// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * # Representation of Algebraic Data Types * * This module determines how to represent enums, structs, and tuples * based on their monomorphized types; it is responsible both for * choosing a representation and translating basic operations on * values of those types. * * Note that the interface treats everything as a general case of an * enum, so structs/tuples/etc. have one pseudo-variant with * discriminant 0; i.e., as if they were a univariant enum. * * Having everything in one place will enable improvements to data * structure representation; possibilities include: * * - Aligning enum bodies correctly, which in turn makes possible SIMD * vector types (which are strict-alignment even on x86) and ports * to strict-alignment architectures (PowerPC, SPARC, etc.). * * - User-specified alignment (e.g., cacheline-aligning parts of * concurrently accessed data structures); LLVM can't represent this * directly, so we'd have to insert padding fields in any structure * that might contain one and adjust GEP indices accordingly. See * issue #4578. * * - Rendering `Option<&T>` as a possibly-null `*T` instead of using * an extra word (and likewise for `@T` and `~T`). Can and probably * should also apply to any enum with one empty case and one case * starting with a non-null pointer (e.g., `Result<(), ~str>`). * * - Using smaller integer types for discriminants. * * - Store nested enums' discriminants in the same word. Rather, if * some variants start with enums, and those enums representations * have unused alignment padding between discriminant and body, the * outer enum's discriminant can be stored there and those variants * can start at offset 0. Kind of fancy, and might need work to * make copies of the inner enum type cooperate, but it could help * with `Option` or `Result` wrapped around another enum. * * - Tagged pointers would be neat, but given that any type can be * used unboxed and any field can have pointers (including mutable) * taken to it, implementing them for Rust seems difficult. */ use core::container::Map; use core::libc::c_ulonglong; use core::option::{Option, Some, None}; use core::vec; use lib::llvm::{ValueRef, TypeRef, True, False}; use middle::trans::_match; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::machine; use middle::trans::type_of; use middle::ty; use syntax::ast; use util::ppaux::ty_to_str; /// Representations. pub enum Repr { /** * `Unit` exists only so that an enum with a single C-like variant * can occupy no space, for ABI compatibility with rustc from * before (and during) the creation of this module. It may not be * worth keeping around; `CEnum` and `Univariant` cover it * overwise. */ Unit(int), /// C-like enums; basically an int. CEnum(int, int), // discriminant range /// Single-case variants, and structs/tuples/records. Univariant(Struct, Destructor), /** * General-case enums: discriminant as int, followed by fields. * The fields start immediately after the discriminant, meaning * that they may not be correctly aligned for the platform's ABI; * see above. */ General(~[Struct]) } /** * Structs without destructors have historically had an extra layer of * LLVM-struct to make accessing them work the same as structs with * destructors. This could probably be flattened to a boolean now * that this module exists. */ enum Destructor { StructWithDtor, StructWithoutDtor, NonStruct } /// For structs, and struct-like parts of anything fancier. struct Struct { size: u64, align: u64, fields: ~[ty::t] } /** * Convenience for `represent_type`. There should probably be more or * these, for places in trans where the `ty::t` isn't directly * available. */ pub fn represent_node(bcx: block, node: ast::node_id) -> @Repr { represent_type(bcx.ccx(), node_id_type(bcx, node)) } /// Decides how to represent a given type. pub fn represent_type(cx: @CrateContext, t: ty::t) -> @Repr { debug!("Representing: %s", ty_to_str(cx.tcx, t)); match cx.adt_reprs.find(&t) { Some(repr) => return *repr, None => { } } let repr = @match ty::get(t).sty { ty::ty_tup(ref elems) => { Univariant(mk_struct(cx, *elems), NonStruct) } ty::ty_struct(def_id, ref substs) => { let fields = ty::lookup_struct_fields(cx.tcx, def_id); let dt = ty::ty_dtor(cx.tcx, def_id).is_present(); Univariant(mk_struct(cx, fields.map(|field| { ty::lookup_field_type(cx.tcx, def_id, field.id, substs) })), if dt { StructWithDtor } else { StructWithoutDtor }) } ty::ty_enum(def_id, ref substs) => { struct Case { discr: int, tys: ~[ty::t] }; let cases = do ty::enum_variants(cx.tcx, def_id).map |vi| { let arg_tys = do vi.args.map |&raw_ty| { ty::subst(cx.tcx, substs, raw_ty) }; Case { discr: vi.disr_val, tys: arg_tys } }; if cases.len() == 0 { // Uninhabitable; represent as unit Unit(0) } else if cases.len() == 1 && cases[0].tys.len() == 0 { // `()`-like; see comment on definition of `Unit`. Unit(cases[0].discr) } else if cases.len() == 1 { // Equivalent to a struct/tuple/newtype. assert cases[0].discr == 0; Univariant(mk_struct(cx, cases[0].tys), NonStruct) } else if cases.all(|c| c.tys.len() == 0) { // All bodies empty -> intlike let discrs = cases.map(|c| c.discr); CEnum(discrs.min(), discrs.max()) } else { // The general case. Since there's at least one // non-empty body, explicit discriminants should have // been rejected by a checker before this point. if !cases.alli(|i,c| c.discr == (i as int)) { cx.sess.bug(fmt!("non-C-like enum %s with specified \ discriminants", ty::item_path_str(cx.tcx, def_id))) } General(cases.map(|c| mk_struct(cx, c.tys))) } } _ => cx.sess.bug(~"adt::represent_type called on non-ADT type") }; cx.adt_reprs.insert(t, repr); return repr; } fn mk_struct(cx: @CrateContext, tys: &[ty::t]) -> Struct { let lltys = tys.map(|&ty| type_of::sizing_type_of(cx, ty)); let llty_rec = T_struct(lltys); Struct { size: machine::llsize_of_alloc(cx, llty_rec) /*bad*/as u64, align: machine::llalign_of_min(cx, llty_rec) /*bad*/as u64, fields: vec::from_slice(tys) } } /** * Returns the fields of a struct for the given representation. * All nominal types are LLVM structs, in order to be able to use * forward-declared opaque types to prevent circularity in `type_of`. */ pub fn fields_of(cx: @CrateContext, r: &Repr) -> ~[TypeRef] { generic_fields_of(cx, r, false) } /// Like `fields_of`, but for `type_of::sizing_type_of` (q.v.). pub fn sizing_fields_of(cx: @CrateContext, r: &Repr) -> ~[TypeRef] { generic_fields_of(cx, r, true) } fn generic_fields_of(cx: @CrateContext, r: &Repr, sizing: bool) -> ~[TypeRef] { match *r { Unit(*) => ~[], CEnum(*) => ~[T_enum_discrim(cx)], Univariant(ref st, dt) => { let f = if sizing { st.fields.map(|&ty| type_of::sizing_type_of(cx, ty)) } else { st.fields.map(|&ty| type_of::type_of(cx, ty)) }; match dt { NonStruct => f, StructWithoutDtor => ~[T_struct(f)], StructWithDtor => ~[T_struct(f), T_i8()] } } General(ref sts) => { ~[T_enum_discrim(cx), T_array(T_i8(), sts.map(|st| st.size).max() /*bad*/as uint)] } } } /** * Obtain a representation of the discriminant sufficient to translate * destructuring; this may or may not involve the actual discriminant. * * This should ideally be less tightly tied to `_match`. */ pub fn trans_switch(bcx: block, r: &Repr, scrutinee: ValueRef) -> (_match::branch_kind, Option) { match *r { CEnum(*) | General(*) => { (_match::switch, Some(trans_get_discr(bcx, r, scrutinee))) } Unit(*) | Univariant(*) => { (_match::single, None) } } } /// Obtain the actual discriminant of a value. pub fn trans_get_discr(bcx: block, r: &Repr, scrutinee: ValueRef) -> ValueRef { match *r { Unit(the_disc) => C_int(bcx.ccx(), the_disc), CEnum(min, max) => load_discr(bcx, scrutinee, min, max), Univariant(*) => C_int(bcx.ccx(), 0), General(ref cases) => load_discr(bcx, scrutinee, 0, (cases.len() - 1) as int) } } /// Helper for cases where the discriminant is simply loaded. fn load_discr(bcx: block, scrutinee: ValueRef, min: int, max: int) -> ValueRef { let ptr = GEPi(bcx, scrutinee, [0, 0]); if max + 1 == min { // i.e., if the range is everything. The lo==hi case would be // rejected by the LLVM verifier (it would mean either an // empty set, which is impossible, or the entire range of the // type, which is pointless). Load(bcx, ptr) } else { // llvm::ConstantRange can deal with ranges that wrap around, // so an overflow on (max + 1) is fine. LoadRangeAssert(bcx, ptr, min as c_ulonglong, (max + 1) as c_ulonglong, /* signed: */ True) } } /** * Yield information about how to dispatch a case of the * discriminant-like value returned by `trans_switch`. * * This should ideally be less tightly tied to `_match`. */ pub fn trans_case(bcx: block, r: &Repr, discr: int) -> _match::opt_result { match *r { CEnum(*) => { _match::single_result(rslt(bcx, C_int(bcx.ccx(), discr))) } Unit(*) | Univariant(*)=> { bcx.ccx().sess.bug(~"no cases for univariants or structs") } General(*) => { _match::single_result(rslt(bcx, C_int(bcx.ccx(), discr))) } } } /** * Begin initializing a new value of the given case of the given * representation. The fields, if any, should then be initialized via * `trans_field_ptr`. */ pub fn trans_start_init(bcx: block, r: &Repr, val: ValueRef, discr: int) { match *r { Unit(the_discr) => { assert discr == the_discr; } CEnum(min, max) => { assert min <= discr && discr <= max; Store(bcx, C_int(bcx.ccx(), discr), GEPi(bcx, val, [0, 0])) } Univariant(_, StructWithDtor) => { assert discr == 0; Store(bcx, C_u8(1), GEPi(bcx, val, [0, 1])) } Univariant(*) => { assert discr == 0; } General(*) => { Store(bcx, C_int(bcx.ccx(), discr), GEPi(bcx, val, [0, 0])) } } } /** * The number of fields in a given case; for use when obtaining this * information from the type or definition is less convenient. */ pub fn num_args(r: &Repr, discr: int) -> uint { match *r { Unit(*) | CEnum(*) => 0, Univariant(ref st, _dt) => { assert discr == 0; st.fields.len() } General(ref cases) => cases[discr as uint].fields.len() } } /// Access a field, at a point when the value's case is known. pub fn trans_field_ptr(bcx: block, r: &Repr, val: ValueRef, discr: int, ix: uint) -> ValueRef { // Note: if this ever needs to generate conditionals (e.g., if we // decide to do some kind of cdr-coding-like non-unique repr // someday), it will need to return a possibly-new bcx as well. match *r { Unit(*) | CEnum(*) => { bcx.ccx().sess.bug(~"element access in C-like enum") } Univariant(ref st, dt) => { assert discr == 0; let val = match dt { NonStruct => val, StructWithDtor | StructWithoutDtor => GEPi(bcx, val, [0, 0]) }; struct_field_ptr(bcx, st, val, ix, false) } General(ref cases) => { struct_field_ptr(bcx, &cases[discr as uint], GEPi(bcx, val, [0, 1]), ix, true) } } } fn struct_field_ptr(bcx: block, st: &Struct, val: ValueRef, ix: uint, needs_cast: bool) -> ValueRef { let ccx = bcx.ccx(); let val = if needs_cast { let real_llty = T_struct(st.fields.map( |&ty| type_of::type_of(ccx, ty))); PointerCast(bcx, val, T_ptr(real_llty)) } else { val }; GEPi(bcx, val, [0, ix]) } /// Access the struct drop flag, if present. pub fn trans_drop_flag_ptr(bcx: block, r: &Repr, val: ValueRef) -> ValueRef { match *r { Univariant(_, StructWithDtor) => GEPi(bcx, val, [0, 1]), _ => bcx.ccx().sess.bug(~"tried to get drop flag of non-droppable \ type") } } /** * Construct a constant value, suitable for initializing a * GlobalVariable, given a case and constant values for its fields. * Note that this may have a different LLVM type (and different * alignment!) from the representation's `type_of`, so it needs a * pointer cast before use. * * The LLVM type system does not directly support unions, and only * pointers can be bitcast, so a constant (and, by extension, the * GlobalVariable initialized by it) will have a type that can vary * depending on which case of an enum it is. * * To understand the alignment situation, consider `enum E { V64(u64), * V32(u32, u32) }` on win32. The type should have 8-byte alignment * to accommodate the u64 (currently it doesn't; this is a known bug), * but `V32(x, y)` would have LLVM type `{i32, i32, i32}`, which is * 4-byte aligned. * * Currently the returned value has the same size as the type, but * this may be changed in the future to avoid allocating unnecessary * space after values of shorter-than-maximum cases. */ pub fn trans_const(ccx: @CrateContext, r: &Repr, discr: int, vals: &[ValueRef]) -> ValueRef { match *r { Unit(*) => { C_struct(~[]) } CEnum(min, max) => { assert vals.len() == 0; assert min <= discr && discr <= max; C_int(ccx, discr) } Univariant(ref st, dt) => { assert discr == 0; let s = C_struct(build_const_struct(ccx, st, vals)); match dt { NonStruct => s, // The actual destructor flag doesn't need to be present. // But add an extra struct layer for compatibility. StructWithDtor | StructWithoutDtor => C_struct(~[s]) } } General(ref cases) => { let case = &cases[discr as uint]; let max_sz = cases.map(|s| s.size).max(); let body = build_const_struct(ccx, case, vals); // The unary packed struct has alignment 1 regardless of // its contents, so it will always be located at the // expected offset at runtime. C_struct([C_int(ccx, discr), C_packed_struct([C_struct(body)]), padding(max_sz - case.size)]) } } } /** * Building structs is a little complicated, because we might need to * insert padding if a field's value is less aligned than its type. * * Continuing the example from `trans_const`, a value of type `(u32, * E)` should have the `E` at offset 8, but if that field's * initializer is 4-byte aligned then simply translating the tuple as * a two-element struct will locate it at offset 4, and accesses to it * will read the wrong memory. */ fn build_const_struct(ccx: @CrateContext, st: &Struct, vals: &[ValueRef]) -> ~[ValueRef] { assert vals.len() == st.fields.len(); let mut offset = 0; let mut cfields = ~[]; for st.fields.eachi |i, &ty| { let llty = type_of::sizing_type_of(ccx, ty); let type_align = machine::llalign_of_min(ccx, llty) /*bad*/as u64; let val_align = machine::llalign_of_min(ccx, val_ty(vals[i])) /*bad*/as u64; let target_offset = roundup(offset, type_align); offset = roundup(offset, val_align); if (offset != target_offset) { cfields.push(padding(target_offset - offset)); offset = target_offset; } assert !is_undef(vals[i]); // If that assert fails, could change it to wrap in a struct? // (See `const_struct_field` for why real fields must not be undef.) cfields.push(vals[i]); } return cfields; } fn padding(size: u64) -> ValueRef { C_undef(T_array(T_i8(), size /*bad*/as uint)) } // XXX this utility routine should be somewhere more general #[always_inline] fn roundup(x: u64, a: u64) -> u64 { ((x + (a - 1)) / a) * a } /// Get the discriminant of a constant value. (Not currently used.) pub fn const_get_discrim(ccx: @CrateContext, r: &Repr, val: ValueRef) -> int { match *r { Unit(discr) => discr, CEnum(*) => const_to_int(val) as int, Univariant(*) => 0, General(*) => const_to_int(const_get_elt(ccx, val, [0])) as int, } } /** * Extract a field of a constant value, as appropriate for its * representation. * * (Not to be confused with `common::const_get_elt`, which operates on * raw LLVM-level structs and arrays.) */ pub fn const_get_field(ccx: @CrateContext, r: &Repr, val: ValueRef, _discr: int, ix: uint) -> ValueRef { match *r { Unit(*) | CEnum(*) => ccx.sess.bug(~"element access in C-like enum \ const"), Univariant(_, NonStruct) => const_struct_field(ccx, val, ix), Univariant(*) => const_struct_field(ccx, const_get_elt(ccx, val, [0]), ix), General(*) => const_struct_field(ccx, const_get_elt(ccx, val, [1, 0]), ix) } } /// Extract field of struct-like const, skipping our alignment padding. fn const_struct_field(ccx: @CrateContext, val: ValueRef, ix: uint) -> ValueRef { // Get the ix-th non-undef element of the struct. let mut real_ix = 0; // actual position in the struct let mut ix = ix; // logical index relative to real_ix let mut field; loop { loop { field = const_get_elt(ccx, val, [real_ix]); if !is_undef(field) { break; } real_ix = real_ix + 1; } if ix == 0 { return field; } ix = ix - 1; real_ix = real_ix + 1; } } /// Is it safe to bitcast a value to the one field of its one variant? pub fn is_newtypeish(r: &Repr) -> bool { match *r { Univariant(ref st, StructWithoutDtor) | Univariant(ref st, NonStruct) => st.fields.len() == 1, _ => false } }