) -> ast::ret_style { alt get(fty).struct { ty_fn(f) { f.ret_style } _ { fail "ty_fn_ret_style() called on non-fn type"; } } } fn is_fn_ty(fty: t) -> bool { alt get(fty).struct { ty_fn(_) { ret true; } _ { ret false; } } } // Just checks whether it's a fn that returns bool, // not its purity. fn is_pred_ty(fty: t) -> bool { is_fn_ty(fty) && type_is_bool(ty_fn_ret(fty)) } fn ty_var_id(typ: t) -> int { alt get(typ).struct { ty_var(vid) { ret vid; } _ { #error("ty_var_id called on non-var ty"); fail; } } } // Type accessors for AST nodes fn block_ty(cx: ctxt, b: ast::blk) -> t { ret node_id_to_type(cx, b.node.id); } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. fn pat_ty(cx: ctxt, pat: @ast::pat) -> t { ret node_id_to_type(cx, pat.id); } // Returns the type of an expression as a monotype. // // NB: This type doesn't provide type parameter substitutions; e.g. if you // ask for the type of "id" in "id(3)", it will return "fn(&int) -> int" // instead of "fn(t) -> T with T = int". If this isn't what you want, see // expr_ty_params_and_ty() below. fn expr_ty(cx: ctxt, expr: @ast::expr) -> t { ret node_id_to_type(cx, expr.id); } fn expr_ty_params_and_ty(cx: ctxt, expr: @ast::expr) -> {params: [t], ty: t} { ret {params: node_id_to_type_params(cx, expr.id), ty: node_id_to_type(cx, expr.id)}; } fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool { ret node_id_has_type_params(cx, expr.id); } fn expr_is_lval(method_map: typeck::method_map, e: @ast::expr) -> bool { alt e.node { ast::expr_path(_) | ast::expr_unary(ast::deref, _) { true } ast::expr_field(_, _, _) | ast::expr_index(_, _) { !method_map.contains_key(e.id) } _ { false } } } fn stmt_node_id(s: @ast::stmt) -> ast::node_id { alt s.node { ast::stmt_decl(_, id) | stmt_expr(_, id) | stmt_semi(_, id) { ret id; } } } fn field_idx(id: ast::ident, fields: [field]) -> option { let mut i = 0u; for f in fields { if f.ident == id { ret some(i); } i += 1u; } ret none; } fn get_field(rec_ty: t, id: ast::ident) -> field { alt check vec::find(get_fields(rec_ty), {|f| str::eq(f.ident, id) }) { some(f) { f } } } fn get_fields(rec_ty:t) -> [field] { alt check get(rec_ty).struct { ty_rec(fields) { fields } } } fn method_idx(id: ast::ident, meths: [method]) -> option { let mut i = 0u; for m in meths { if m.ident == id { ret some(i); } i += 1u; } ret none; } fn sort_methods(meths: [method]) -> [method] { fn method_lteq(a: method, b: method) -> bool { ret str::le(a.ident, b.ident); } ret std::sort::merge_sort(bind method_lteq(_, _), meths); } fn occurs_check(tcx: ctxt, sp: span, vid: int, rt: t) { // Fast path if !type_has_vars(rt) { ret; } // Occurs check! if vec::contains(vars_in_type(rt), vid) { // Maybe this should be span_err -- however, there's an // assertion later on that the type doesn't contain // variables, so in this case we have to be sure to die. tcx.sess.span_fatal (sp, "type inference failed because I \ could not find a type\n that's both of the form " + ty_to_str(tcx, mk_var(tcx, vid)) + " and of the form " + ty_to_str(tcx, rt) + " - such a type would have to be infinitely large."); } } // Maintains a little union-set tree for inferred modes. `canon()` returns // the current head value for `m0`. fn canon(tbl: hashmap>, m0: ast::inferable) -> ast::inferable { alt m0 { ast::infer(id) { alt tbl.find(id) { none { m0 } some(m1) { let cm1 = canon(tbl, m1); // path compression: if cm1 != m1 { tbl.insert(id, cm1); } cm1 } } } _ { m0 } } } // Maintains a little union-set tree for inferred modes. `resolve_mode()` // returns the current head value for `m0`. fn canon_mode(cx: ctxt, m0: ast::mode) -> ast::mode { canon(cx.inferred_modes, m0) } // Returns the head value for mode, failing if `m` was a infer(_) that // was never inferred. This should be safe for use after typeck. fn resolved_mode(cx: ctxt, m: ast::mode) -> ast::rmode { alt canon_mode(cx, m) { ast::infer(_) { cx.sess.bug(#fmt["mode %? was never resolved", m]); } ast::expl(m0) { m0 } } } fn arg_mode(cx: ctxt, a: arg) -> ast::rmode { resolved_mode(cx, a.mode) } // Unifies `m1` and `m2`. Returns unified value or failure code. fn unify_mode(cx: ctxt, m1: ast::mode, m2: ast::mode) -> result { alt (canon_mode(cx, m1), canon_mode(cx, m2)) { (m1, m2) if (m1 == m2) { result::ok(m1) } (ast::infer(id1), ast::infer(id2)) { cx.inferred_modes.insert(id2, m1); result::ok(m1) } (ast::infer(id), m) | (m, ast::infer(id)) { cx.inferred_modes.insert(id, m); result::ok(m1) } (m1, m2) { result::err(terr_mode_mismatch(m1, m2)) } } } // If `m` was never unified, unifies it with `m_def`. Returns the final value // for `m`. fn set_default_mode(cx: ctxt, m: ast::mode, m_def: ast::rmode) { alt canon_mode(cx, m) { ast::infer(id) { cx.inferred_modes.insert(id, ast::expl(m_def)); } ast::expl(_) { } } } // Type unification via Robinson's algorithm (Robinson 1965). Implemented as // described in Hoder and Voronkov: // // http://www.cs.man.ac.uk/~hoderk/ubench/unification_full.pdf mod unify { import result::{result, ok, err, chain, map, map2}; export mk_region_bindings; export region_bindings; export precise, in_region_bindings; type ures = result; type region_bindings = {sets: ufind::ufind, regions: smallintmap::smallintmap}; enum unify_style { precise, in_region_bindings(@region_bindings) } type uctxt = {st: unify_style, tcx: ctxt}; fn mk_region_bindings() -> @region_bindings { ret @{sets: ufind::make(), regions: smallintmap::mk::()}; } // Unifies two region sets. // // FIXME: This is a straight copy of the code above. We should use // polymorphism to make this better. fn union_region_sets( cx: @uctxt, set_a: uint, set_b: uint, nxt: fn() -> ures) -> ures { let rb = alt cx.st { in_region_bindings(rb) { rb } precise { cx.tcx.sess.bug("attempted to unify two region sets without \ a set of region bindings present"); } }; ufind::grow(rb.sets, uint::max(set_a, set_b) + 1u); let root_a = ufind::find(rb.sets, set_a); let root_b = ufind::find(rb.sets, set_b); let replace_region = ( fn@(rb: @region_bindings, r: region) { ufind::union(rb.sets, set_a, set_b); let root_c: uint = ufind::find(rb.sets, set_a); smallintmap::insert(rb.regions, root_c, r); } ); alt smallintmap::find(rb.regions, root_a) { none { alt smallintmap::find(rb.regions, root_b) { none { ufind::union(rb.sets, set_a, set_b); ret nxt(); } some(r_b) { replace_region(rb, r_b); ret nxt(); } } } some(r_a) { alt smallintmap::find(rb.regions, root_b) { none { replace_region(rb, r_a); ret nxt(); } some(r_b) { ret unify_regions(cx, r_a, r_b) {|r_c| replace_region(rb, r_c); nxt() }; } } } } } fn record_region_binding( cx: @uctxt, key: uint, r: region, nxt: fn(region) -> ures) -> ures { let rb = alt cx.st { in_region_bindings(rb) { rb } precise { fail; } }; ufind::grow(rb.sets, key + 1u); let root = ufind::find(rb.sets, key); let mut result_region = r; alt smallintmap::find(rb.regions, root) { some(old_region) { alt unify_regions(cx, old_region, r, {|v| ok(v)}) { ok(unified_region) { result_region = unified_region; } err(e) { ret err(e); } } } none {/* fall through */ } } smallintmap::insert(rb.regions, root, result_region); // FIXME: This should be re_var instead. ret nxt(re_param(key)); } fn unify_regions( _cx: @uctxt, _e_region: region, _a_region: region, _nxt: fn(region) -> ures) -> ures { fail; // unused } } fn type_err_to_str(cx: ctxt, err: type_err) -> str { alt err { terr_mismatch { ret "types differ"; } terr_ret_style_mismatch(expect, actual) { fn to_str(s: ast::ret_style) -> str { alt s { ast::noreturn { "non-returning" } ast::return_val { "return-by-value" } } } ret to_str(actual) + " function found where " + to_str(expect) + " function was expected"; } terr_proto_mismatch(e, a) { ret #fmt["closure protocol mismatch (%s vs %s)", proto_to_str(e), proto_to_str(a)]; } terr_mutability { ret "values differ in mutability"; } terr_box_mutability { ret "boxed values differ in mutability"; } terr_vec_mutability { ret "vectors differ in mutability"; } terr_ptr_mutability { ret "pointers differ in mutability"; } terr_ref_mutability { ret "references differ in mutability"; } terr_ty_param_size(e_sz, a_sz) { ret "expected a type with " + uint::to_str(e_sz, 10u) + " type params but found one with " + uint::to_str(a_sz, 10u) + " type params"; } terr_tuple_size(e_sz, a_sz) { ret "expected a tuple with " + uint::to_str(e_sz, 10u) + " elements but found one with " + uint::to_str(a_sz, 10u) + " elements"; } terr_record_size(e_sz, a_sz) { ret "expected a record with " + uint::to_str(e_sz, 10u) + " fields but found one with " + uint::to_str(a_sz, 10u) + " fields"; } terr_record_mutability { ret "record elements differ in mutability"; } terr_record_fields(e_fld, a_fld) { ret "expected a record with field '" + e_fld + "' but found one with field '" + a_fld + "'"; } terr_arg_count { ret "incorrect number of function parameters"; } terr_mode_mismatch(e_mode, a_mode) { ret "expected argument mode " + mode_to_str(e_mode) + " but found " + mode_to_str(a_mode); } terr_constr_len(e_len, a_len) { ret "expected a type with " + uint::str(e_len) + " constraints, but found one with " + uint::str(a_len) + " constraints"; } terr_constr_mismatch(e_constr, a_constr) { ret "expected a type with constraint " + ty_constr_to_str(e_constr) + " but found one with constraint " + ty_constr_to_str(a_constr); } terr_regions_differ(true, region_a, region_b) { ret #fmt("reference lifetime %s does not match reference lifetime %s", region_to_str(cx, region_a), region_to_str(cx, region_b)); } terr_regions_differ(false, subregion, superregion) { ret #fmt("references with lifetime %s do not outlive references with \ lifetime %s", region_to_str(cx, subregion), region_to_str(cx, superregion)); } } } // Replaces type parameters in the given type using the given list of // substitions. fn substitute_type_params(cx: ctxt, substs: [ty::t], typ: t) -> t { if !type_has_params(typ) { ret typ; } // Precondition? idx < vec::len(substs) fold_ty(cx, fm_param({|idx, _id| substs[idx]}), typ) } fn def_has_ty_params(def: ast::def) -> bool { alt def { ast::def_fn(_, _) | ast::def_variant(_, _) { true } _ { false } } } fn store_iface_methods(cx: ctxt, id: ast::node_id, ms: @[method]) { cx.iface_method_cache.insert(ast_util::local_def(id), ms); } fn iface_methods(cx: ctxt, id: ast::def_id) -> @[method] { alt cx.iface_method_cache.find(id) { some(ms) { ret ms; } _ {} } // Local interfaces are supposed to have been added explicitly. assert id.crate != ast::local_crate; let result = csearch::get_iface_methods(cx, id); cx.iface_method_cache.insert(id, result); result } fn impl_iface(cx: ctxt, id: ast::def_id) -> option { if id.crate == ast::local_crate { alt cx.items.get(id.node) { ast_map::node_item(@{node: ast::item_impl( _, some(@{node: ast::ty_path(_, id), _}), _, _), _}, _) { some(node_id_to_type(cx, id)) } _ { none } } } else { csearch::get_impl_iface(cx, id) } } fn ty_to_def_id(ty: t) -> ast::def_id { alt check get(ty).struct { ty_iface(id, _) | ty_class(id, _) | ty_res(id, _, _) | ty_enum(id, _) { id } } } // Enum information type variant_info = @{args: [t], ctor_ty: t, name: str, id: ast::def_id, disr_val: int}; fn substd_enum_variants(cx: ctxt, id: ast::def_id, tps: [ty::t]) -> [variant_info] { vec::map(*enum_variants(cx, id)) { |variant_info| let substd_args = vec::map(variant_info.args) {|aty| substitute_type_params(cx, tps, aty) }; let substd_ctor_ty = substitute_type_params(cx, tps, variant_info.ctor_ty); @{args: substd_args, ctor_ty: substd_ctor_ty with *variant_info} } } fn item_path_str(cx: ctxt, id: ast::def_id) -> str { ast_map::path_to_str(item_path(cx, id)) } fn item_path(cx: ctxt, id: ast::def_id) -> ast_map::path { if id.crate != ast::local_crate { csearch::get_item_path(cx, id) } else { let node = cx.items.get(id.node); alt node { ast_map::node_item(item, path) { let item_elt = alt item.node { item_mod(_) | item_native_mod(_) { ast_map::path_mod(item.ident) } _ { ast_map::path_name(item.ident) } }; *path + [item_elt] } ast_map::node_native_item(nitem, _, path) { *path + [ast_map::path_name(nitem.ident)] } ast_map::node_method(method, _, path) { *path + [ast_map::path_name(method.ident)] } ast_map::node_variant(variant, _, path) { vec::init(*path) + [ast_map::path_name(variant.node.name)] } ast_map::node_ctor(i, path) { *path + [ast_map::path_name(i.ident)] } ast_map::node_expr(_) | ast_map::node_arg(_, _) | ast_map::node_local(_) | ast_map::node_export(_, _) | ast_map::node_block(_) { cx.sess.bug(#fmt["cannot find item_path for node %?", node]); } } } } fn enum_variants(cx: ctxt, id: ast::def_id) -> @[variant_info] { alt cx.enum_var_cache.find(id) { some(variants) { ret variants; } _ { /* fallthrough */ } } let result = if ast::local_crate != id.crate { @csearch::get_enum_variants(cx, id) } else { // FIXME: Now that the variants are run through the type checker (to // check the disr_expr if it exists), this code should likely be // moved there to avoid having to call eval_const_expr twice. alt cx.items.get(id.node) { ast_map::node_item(@{node: ast::item_enum(variants, _), _}, _) { let mut disr_val = -1; @vec::map(variants, {|variant| let ctor_ty = node_id_to_type(cx, variant.node.id); let arg_tys = if vec::len(variant.node.args) > 0u { vec::map(ty_fn_args(ctor_ty), {|a| a.ty}) } else { [] }; alt variant.node.disr_expr { some (ex) { // FIXME: issue #1417 disr_val = alt const_eval::eval_const_expr(cx, ex) { const_eval::const_int(val) {val as int} _ { cx.sess.bug("tag_variants: bad disr expr"); } } } _ {disr_val += 1;} } @{args: arg_tys, ctor_ty: ctor_ty, name: variant.node.name, id: ast_util::local_def(variant.node.id), disr_val: disr_val } }) } _ { cx.sess.bug("tag_variants: id not bound to an enum"); } } }; cx.enum_var_cache.insert(id, result); result } // Returns information about the enum variant with the given ID: fn enum_variant_with_id(cx: ctxt, enum_id: ast::def_id, variant_id: ast::def_id) -> variant_info { let variants = enum_variants(cx, enum_id); let mut i = 0u; while i < vec::len::(*variants) { let variant = variants[i]; if def_eq(variant.id, variant_id) { ret variant; } i += 1u; } cx.sess.bug("enum_variant_with_id(): no variant exists with that ID"); } // If the given item is in an external crate, looks up its type and adds it to // the type cache. Returns the type parameters and type. fn lookup_item_type(cx: ctxt, did: ast::def_id) -> ty_param_bounds_and_ty { /* Are we putting class ids in the tcache (where does that happen?) */ alt cx.tcache.find(did) { some(tpt) { ret tpt; } none { #debug("lookup_item_type: looking up %?", did); // The item is in this crate. The caller should have added it to the // type cache already assert did.crate != ast::local_crate; let tyt = csearch::get_type(cx, did); cx.tcache.insert(did, tyt); ret tyt; } } } // Look up a field ID, whether or not it's local fn lookup_field_type(tcx: ctxt, class_id: def_id, id: def_id) -> ty::t { if id.crate == ast::local_crate { node_id_to_type(tcx, id.node) } else { alt tcx.tcache.find(id) { some(tpt) { ret tpt.ty; } none { let tpt = csearch::get_field_type(tcx, class_id, id); // ok b/c fields are monomorphic // TODO: Comment might be a lie, what if it mentions // class-bound ty params? tcx.tcache.insert(id, tpt); ret tpt.ty; } } } } // Look up the list of field names and IDs for a given class // Fails if the id is not bound to a class. fn lookup_class_fields(cx: ctxt, did: ast::def_id) -> [field_ty] { if did.crate == ast::local_crate { alt cx.items.find(did.node) { some(ast_map::node_item(i,_)) { alt i.node { ast::item_class(_, items, _) { class_field_tys(items) } _ { cx.sess.bug("class ID bound to non-class"); } } } _ { cx.sess.bug("class ID not bound to an item"); } } } else { ret csearch::get_class_fields(cx, did); } } fn lookup_class_field(cx: ctxt, parent: ast::def_id, field_id: ast::def_id) -> field_ty { alt vec::find(lookup_class_fields(cx, parent)) {|f| f.id.node == field_id.node} { some(t) { t } none { cx.sess.bug("class ID not found in parent's fields"); } } } fn lookup_public_fields(cx: ctxt, did: ast::def_id) -> [field_ty] { vec::filter(lookup_class_fields(cx, did), is_public) } pure fn is_public(f: field_ty) -> bool { alt f.privacy { pub { true } priv { false } } } // Look up the list of method names and IDs for a given class // Fails if the id is not bound to a class. fn lookup_class_method_ids(cx: ctxt, did: ast::def_id) : is_local(did) -> [{name: ident, id: node_id, privacy: privacy}] { alt cx.items.find(did.node) { some(ast_map::node_item(@{node: item_class(_,items,_), _}, _)) { let (_,ms) = split_class_items(items); vec::map(ms, {|m| {name: m.ident, id: m.id, privacy: m.privacy}}) } _ { cx.sess.bug("lookup_class_method_ids: id not bound to a class"); } } } /* Given a class def_id and a method name, return the method's def_id. Needed so we can do static dispatch for methods Doesn't care about the method's privacy. (It's assumed that the caller already checked that.) */ fn lookup_class_method_by_name(cx:ctxt, did: ast::def_id, name: ident, sp: span) -> def_id { if check is_local(did) { let ms = lookup_class_method_ids(cx, did); for m in ms { if m.name == name { ret ast_util::local_def(m.id); } } cx.sess.span_fatal(sp, #fmt("Class doesn't have a method \ named %s", name)); } else { csearch::get_class_method(cx.sess.cstore, did, name) } } fn class_field_tys(items: [@class_member]) -> [field_ty] { let mut rslt = []; for it in items { alt it.node { instance_var(nm, _, cm, id, privacy) { rslt += [{ident: nm, id: ast_util::local_def(id), privacy: privacy, mutability: cm}]; } class_method(_) { } } } rslt } // Return a list of fields corresponding to the class's items // (as if the class was a record). trans uses this fn class_items_as_fields(cx:ctxt, did: ast::def_id) -> [field] { let mut rslt = []; for f in lookup_class_fields(cx, did) { // consider all instance vars mut, because the // constructor may mutate all vars rslt += [{ident: f.ident, mt: {ty: lookup_field_type(cx, did, f.id), mutbl: m_mutbl}}]; } rslt } fn is_binopable(_cx: ctxt, ty: t, op: ast::binop) -> bool { const tycat_other: int = 0; const tycat_bool: int = 1; const tycat_int: int = 2; const tycat_float: int = 3; const tycat_str: int = 4; const tycat_vec: int = 5; const tycat_struct: int = 6; const tycat_bot: int = 7; const opcat_add: int = 0; const opcat_sub: int = 1; const opcat_mult: int = 2; const opcat_shift: int = 3; const opcat_rel: int = 4; const opcat_eq: int = 5; const opcat_bit: int = 6; const opcat_logic: int = 7; fn opcat(op: ast::binop) -> int { alt op { ast::add { opcat_add } ast::subtract { opcat_sub } ast::mul { opcat_mult } ast::div { opcat_mult } ast::rem { opcat_mult } ast::and { opcat_logic } ast::or { opcat_logic } ast::bitxor { opcat_bit } ast::bitand { opcat_bit } ast::bitor { opcat_bit } ast::lsl { opcat_shift } ast::lsr { opcat_shift } ast::asr { opcat_shift } ast::eq { opcat_eq } ast::ne { opcat_eq } ast::lt { opcat_rel } ast::le { opcat_rel } ast::ge { opcat_rel } ast::gt { opcat_rel } } } fn tycat(ty: t) -> int { alt get(ty).struct { ty_bool { tycat_bool } ty_int(_) { tycat_int } ty_uint(_) { tycat_int } ty_float(_) { tycat_float } ty_str { tycat_str } ty_vec(_) { tycat_vec } ty_rec(_) { tycat_struct } ty_tup(_) { tycat_struct } ty_enum(_, _) { tycat_struct } ty_bot { tycat_bot } _ { tycat_other } } } const t: bool = true; const f: bool = false; /*. add, shift, bit . sub, rel, logic . mult, eq, */ /*other*/ /*bool*/ /*int*/ /*float*/ /*str*/ /*vec*/ /*bot*/ let tbl = [[f, f, f, f, t, t, f, f], [f, f, f, f, t, t, t, t], [t, t, t, t, t, t, t, f], [t, t, t, f, t, t, f, f], [t, f, f, f, t, t, f, f], [t, f, f, f, t, t, f, f], [f, f, f, f, t, t, f, f], [t, t, t, t, t, t, t, t]]; /*struct*/ ret tbl[tycat(ty)][opcat(op)]; } fn ast_constr_to_constr(tcx: ctxt, c: @ast::constr_general) -> @constr_general { alt tcx.def_map.find(c.node.id) { some(ast::def_fn(pred_id, ast::pure_fn)) { ret @ast_util::respan(c.span, {path: c.node.path, args: c.node.args, id: pred_id}); } _ { tcx.sess.span_fatal(c.span, "predicate " + path_to_str(c.node.path) + " is unbound or bound to a non-function or an \ impure function"); } } } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: