// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME(#4375): this shouldn't have to be a nested module named 'generated' #[macro_escape]; macro_rules! uint_module (($T:ty, $T_SIGNED:ty, $bits:expr) => (mod generated { use num::BitCount; use num::{ToStrRadix, FromStrRadix}; use num::{Zero, One, strconv}; use prelude::*; pub use cmp::{min, max}; pub static bits : uint = $bits; pub static bytes : uint = ($bits / 8); pub static min_value: $T = 0 as $T; pub static max_value: $T = 0 as $T - 1 as $T; #[inline(always)] pub fn add(x: $T, y: $T) -> $T { x + y } #[inline(always)] pub fn sub(x: $T, y: $T) -> $T { x - y } #[inline(always)] pub fn mul(x: $T, y: $T) -> $T { x * y } #[inline(always)] pub fn div(x: $T, y: $T) -> $T { x / y } #[inline(always)] pub fn rem(x: $T, y: $T) -> $T { x % y } #[inline(always)] pub fn lt(x: $T, y: $T) -> bool { x < y } #[inline(always)] pub fn le(x: $T, y: $T) -> bool { x <= y } #[inline(always)] pub fn eq(x: $T, y: $T) -> bool { x == y } #[inline(always)] pub fn ne(x: $T, y: $T) -> bool { x != y } #[inline(always)] pub fn ge(x: $T, y: $T) -> bool { x >= y } #[inline(always)] pub fn gt(x: $T, y: $T) -> bool { x > y } #[inline(always)] /// /// Iterate over the range [`start`,`start`+`step`..`stop`) /// pub fn range_step(start: $T, stop: $T, step: $T_SIGNED, it: &fn($T) -> bool) -> bool { let mut i = start; if step == 0 { fail!("range_step called with step == 0"); } if step >= 0 { while i < stop { if !it(i) { return false; } // avoiding overflow. break if i + step > max_value if i > max_value - (step as $T) { return true; } i += step as $T; } } else { while i > stop { if !it(i) { return false; } // avoiding underflow. break if i + step < min_value if i < min_value + ((-step) as $T) { return true; } i -= -step as $T; } } return true; } #[inline(always)] /// Iterate over the range [`lo`..`hi`) pub fn range(lo: $T, hi: $T, it: &fn($T) -> bool) -> bool { range_step(lo, hi, 1 as $T_SIGNED, it) } #[inline(always)] /// Iterate over the range [`hi`..`lo`) pub fn range_rev(hi: $T, lo: $T, it: &fn($T) -> bool) -> bool { range_step(hi, lo, -1 as $T_SIGNED, it) } /// Computes the bitwise complement #[inline(always)] pub fn compl(i: $T) -> $T { max_value ^ i } impl Num for $T {} #[cfg(not(test))] impl Ord for $T { #[inline(always)] fn lt(&self, other: &$T) -> bool { (*self) < (*other) } #[inline(always)] fn le(&self, other: &$T) -> bool { (*self) <= (*other) } #[inline(always)] fn ge(&self, other: &$T) -> bool { (*self) >= (*other) } #[inline(always)] fn gt(&self, other: &$T) -> bool { (*self) > (*other) } } #[cfg(not(test))] impl Eq for $T { #[inline(always)] fn eq(&self, other: &$T) -> bool { return (*self) == (*other); } #[inline(always)] fn ne(&self, other: &$T) -> bool { return (*self) != (*other); } } impl Orderable for $T { #[inline(always)] fn min(&self, other: &$T) -> $T { if *self < *other { *self } else { *other } } #[inline(always)] fn max(&self, other: &$T) -> $T { if *self > *other { *self } else { *other } } /// Returns the number constrained within the range `mn <= self <= mx`. #[inline(always)] fn clamp(&self, mn: &$T, mx: &$T) -> $T { cond!( (*self > *mx) { *mx } (*self < *mn) { *mn } _ { *self } ) } } impl Zero for $T { #[inline(always)] fn zero() -> $T { 0 } #[inline(always)] fn is_zero(&self) -> bool { *self == 0 } } impl One for $T { #[inline(always)] fn one() -> $T { 1 } } #[cfg(not(test))] impl Add<$T,$T> for $T { #[inline(always)] fn add(&self, other: &$T) -> $T { *self + *other } } #[cfg(not(test))] impl Sub<$T,$T> for $T { #[inline(always)] fn sub(&self, other: &$T) -> $T { *self - *other } } #[cfg(not(test))] impl Mul<$T,$T> for $T { #[inline(always)] fn mul(&self, other: &$T) -> $T { *self * *other } } #[cfg(not(test))] impl Div<$T,$T> for $T { #[inline(always)] fn div(&self, other: &$T) -> $T { *self / *other } } #[cfg(not(test))] impl Rem<$T,$T> for $T { #[inline(always)] fn rem(&self, other: &$T) -> $T { *self % *other } } #[cfg(not(test))] impl Neg<$T> for $T { #[inline(always)] fn neg(&self) -> $T { -*self } } impl Unsigned for $T {} impl Integer for $T { /// Calculates `div` (`\`) and `rem` (`%`) simultaneously #[inline(always)] fn div_rem(&self, other: &$T) -> ($T,$T) { (*self / *other, *self % *other) } /// Unsigned integer division. Returns the same result as `div` (`/`). #[inline(always)] fn div_floor(&self, other: &$T) -> $T { *self / *other } /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). #[inline(always)] fn mod_floor(&self, other: &$T) -> $T { *self / *other } /// Calculates `div_floor` and `modulo_floor` simultaneously #[inline(always)] fn div_mod_floor(&self, other: &$T) -> ($T,$T) { (*self / *other, *self % *other) } /// Calculates the Greatest Common Divisor (GCD) of the number and `other` #[inline(always)] fn gcd(&self, other: &$T) -> $T { // Use Euclid's algorithm let mut m = *self, n = *other; while m != 0 { let temp = m; m = n % temp; n = temp; } n } /// Calculates the Lowest Common Multiple (LCM) of the number and `other` #[inline(always)] fn lcm(&self, other: &$T) -> $T { (*self * *other) / self.gcd(other) } /// Returns `true` if the number can be divided by `other` without leaving a remainder #[inline(always)] fn is_multiple_of(&self, other: &$T) -> bool { *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline(always)] fn is_even(&self) -> bool { self.is_multiple_of(&2) } /// Returns `true` if the number is not divisible by `2` #[inline(always)] fn is_odd(&self) -> bool { !self.is_even() } } impl Bitwise for $T {} #[cfg(not(test))] impl BitOr<$T,$T> for $T { #[inline(always)] fn bitor(&self, other: &$T) -> $T { *self | *other } } #[cfg(not(test))] impl BitAnd<$T,$T> for $T { #[inline(always)] fn bitand(&self, other: &$T) -> $T { *self & *other } } #[cfg(not(test))] impl BitXor<$T,$T> for $T { #[inline(always)] fn bitxor(&self, other: &$T) -> $T { *self ^ *other } } #[cfg(not(test))] impl Shl<$T,$T> for $T { #[inline(always)] fn shl(&self, other: &$T) -> $T { *self << *other } } #[cfg(not(test))] impl Shr<$T,$T> for $T { #[inline(always)] fn shr(&self, other: &$T) -> $T { *self >> *other } } #[cfg(not(test))] impl Not<$T> for $T { #[inline(always)] fn not(&self) -> $T { !*self } } impl Bounded for $T { #[inline(always)] fn min_value() -> $T { min_value } #[inline(always)] fn max_value() -> $T { max_value } } impl Int for $T {} // String conversion functions and impl str -> num /// Parse a string as a number in base 10. #[inline(always)] pub fn from_str(s: &str) -> Option<$T> { strconv::from_str_common(s, 10u, false, false, false, strconv::ExpNone, false, false) } /// Parse a string as a number in the given base. #[inline(always)] pub fn from_str_radix(s: &str, radix: uint) -> Option<$T> { strconv::from_str_common(s, radix, false, false, false, strconv::ExpNone, false, false) } /// Parse a byte slice as a number in the given base. #[inline(always)] pub fn parse_bytes(buf: &[u8], radix: uint) -> Option<$T> { strconv::from_str_bytes_common(buf, radix, false, false, false, strconv::ExpNone, false, false) } impl FromStr for $T { #[inline(always)] fn from_str(s: &str) -> Option<$T> { from_str(s) } } impl FromStrRadix for $T { #[inline(always)] fn from_str_radix(s: &str, radix: uint) -> Option<$T> { from_str_radix(s, radix) } } // String conversion functions and impl num -> str /// Convert to a string as a byte slice in a given base. #[inline(always)] pub fn to_str_bytes(n: $T, radix: uint, f: &fn(v: &[u8]) -> U) -> U { let (buf, _) = strconv::to_str_bytes_common(&n, radix, false, strconv::SignNeg, strconv::DigAll); f(buf) } /// Convert to a string in base 10. #[inline(always)] pub fn to_str(num: $T) -> ~str { let (buf, _) = strconv::to_str_common(&num, 10u, false, strconv::SignNeg, strconv::DigAll); buf } /// Convert to a string in a given base. #[inline(always)] pub fn to_str_radix(num: $T, radix: uint) -> ~str { let (buf, _) = strconv::to_str_common(&num, radix, false, strconv::SignNeg, strconv::DigAll); buf } impl ToStr for $T { #[inline(always)] fn to_str(&self) -> ~str { to_str(*self) } } impl ToStrRadix for $T { #[inline(always)] fn to_str_radix(&self, radix: uint) -> ~str { to_str_radix(*self, radix) } } impl Primitive for $T { #[inline(always)] fn bits() -> uint { bits } #[inline(always)] fn bytes() -> uint { bits / 8 } } impl BitCount for $T { /// Counts the number of bits set. Wraps LLVM's `ctpop` intrinsic. #[inline(always)] fn population_count(&self) -> $T { (*self as $T_SIGNED).population_count() as $T } /// Counts the number of leading zeros. Wraps LLVM's `ctlz` intrinsic. #[inline(always)] fn leading_zeros(&self) -> $T { (*self as $T_SIGNED).leading_zeros() as $T } /// Counts the number of trailing zeros. Wraps LLVM's `cttz` intrinsic. #[inline(always)] fn trailing_zeros(&self) -> $T { (*self as $T_SIGNED).trailing_zeros() as $T } } #[cfg(test)] mod tests { use super::*; use prelude::*; #[test] fn test_num() { num::test_num(10 as $T, 2 as $T); } #[test] fn test_orderable() { assert_eq!((1 as $T).min(&(2 as $T)), 1 as $T); assert_eq!((2 as $T).min(&(1 as $T)), 1 as $T); assert_eq!((1 as $T).max(&(2 as $T)), 2 as $T); assert_eq!((2 as $T).max(&(1 as $T)), 2 as $T); assert_eq!((1 as $T).clamp(&(2 as $T), &(4 as $T)), 2 as $T); assert_eq!((8 as $T).clamp(&(2 as $T), &(4 as $T)), 4 as $T); assert_eq!((3 as $T).clamp(&(2 as $T), &(4 as $T)), 3 as $T); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); assert_eq!((99 as $T).lcm(&17), 1683 as $T); } #[test] fn test_multiple_of() { assert!((6 as $T).is_multiple_of(&(6 as $T))); assert!((6 as $T).is_multiple_of(&(3 as $T))); assert!((6 as $T).is_multiple_of(&(1 as $T))); } #[test] fn test_even() { assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } #[test] fn test_bitwise() { assert_eq!(0b1110 as $T, (0b1100 as $T).bitor(&(0b1010 as $T))); assert_eq!(0b1000 as $T, (0b1100 as $T).bitand(&(0b1010 as $T))); assert_eq!(0b0110 as $T, (0b1100 as $T).bitxor(&(0b1010 as $T))); assert_eq!(0b1110 as $T, (0b0111 as $T).shl(&(1 as $T))); assert_eq!(0b0111 as $T, (0b1110 as $T).shr(&(1 as $T))); assert_eq!(max_value - (0b1011 as $T), (0b1011 as $T).not()); } #[test] fn test_bitcount() { assert_eq!((0b010101 as $T).population_count(), 3); } #[test] fn test_primitive() { assert_eq!(Primitive::bits::<$T>(), sys::size_of::<$T>() * 8); assert_eq!(Primitive::bytes::<$T>(), sys::size_of::<$T>()); } #[test] pub fn test_to_str() { assert_eq!(to_str_radix(0 as $T, 10u), ~"0"); assert_eq!(to_str_radix(1 as $T, 10u), ~"1"); assert_eq!(to_str_radix(2 as $T, 10u), ~"2"); assert_eq!(to_str_radix(11 as $T, 10u), ~"11"); assert_eq!(to_str_radix(11 as $T, 16u), ~"b"); assert_eq!(to_str_radix(255 as $T, 16u), ~"ff"); assert_eq!(to_str_radix(0xff as $T, 10u), ~"255"); } #[test] pub fn test_from_str() { assert_eq!(from_str("0"), Some(0u as $T)); assert_eq!(from_str("3"), Some(3u as $T)); assert_eq!(from_str("10"), Some(10u as $T)); assert_eq!(u32::from_str("123456789"), Some(123456789 as u32)); assert_eq!(from_str("00100"), Some(100u as $T)); assert!(from_str("").is_none()); assert!(from_str(" ").is_none()); assert!(from_str("x").is_none()); } #[test] pub fn test_parse_bytes() { use str::to_bytes; assert_eq!(parse_bytes(to_bytes("123"), 10u), Some(123u as $T)); assert_eq!(parse_bytes(to_bytes("1001"), 2u), Some(9u as $T)); assert_eq!(parse_bytes(to_bytes("123"), 8u), Some(83u as $T)); assert_eq!(u16::parse_bytes(to_bytes("123"), 16u), Some(291u as u16)); assert_eq!(u16::parse_bytes(to_bytes("ffff"), 16u), Some(65535u as u16)); assert_eq!(parse_bytes(to_bytes("z"), 36u), Some(35u as $T)); assert!(parse_bytes(to_bytes("Z"), 10u).is_none()); assert!(parse_bytes(to_bytes("_"), 2u).is_none()); } #[test] fn test_uint_to_str_overflow() { let mut u8_val: u8 = 255_u8; assert_eq!(u8::to_str(u8_val), ~"255"); u8_val += 1 as u8; assert_eq!(u8::to_str(u8_val), ~"0"); let mut u16_val: u16 = 65_535_u16; assert_eq!(u16::to_str(u16_val), ~"65535"); u16_val += 1 as u16; assert_eq!(u16::to_str(u16_val), ~"0"); let mut u32_val: u32 = 4_294_967_295_u32; assert_eq!(u32::to_str(u32_val), ~"4294967295"); u32_val += 1 as u32; assert_eq!(u32::to_str(u32_val), ~"0"); let mut u64_val: u64 = 18_446_744_073_709_551_615_u64; assert_eq!(u64::to_str(u64_val), ~"18446744073709551615"); u64_val += 1 as u64; assert_eq!(u64::to_str(u64_val), ~"0"); } #[test] fn test_uint_from_str_overflow() { let mut u8_val: u8 = 255_u8; assert_eq!(u8::from_str("255"), Some(u8_val)); assert!(u8::from_str("256").is_none()); u8_val += 1 as u8; assert_eq!(u8::from_str("0"), Some(u8_val)); assert!(u8::from_str("-1").is_none()); let mut u16_val: u16 = 65_535_u16; assert_eq!(u16::from_str("65535"), Some(u16_val)); assert!(u16::from_str("65536").is_none()); u16_val += 1 as u16; assert_eq!(u16::from_str("0"), Some(u16_val)); assert!(u16::from_str("-1").is_none()); let mut u32_val: u32 = 4_294_967_295_u32; assert_eq!(u32::from_str("4294967295"), Some(u32_val)); assert!(u32::from_str("4294967296").is_none()); u32_val += 1 as u32; assert_eq!(u32::from_str("0"), Some(u32_val)); assert!(u32::from_str("-1").is_none()); let mut u64_val: u64 = 18_446_744_073_709_551_615_u64; assert_eq!(u64::from_str("18446744073709551615"), Some(u64_val)); assert!(u64::from_str("18446744073709551616").is_none()); u64_val += 1 as u64; assert_eq!(u64::from_str("0"), Some(u64_val)); assert!(u64::from_str("-1").is_none()); } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn to_str_radix1() { uint::to_str_radix(100u, 1u); } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn to_str_radix37() { uint::to_str_radix(100u, 37u); } #[test] pub fn test_ranges() { let mut l = ~[]; for range(0,3) |i| { l.push(i); } for range_rev(13,10) |i| { l.push(i); } for range_step(20,26,2) |i| { l.push(i); } for range_step(36,30,-2) |i| { l.push(i); } for range_step(max_value - 2, max_value, 2) |i| { l.push(i); } for range_step(max_value - 3, max_value, 2) |i| { l.push(i); } for range_step(min_value + 2, min_value, -2) |i| { l.push(i); } for range_step(min_value + 3, min_value, -2) |i| { l.push(i); } assert_eq!(l, ~[0,1,2, 13,12,11, 20,22,24, 36,34,32, max_value-2, max_value-3,max_value-1, min_value+2, min_value+3,min_value+1]); // None of the `fail`s should execute. for range(0,0) |_i| { fail!("unreachable"); } for range_rev(0,0) |_i| { fail!("unreachable"); } for range_step(10,0,1) |_i| { fail!("unreachable"); } for range_step(0,1,-10) |_i| { fail!("unreachable"); } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step_up() { for range_step(0,10,0) |_i| {} } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_range_step_zero_step_down() { for range_step(0,-10,0) |_i| {} } } }))