// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * Handles translation of callees as well as other call-related * things. Callees are a superset of normal rust values and sometimes * have different representations. In particular, top-level fn items * and methods are represented as just a fn ptr and not a full * closure. */ use arena::TypedArena; use back::abi; use back::link; use driver::session; use llvm::{ValueRef, get_param}; use llvm; use metadata::csearch; use middle::def; use middle::subst; use middle::subst::{Subst, VecPerParamSpace}; use middle::trans::adt; use middle::trans::base; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::cleanup::CleanupMethods; use middle::trans::closure; use middle::trans::common; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr; use middle::trans::glue; use middle::trans::inline; use middle::trans::foreign; use middle::trans::intrinsic; use middle::trans::meth; use middle::trans::monomorphize; use middle::trans::type_::Type; use middle::trans::type_of; use middle::ty; use middle::typeck; use middle::typeck::coherence::make_substs_for_receiver_types; use middle::typeck::MethodCall; use util::ppaux::Repr; use util::ppaux::ty_to_string; use std::gc::Gc; use syntax::abi as synabi; use syntax::ast; use syntax::ast_map; pub struct MethodData { pub llfn: ValueRef, pub llself: ValueRef, } pub enum CalleeData { Closure(Datum), // Constructor for enum variant/tuple-like-struct // i.e. Some, Ok NamedTupleConstructor(subst::Substs, ty::Disr), // Represents a (possibly monomorphized) top-level fn item or method // item. Note that this is just the fn-ptr and is not a Rust closure // value (which is a pair). Fn(/* llfn */ ValueRef), Intrinsic(ast::NodeId, subst::Substs), TraitItem(MethodData) } pub struct Callee<'a> { pub bcx: &'a Block<'a>, pub data: CalleeData, } fn trans<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> Callee<'a> { let _icx = push_ctxt("trans_callee"); debug!("callee::trans(expr={})", expr.repr(bcx.tcx())); // pick out special kinds of expressions that can be called: match expr.node { ast::ExprPath(_) => { return trans_def(bcx, bcx.def(expr.id), expr); } _ => {} } // any other expressions are closures: return datum_callee(bcx, expr); fn datum_callee<'a>(bcx: &'a Block<'a>, expr: &ast::Expr) -> Callee<'a> { let DatumBlock {bcx: mut bcx, datum} = expr::trans(bcx, expr); match ty::get(datum.ty).sty { ty::ty_bare_fn(..) => { let llval = datum.to_llscalarish(bcx); return Callee { bcx: bcx, data: Fn(llval), }; } ty::ty_closure(..) => { let datum = unpack_datum!( bcx, datum.to_lvalue_datum(bcx, "callee", expr.id)); return Callee { bcx: bcx, data: Closure(datum), }; } _ => { bcx.tcx().sess.span_bug( expr.span, format!("type of callee is neither bare-fn nor closure: \ {}", bcx.ty_to_string(datum.ty)).as_slice()); } } } fn fn_callee<'a>(bcx: &'a Block<'a>, llfn: ValueRef) -> Callee<'a> { return Callee { bcx: bcx, data: Fn(llfn), }; } fn trans_def<'a>(bcx: &'a Block<'a>, def: def::Def, ref_expr: &ast::Expr) -> Callee<'a> { debug!("trans_def(def={}, ref_expr={})", def.repr(bcx.tcx()), ref_expr.repr(bcx.tcx())); let expr_ty = node_id_type(bcx, ref_expr.id); match def { def::DefFn(did, _) if { let def_id = if did.krate != ast::LOCAL_CRATE { inline::maybe_instantiate_inline(bcx.ccx(), did) } else { did }; match bcx.tcx().map.find(def_id.node) { Some(ast_map::NodeStructCtor(_)) => true, _ => false } } => { let substs = node_id_substs(bcx, ExprId(ref_expr.id)); Callee { bcx: bcx, data: NamedTupleConstructor(substs, 0) } } def::DefFn(did, _) if match ty::get(expr_ty).sty { ty::ty_bare_fn(ref f) => f.abi == synabi::RustIntrinsic, _ => false } => { let substs = node_id_substs(bcx, ExprId(ref_expr.id)); let def_id = if did.krate != ast::LOCAL_CRATE { inline::maybe_instantiate_inline(bcx.ccx(), did) } else { did }; Callee { bcx: bcx, data: Intrinsic(def_id.node, substs) } } def::DefFn(did, _) | def::DefStaticMethod(did, def::FromImpl(_), _) => { fn_callee(bcx, trans_fn_ref(bcx, did, ExprId(ref_expr.id))) } def::DefStaticMethod(impl_did, def::FromTrait(trait_did), _) => { fn_callee(bcx, meth::trans_static_method_callee(bcx, impl_did, trait_did, ref_expr.id)) } def::DefVariant(tid, vid, _) => { let vinfo = ty::enum_variant_with_id(bcx.tcx(), tid, vid); let substs = node_id_substs(bcx, ExprId(ref_expr.id)); // Nullary variants are not callable assert!(vinfo.args.len() > 0u); Callee { bcx: bcx, data: NamedTupleConstructor(substs, vinfo.disr_val) } } def::DefStruct(_) => { let substs = node_id_substs(bcx, ExprId(ref_expr.id)); Callee { bcx: bcx, data: NamedTupleConstructor(substs, 0) } } def::DefStatic(..) | def::DefArg(..) | def::DefLocal(..) | def::DefBinding(..) | def::DefUpvar(..) => { datum_callee(bcx, ref_expr) } def::DefMod(..) | def::DefForeignMod(..) | def::DefTrait(..) | def::DefTy(..) | def::DefPrimTy(..) | def::DefUse(..) | def::DefTyParamBinder(..) | def::DefRegion(..) | def::DefLabel(..) | def::DefTyParam(..) | def::DefSelfTy(..) | def::DefMethod(..) => { bcx.tcx().sess.span_bug( ref_expr.span, format!("cannot translate def {:?} \ to a callable thing!", def).as_slice()); } } } } pub fn trans_fn_ref(bcx: &Block, def_id: ast::DefId, node: ExprOrMethodCall) -> ValueRef { /*! * Translates a reference (with id `ref_id`) to the fn/method * with id `def_id` into a function pointer. This may require * monomorphization or inlining. */ let _icx = push_ctxt("trans_fn_ref"); let substs = node_id_substs(bcx, node); let vtable_key = match node { ExprId(id) => MethodCall::expr(id), MethodCall(method_call) => method_call }; let vtables = node_vtables(bcx, vtable_key); debug!("trans_fn_ref(def_id={}, node={:?}, substs={}, vtables={})", def_id.repr(bcx.tcx()), node, substs.repr(bcx.tcx()), vtables.repr(bcx.tcx())); trans_fn_ref_with_vtables(bcx, def_id, node, substs, vtables) } fn trans_fn_ref_with_vtables_to_callee<'a>(bcx: &'a Block<'a>, def_id: ast::DefId, ref_id: ast::NodeId, substs: subst::Substs, vtables: typeck::vtable_res) -> Callee<'a> { Callee { bcx: bcx, data: Fn(trans_fn_ref_with_vtables(bcx, def_id, ExprId(ref_id), substs, vtables)), } } fn resolve_default_method_vtables(bcx: &Block, impl_id: ast::DefId, substs: &subst::Substs, impl_vtables: typeck::vtable_res) -> typeck::vtable_res { // Get the vtables that the impl implements the trait at let impl_res = ty::lookup_impl_vtables(bcx.tcx(), impl_id); // Build up a param_substs that we are going to resolve the // trait_vtables under. let param_substs = param_substs { substs: (*substs).clone(), vtables: impl_vtables.clone() }; let mut param_vtables = resolve_vtables_under_param_substs( bcx.tcx(), ¶m_substs, &impl_res); // Now we pull any vtables for parameters on the actual method. param_vtables.push_all(subst::FnSpace, impl_vtables.get_slice(subst::FnSpace)); param_vtables } /// Translates the adapter that deconstructs a `Box` object into /// `Trait` so that a by-value self method can be called. pub fn trans_unboxing_shim(bcx: &Block, llshimmedfn: ValueRef, fty: &ty::BareFnTy, method_id: ast::DefId, substs: subst::Substs) -> ValueRef { let _icx = push_ctxt("trans_unboxing_shim"); let ccx = bcx.ccx(); let tcx = bcx.tcx(); // Transform the self type to `Box`. let self_type = *fty.sig.inputs.get(0); let boxed_self_type = ty::mk_uniq(tcx, self_type); let boxed_function_type = ty::FnSig { binder_id: fty.sig.binder_id, inputs: fty.sig.inputs.iter().enumerate().map(|(i, typ)| { if i == 0 { boxed_self_type } else { *typ } }).collect(), output: fty.sig.output, variadic: false, }; let boxed_function_type = ty::BareFnTy { fn_style: fty.fn_style, abi: fty.abi, sig: boxed_function_type, }; let boxed_function_type = ty::mk_bare_fn(tcx, boxed_function_type).subst(tcx, &substs); let function_type = ty::mk_bare_fn(tcx, (*fty).clone()).subst(tcx, &substs); let function_name = ty::with_path(tcx, method_id, |path| { link::mangle_internal_name_by_path_and_seq(path, "unboxing_shim") }); let llfn = decl_internal_rust_fn(ccx, boxed_function_type, function_name.as_slice()); let block_arena = TypedArena::new(); let empty_param_substs = param_substs::empty(); let return_type = ty::ty_fn_ret(boxed_function_type); let fcx = new_fn_ctxt(ccx, llfn, ast::DUMMY_NODE_ID, false, return_type, &empty_param_substs, None, &block_arena); let mut bcx = init_function(&fcx, false, return_type); // Create the substituted versions of the self type. let arg_scope = fcx.push_custom_cleanup_scope(); let arg_scope_id = cleanup::CustomScope(arg_scope); let boxed_arg_types = ty::ty_fn_args(boxed_function_type); let boxed_self_type = *boxed_arg_types.get(0); let arg_types = ty::ty_fn_args(function_type); let self_type = *arg_types.get(0); let boxed_self_kind = arg_kind(&fcx, boxed_self_type); // Create a datum for self. let llboxedself = get_param(fcx.llfn, fcx.arg_pos(0) as u32); let llboxedself = Datum::new(llboxedself, boxed_self_type, boxed_self_kind); let boxed_self = unpack_datum!(bcx, llboxedself.to_lvalue_datum_in_scope(bcx, "boxedself", arg_scope_id)); // This `Load` is needed because lvalue data are always by-ref. let llboxedself = Load(bcx, boxed_self.val); let llself = if type_is_immediate(ccx, self_type) { let llboxedself = Load(bcx, llboxedself); immediate_rvalue(llboxedself, self_type) } else { let llself = rvalue_scratch_datum(bcx, self_type, "self"); memcpy_ty(bcx, llself.val, llboxedself, self_type); llself }; // Make sure we don't free the box twice! boxed_self.kind.post_store(bcx, boxed_self.val, boxed_self_type); // Schedule a cleanup to free the box. fcx.schedule_free_value(arg_scope_id, llboxedself, cleanup::HeapExchange, self_type); // Now call the function. let mut llshimmedargs = vec!(llself.val); for i in range(1, arg_types.len()) { llshimmedargs.push(get_param(fcx.llfn, fcx.arg_pos(i) as u32)); } assert!(!fcx.needs_ret_allocas); let dest = match fcx.llretslotptr.get() { Some(_) => Some(expr::SaveIn(fcx.get_ret_slot(bcx, return_type, "ret_slot"))), None => None }; bcx = trans_call_inner(bcx, None, function_type, |bcx, _| { Callee { bcx: bcx, data: Fn(llshimmedfn), } }, ArgVals(llshimmedargs.as_slice()), dest).bcx; bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope); finish_fn(&fcx, bcx, return_type); llfn } pub fn trans_fn_ref_with_vtables( bcx: &Block, // def_id: ast::DefId, // def id of fn node: ExprOrMethodCall, // node id of use of fn; may be zero if N/A substs: subst::Substs, // values for fn's ty params vtables: typeck::vtable_res) // vtables for the call -> ValueRef { /*! * Translates a reference to a fn/method item, monomorphizing and * inlining as it goes. * * # Parameters * * - `bcx`: the current block where the reference to the fn occurs * - `def_id`: def id of the fn or method item being referenced * - `node`: node id of the reference to the fn/method, if applicable. * This parameter may be zero; but, if so, the resulting value may not * have the right type, so it must be cast before being used. * - `substs`: values for each of the fn/method's parameters * - `vtables`: values for each bound on each of the type parameters */ let _icx = push_ctxt("trans_fn_ref_with_vtables"); let ccx = bcx.ccx(); let tcx = bcx.tcx(); debug!("trans_fn_ref_with_vtables(bcx={}, def_id={}, node={:?}, \ substs={}, vtables={})", bcx.to_str(), def_id.repr(tcx), node, substs.repr(tcx), vtables.repr(tcx)); assert!(substs.types.all(|t| !ty::type_needs_infer(*t))); // Load the info for the appropriate trait if necessary. match ty::trait_of_item(tcx, def_id) { None => {} Some(trait_id) => { ty::populate_implementations_for_trait_if_necessary(tcx, trait_id) } } // We need to do a bunch of special handling for default methods. // We need to modify the def_id and our substs in order to monomorphize // the function. let (is_default, def_id, substs, vtables) = match ty::provided_source(tcx, def_id) { None => (false, def_id, substs, vtables), Some(source_id) => { // There are two relevant substitutions when compiling // default methods. First, there is the substitution for // the type parameters of the impl we are using and the // method we are calling. This substitution is the substs // argument we already have. // In order to compile a default method, though, we need // to consider another substitution: the substitution for // the type parameters on trait; the impl we are using // implements the trait at some particular type // parameters, and we need to substitute for those first. // So, what we need to do is find this substitution and // compose it with the one we already have. let impl_id = ty::impl_or_trait_item(tcx, def_id).container() .id(); let impl_or_trait_item = ty::impl_or_trait_item(tcx, source_id); match impl_or_trait_item { ty::MethodTraitItem(method) => { let trait_ref = ty::impl_trait_ref(tcx, impl_id) .expect("could not find trait_ref for impl with \ default methods"); // Compute the first substitution let first_subst = make_substs_for_receiver_types( tcx, &*trait_ref, &*method); // And compose them let new_substs = first_subst.subst(tcx, &substs); debug!("trans_fn_with_vtables - default method: \ substs = {}, trait_subst = {}, \ first_subst = {}, new_subst = {}, \ vtables = {}", substs.repr(tcx), trait_ref.substs.repr(tcx), first_subst.repr(tcx), new_substs.repr(tcx), vtables.repr(tcx)); let param_vtables = resolve_default_method_vtables(bcx, impl_id, &substs, vtables); debug!("trans_fn_with_vtables - default method: \ param_vtables = {}", param_vtables.repr(tcx)); (true, source_id, new_substs, param_vtables) } } } }; // If this is an unboxed closure, redirect to it. match closure::get_or_create_declaration_if_unboxed_closure(ccx, def_id) { None => {} Some(llfn) => return llfn, } // Check whether this fn has an inlined copy and, if so, redirect // def_id to the local id of the inlined copy. let def_id = { if def_id.krate != ast::LOCAL_CRATE { inline::maybe_instantiate_inline(ccx, def_id) } else { def_id } }; // We must monomorphise if the fn has type parameters, is a default method, // or is a named tuple constructor. let must_monomorphise = if !substs.types.is_empty() || is_default { true } else if def_id.krate == ast::LOCAL_CRATE { let map_node = session::expect( ccx.sess(), tcx.map.find(def_id.node), || "local item should be in ast map".to_string()); match map_node { ast_map::NodeVariant(v) => match v.node.kind { ast::TupleVariantKind(ref args) => args.len() > 0, _ => false }, ast_map::NodeStructCtor(_) => true, _ => false } } else { false }; // Create a monomorphic version of generic functions if must_monomorphise { // Should be either intra-crate or inlined. assert_eq!(def_id.krate, ast::LOCAL_CRATE); let opt_ref_id = match node { ExprId(id) => if id != 0 { Some(id) } else { None }, MethodCall(_) => None, }; let (val, must_cast) = monomorphize::monomorphic_fn(ccx, def_id, &substs, vtables, opt_ref_id); let mut val = val; if must_cast && node != ExprId(0) { // Monotype of the REFERENCE to the function (type params // are subst'd) let ref_ty = match node { ExprId(id) => node_id_type(bcx, id), MethodCall(method_call) => { let t = bcx.tcx().method_map.borrow().get(&method_call).ty; monomorphize_type(bcx, t) } }; val = PointerCast( bcx, val, type_of::type_of_fn_from_ty(ccx, ref_ty).ptr_to()); } return val; } // Polytype of the function item (may have type params) let fn_tpt = ty::lookup_item_type(tcx, def_id); // Find the actual function pointer. let mut val = { if def_id.krate == ast::LOCAL_CRATE { // Internal reference. get_item_val(ccx, def_id.node) } else { // External reference. trans_external_path(ccx, def_id, fn_tpt.ty) } }; // This is subtle and surprising, but sometimes we have to bitcast // the resulting fn pointer. The reason has to do with external // functions. If you have two crates that both bind the same C // library, they may not use precisely the same types: for // example, they will probably each declare their own structs, // which are distinct types from LLVM's point of view (nominal // types). // // Now, if those two crates are linked into an application, and // they contain inlined code, you can wind up with a situation // where both of those functions wind up being loaded into this // application simultaneously. In that case, the same function // (from LLVM's point of view) requires two types. But of course // LLVM won't allow one function to have two types. // // What we currently do, therefore, is declare the function with // one of the two types (whichever happens to come first) and then // bitcast as needed when the function is referenced to make sure // it has the type we expect. // // This can occur on either a crate-local or crate-external // reference. It also occurs when testing libcore and in some // other weird situations. Annoying. let llty = type_of::type_of_fn_from_ty(ccx, fn_tpt.ty); let llptrty = llty.ptr_to(); if val_ty(val) != llptrty { debug!("trans_fn_ref_with_vtables(): casting pointer!"); val = BitCast(bcx, val, llptrty); } else { debug!("trans_fn_ref_with_vtables(): not casting pointer!"); } val } // ______________________________________________________________________ // Translating calls pub fn trans_call<'a>( in_cx: &'a Block<'a>, call_ex: &ast::Expr, f: &ast::Expr, args: CallArgs, dest: expr::Dest) -> &'a Block<'a> { let _icx = push_ctxt("trans_call"); trans_call_inner(in_cx, Some(common::expr_info(call_ex)), expr_ty(in_cx, f), |cx, _| trans(cx, f), args, Some(dest)).bcx } pub fn trans_method_call<'a>( bcx: &'a Block<'a>, call_ex: &ast::Expr, rcvr: &ast::Expr, args: CallArgs, dest: expr::Dest) -> &'a Block<'a> { let _icx = push_ctxt("trans_method_call"); debug!("trans_method_call(call_ex={})", call_ex.repr(bcx.tcx())); let method_call = MethodCall::expr(call_ex.id); let method_ty = bcx.tcx().method_map.borrow().get(&method_call).ty; trans_call_inner( bcx, Some(common::expr_info(call_ex)), monomorphize_type(bcx, method_ty), |cx, arg_cleanup_scope| { meth::trans_method_callee(cx, method_call, Some(rcvr), arg_cleanup_scope) }, args, Some(dest)).bcx } pub fn trans_lang_call<'a>( bcx: &'a Block<'a>, did: ast::DefId, args: &[ValueRef], dest: Option) -> Result<'a> { let fty = if did.krate == ast::LOCAL_CRATE { ty::node_id_to_type(bcx.tcx(), did.node) } else { csearch::get_type(bcx.tcx(), did).ty }; callee::trans_call_inner(bcx, None, fty, |bcx, _| { trans_fn_ref_with_vtables_to_callee(bcx, did, 0, subst::Substs::empty(), VecPerParamSpace::empty()) }, ArgVals(args), dest) } pub fn trans_call_inner<'a>( bcx: &'a Block<'a>, call_info: Option, callee_ty: ty::t, get_callee: |bcx: &'a Block<'a>, arg_cleanup_scope: cleanup::ScopeId| -> Callee<'a>, args: CallArgs, dest: Option) -> Result<'a> { /*! * This behemoth of a function translates function calls. * Unfortunately, in order to generate more efficient LLVM * output at -O0, it has quite a complex signature (refactoring * this into two functions seems like a good idea). * * In particular, for lang items, it is invoked with a dest of * None, and in that case the return value contains the result of * the fn. The lang item must not return a structural type or else * all heck breaks loose. * * For non-lang items, `dest` is always Some, and hence the result * is written into memory somewhere. Nonetheless we return the * actual return value of the function. */ // Introduce a temporary cleanup scope that will contain cleanups // for the arguments while they are being evaluated. The purpose // this cleanup is to ensure that, should a failure occur while // evaluating argument N, the values for arguments 0...N-1 are all // cleaned up. If no failure occurs, the values are handed off to // the callee, and hence none of the cleanups in this temporary // scope will ever execute. let fcx = bcx.fcx; let ccx = fcx.ccx; let arg_cleanup_scope = fcx.push_custom_cleanup_scope(); let callee = get_callee(bcx, cleanup::CustomScope(arg_cleanup_scope)); let mut bcx = callee.bcx; let (abi, ret_ty) = match ty::get(callee_ty).sty { ty::ty_bare_fn(ref f) => (f.abi, f.sig.output), ty::ty_closure(ref f) => (f.abi, f.sig.output), _ => fail!("expected bare rust fn or closure in trans_call_inner") }; let (llfn, llenv, llself) = match callee.data { Fn(llfn) => { (llfn, None, None) } TraitItem(d) => { (d.llfn, None, Some(d.llself)) } Closure(d) => { // Closures are represented as (llfn, llclosure) pair: // load the requisite values out. let pair = d.to_llref(); let llfn = GEPi(bcx, pair, [0u, abi::fn_field_code]); let llfn = Load(bcx, llfn); let llenv = GEPi(bcx, pair, [0u, abi::fn_field_box]); let llenv = Load(bcx, llenv); (llfn, Some(llenv), None) } Intrinsic(node, substs) => { assert!(abi == synabi::RustIntrinsic); assert!(dest.is_some()); let call_info = call_info.expect("no call info for intrinsic call?"); return intrinsic::trans_intrinsic_call(bcx, node, callee_ty, arg_cleanup_scope, args, dest.unwrap(), substs, call_info); } NamedTupleConstructor(substs, disr) => { assert!(dest.is_some()); fcx.pop_custom_cleanup_scope(arg_cleanup_scope); let ctor_ty = callee_ty.subst(bcx.tcx(), &substs); return base::trans_named_tuple_constructor(bcx, ctor_ty, disr, args, dest.unwrap()); } }; // Intrinsics should not become actual functions. // We trans them in place in `trans_intrinsic_call` assert!(abi != synabi::RustIntrinsic); let is_rust_fn = abi == synabi::Rust || abi == synabi::RustCall; // Generate a location to store the result. If the user does // not care about the result, just make a stack slot. let opt_llretslot = match dest { None => { assert!(!type_of::return_uses_outptr(ccx, ret_ty)); None } Some(expr::SaveIn(dst)) => Some(dst), Some(expr::Ignore) if !is_rust_fn || type_of::return_uses_outptr(ccx, ret_ty) || ty::type_needs_drop(bcx.tcx(), ret_ty) => { if !type_is_zero_size(ccx, ret_ty) { Some(alloc_ty(bcx, ret_ty, "__llret")) } else { let llty = type_of::type_of(ccx, ret_ty); Some(C_undef(llty.ptr_to())) } } Some(expr::Ignore) => None }; let mut llresult = unsafe { llvm::LLVMGetUndef(Type::nil(ccx).ptr_to().to_ref()) }; // The code below invokes the function, using either the Rust // conventions (if it is a rust fn) or the native conventions // (otherwise). The important part is that, when all is sad // and done, either the return value of the function will have been // written in opt_llretslot (if it is Some) or `llresult` will be // set appropriately (otherwise). if is_rust_fn { let mut llargs = Vec::new(); // Push the out-pointer if we use an out-pointer for this // return type, otherwise push "undef". if type_of::return_uses_outptr(ccx, ret_ty) { llargs.push(opt_llretslot.unwrap()); } // Push the environment (or a trait object's self). match (llenv, llself) { (Some(llenv), None) => { llargs.push(llenv) }, (None, Some(llself)) => llargs.push(llself), _ => {} } // Push the arguments. bcx = trans_args(bcx, args, callee_ty, &mut llargs, cleanup::CustomScope(arg_cleanup_scope), llself.is_some(), abi); fcx.pop_custom_cleanup_scope(arg_cleanup_scope); // Invoke the actual rust fn and update bcx/llresult. let (llret, b) = base::invoke(bcx, llfn, llargs, callee_ty, call_info, dest.is_none()); bcx = b; llresult = llret; // If the Rust convention for this type is return via // the return value, copy it into llretslot. match opt_llretslot { Some(llretslot) => { if !type_of::return_uses_outptr(bcx.ccx(), ret_ty) && !type_is_zero_size(bcx.ccx(), ret_ty) { store_ty(bcx, llret, llretslot, ret_ty) } } None => {} } } else { // Lang items are the only case where dest is None, and // they are always Rust fns. assert!(dest.is_some()); let mut llargs = Vec::new(); let arg_tys = match args { ArgExprs(a) => a.iter().map(|x| expr_ty(bcx, &**x)).collect(), _ => fail!("expected arg exprs.") }; bcx = trans_args(bcx, args, callee_ty, &mut llargs, cleanup::CustomScope(arg_cleanup_scope), false, abi); fcx.pop_custom_cleanup_scope(arg_cleanup_scope); bcx = foreign::trans_native_call(bcx, callee_ty, llfn, opt_llretslot.unwrap(), llargs.as_slice(), arg_tys); } // If the caller doesn't care about the result of this fn call, // drop the temporary slot we made. match (dest, opt_llretslot) { (Some(expr::Ignore), Some(llretslot)) => { // drop the value if it is not being saved. bcx = glue::drop_ty(bcx, llretslot, ret_ty); call_lifetime_end(bcx, llretslot); } _ => {} } if ty::type_is_bot(ret_ty) { Unreachable(bcx); } Result::new(bcx, llresult) } pub enum CallArgs<'a> { // Supply value of arguments as a list of expressions that must be // translated. This is used in the common case of `foo(bar, qux)`. ArgExprs(&'a [Gc]), // Supply value of arguments as a list of LLVM value refs; frequently // used with lang items and so forth, when the argument is an internal // value. ArgVals(&'a [ValueRef]), // For overloaded operators: `(lhs, Option(rhs, rhs_id))`. `lhs` // is the left-hand-side and `rhs/rhs_id` is the datum/expr-id of // the right-hand-side (if any). ArgOverloadedOp(Datum, Option<(Datum, ast::NodeId)>), // Supply value of arguments as a list of expressions that must be // translated, for overloaded call operators. ArgOverloadedCall(&'a [Gc]), } fn trans_args_under_call_abi<'a>( mut bcx: &'a Block<'a>, arg_exprs: &[Gc], fn_ty: ty::t, llargs: &mut Vec, arg_cleanup_scope: cleanup::ScopeId, ignore_self: bool) -> &'a Block<'a> { // Translate the `self` argument first. let arg_tys = ty::ty_fn_args(fn_ty); if !ignore_self { let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &*arg_exprs[0])); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, *arg_tys.get(0), arg_datum, arg_cleanup_scope, DontAutorefArg) })) } // Now untuple the rest of the arguments. let tuple_expr = arg_exprs[1]; let tuple_type = node_id_type(bcx, tuple_expr.id); match ty::get(tuple_type).sty { ty::ty_tup(ref field_types) => { let tuple_datum = unpack_datum!(bcx, expr::trans(bcx, &*tuple_expr)); let tuple_lvalue_datum = unpack_datum!(bcx, tuple_datum.to_lvalue_datum(bcx, "args", tuple_expr.id)); let repr = adt::represent_type(bcx.ccx(), tuple_type); let repr_ptr = &*repr; for i in range(0, field_types.len()) { let arg_datum = tuple_lvalue_datum.get_element( bcx, *field_types.get(i), |srcval| { adt::trans_field_ptr(bcx, repr_ptr, srcval, 0, i) }); let arg_datum = arg_datum.to_expr_datum(); let arg_datum = unpack_datum!(bcx, arg_datum.to_rvalue_datum(bcx, "arg")); let arg_datum = unpack_datum!(bcx, arg_datum.to_appropriate_datum(bcx)); llargs.push(arg_datum.add_clean(bcx.fcx, arg_cleanup_scope)); } } ty::ty_nil => {} _ => { bcx.sess().span_bug(tuple_expr.span, "argument to `.call()` wasn't a tuple?!") } }; bcx } fn trans_overloaded_call_args<'a>( mut bcx: &'a Block<'a>, arg_exprs: &[Gc], fn_ty: ty::t, llargs: &mut Vec, arg_cleanup_scope: cleanup::ScopeId, ignore_self: bool) -> &'a Block<'a> { // Translate the `self` argument first. let arg_tys = ty::ty_fn_args(fn_ty); if !ignore_self { let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &*arg_exprs[0])); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, *arg_tys.get(0), arg_datum, arg_cleanup_scope, DontAutorefArg) })) } // Now untuple the rest of the arguments. let tuple_type = *arg_tys.get(1); match ty::get(tuple_type).sty { ty::ty_tup(ref field_types) => { for (i, &field_type) in field_types.iter().enumerate() { let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &*arg_exprs[i + 1])); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, field_type, arg_datum, arg_cleanup_scope, DontAutorefArg) })) } } ty::ty_nil => {} _ => { bcx.sess().span_bug(arg_exprs[0].span, "argument to `.call()` wasn't a tuple?!") } }; bcx } pub fn trans_args<'a>( cx: &'a Block<'a>, args: CallArgs, fn_ty: ty::t, llargs: &mut Vec , arg_cleanup_scope: cleanup::ScopeId, ignore_self: bool, abi: synabi::Abi) -> &'a Block<'a> { debug!("trans_args(abi={})", abi); let _icx = push_ctxt("trans_args"); let arg_tys = ty::ty_fn_args(fn_ty); let variadic = ty::fn_is_variadic(fn_ty); let mut bcx = cx; // First we figure out the caller's view of the types of the arguments. // This will be needed if this is a generic call, because the callee has // to cast her view of the arguments to the caller's view. match args { ArgExprs(arg_exprs) => { if abi == synabi::RustCall { // This is only used for direct calls to the `call`, // `call_mut` or `call_once` functions. return trans_args_under_call_abi(cx, arg_exprs, fn_ty, llargs, arg_cleanup_scope, ignore_self) } let num_formal_args = arg_tys.len(); for (i, arg_expr) in arg_exprs.iter().enumerate() { if i == 0 && ignore_self { continue; } let arg_ty = if i >= num_formal_args { assert!(variadic); expr_ty_adjusted(cx, &**arg_expr) } else { *arg_tys.get(i) }; let arg_datum = unpack_datum!(bcx, expr::trans(bcx, &**arg_expr)); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, arg_ty, arg_datum, arg_cleanup_scope, DontAutorefArg) })); } } ArgOverloadedCall(arg_exprs) => { return trans_overloaded_call_args(cx, arg_exprs, fn_ty, llargs, arg_cleanup_scope, ignore_self) } ArgOverloadedOp(lhs, rhs) => { assert!(!variadic); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, *arg_tys.get(0), lhs, arg_cleanup_scope, DontAutorefArg) })); match rhs { Some((rhs, rhs_id)) => { assert_eq!(arg_tys.len(), 2); llargs.push(unpack_result!(bcx, { trans_arg_datum(bcx, *arg_tys.get(1), rhs, arg_cleanup_scope, DoAutorefArg(rhs_id)) })); } None => assert_eq!(arg_tys.len(), 1) } } ArgVals(vs) => { llargs.push_all(vs); } } bcx } pub enum AutorefArg { DontAutorefArg, DoAutorefArg(ast::NodeId) } pub fn trans_arg_datum<'a>( bcx: &'a Block<'a>, formal_arg_ty: ty::t, arg_datum: Datum, arg_cleanup_scope: cleanup::ScopeId, autoref_arg: AutorefArg) -> Result<'a> { let _icx = push_ctxt("trans_arg_datum"); let mut bcx = bcx; let ccx = bcx.ccx(); debug!("trans_arg_datum({})", formal_arg_ty.repr(bcx.tcx())); let arg_datum_ty = arg_datum.ty; debug!(" arg datum: {}", arg_datum.to_string(bcx.ccx())); let mut val; if ty::type_is_bot(arg_datum_ty) { // For values of type _|_, we generate an // "undef" value, as such a value should never // be inspected. It's important for the value // to have type lldestty (the callee's expected type). let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty); unsafe { val = llvm::LLVMGetUndef(llformal_arg_ty.to_ref()); } } else { // FIXME(#3548) use the adjustments table match autoref_arg { DoAutorefArg(arg_id) => { // We will pass argument by reference // We want an lvalue, so that we can pass by reference and let arg_datum = unpack_datum!( bcx, arg_datum.to_lvalue_datum(bcx, "arg", arg_id)); val = arg_datum.val; } DontAutorefArg => { // Make this an rvalue, since we are going to be // passing ownership. let arg_datum = unpack_datum!( bcx, arg_datum.to_rvalue_datum(bcx, "arg")); // Now that arg_datum is owned, get it into the appropriate // mode (ref vs value). let arg_datum = unpack_datum!( bcx, arg_datum.to_appropriate_datum(bcx)); // Technically, ownership of val passes to the callee. // However, we must cleanup should we fail before the // callee is actually invoked. val = arg_datum.add_clean(bcx.fcx, arg_cleanup_scope); } } if formal_arg_ty != arg_datum_ty { // this could happen due to e.g. subtyping let llformal_arg_ty = type_of::type_of_explicit_arg(ccx, formal_arg_ty); debug!("casting actual type ({}) to match formal ({})", bcx.val_to_string(val), bcx.llty_str(llformal_arg_ty)); debug!("Rust types: {}; {}", ty_to_string(bcx.tcx(), arg_datum_ty), ty_to_string(bcx.tcx(), formal_arg_ty)); val = PointerCast(bcx, val, llformal_arg_ty); } } debug!("--- trans_arg_datum passing {}", bcx.val_to_string(val)); Result::new(bcx, val) }