// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use rustc::infer::canonical::{Canonical, QueryResult}; use rustc::hir::def_id::DefId; use rustc::traits::{FulfillmentContext, Normalized, ObligationCause}; use rustc::traits::query::{CanonicalTyGoal, NoSolution}; use rustc::traits::query::dropck_outlives::{DtorckConstraint, DropckOutlivesResult}; use rustc::ty::{self, ParamEnvAnd, Ty, TyCtxt}; use rustc::ty::subst::Subst; use rustc::util::nodemap::FxHashSet; use rustc_data_structures::sync::Lrc; use syntax::codemap::{Span, DUMMY_SP}; use util; crate fn dropck_outlives<'tcx>( tcx: TyCtxt<'_, 'tcx, 'tcx>, goal: CanonicalTyGoal<'tcx>, ) -> Result>>>, NoSolution> { debug!("dropck_outlives(goal={:#?})", goal); tcx.infer_ctxt().enter(|ref infcx| { let tcx = infcx.tcx; let ( ParamEnvAnd { param_env, value: for_ty, }, canonical_inference_vars, ) = infcx.instantiate_canonical_with_fresh_inference_vars(DUMMY_SP, &goal); let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] }; // A stack of types left to process. Each round, we pop // something from the stack and invoke // `dtorck_constraint_for_ty`. This may produce new types that // have to be pushed on the stack. This continues until we have explored // all the reachable types from the type `for_ty`. // // Example: Imagine that we have the following code: // // ```rust // struct A { // value: B, // children: Vec, // } // // struct B { // value: u32 // } // // fn f() { // let a: A = ...; // .. // } // here, `a` is dropped // ``` // // at the point where `a` is dropped, we need to figure out // which types inside of `a` contain region data that may be // accessed by any destructors in `a`. We begin by pushing `A` // onto the stack, as that is the type of `a`. We will then // invoke `dtorck_constraint_for_ty` which will expand `A` // into the types of its fields `(B, Vec)`. These will get // pushed onto the stack. Eventually, expanding `Vec` will // lead to us trying to push `A` a second time -- to prevent // infinite recusion, we notice that `A` was already pushed // once and stop. let mut ty_stack = vec![(for_ty, 0)]; // Set used to detect infinite recursion. let mut ty_set = FxHashSet(); let fulfill_cx = &mut FulfillmentContext::new(); let cause = ObligationCause::dummy(); while let Some((ty, depth)) = ty_stack.pop() { let DtorckConstraint { dtorck_types, outlives, overflows, } = dtorck_constraint_for_ty(tcx, DUMMY_SP, for_ty, depth, ty)?; // "outlives" represent types/regions that may be touched // by a destructor. result.kinds.extend(outlives); result.overflows.extend(overflows); // dtorck types are "types that will get dropped but which // do not themselves define a destructor", more or less. We have // to push them onto the stack to be expanded. for ty in dtorck_types { match infcx.at(&cause, param_env).normalize(&ty) { Ok(Normalized { value: ty, obligations, }) => { fulfill_cx.register_predicate_obligations(infcx, obligations); debug!("dropck_outlives: ty from dtorck_types = {:?}", ty); match ty.sty { // All parameters live for the duration of the // function. ty::TyParam(..) => {} // A projection that we couldn't resolve - it // might have a destructor. ty::TyProjection(..) | ty::TyAnon(..) => { result.kinds.push(ty.into()); } _ => { if ty_set.insert(ty) { ty_stack.push((ty, depth + 1)); } } } } // We don't actually expect to fail to normalize. // That implies a WF error somewhere else. Err(NoSolution) => { return Err(NoSolution); } } } } debug!("dropck_outlives: result = {:#?}", result); util::make_query_response(infcx, canonical_inference_vars, result, fulfill_cx) }) } /// Return a set of constraints that needs to be satisfied in /// order for `ty` to be valid for destruction. fn dtorck_constraint_for_ty<'a, 'gcx, 'tcx>( tcx: TyCtxt<'a, 'gcx, 'tcx>, span: Span, for_ty: Ty<'tcx>, depth: usize, ty: Ty<'tcx>, ) -> Result, NoSolution> { debug!( "dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})", span, for_ty, depth, ty ); if depth >= *tcx.sess.recursion_limit.get() { return Ok(DtorckConstraint { outlives: vec![], dtorck_types: vec![], overflows: vec![ty], }); } let result = match ty.sty { ty::TyBool | ty::TyChar | ty::TyInt(_) | ty::TyUint(_) | ty::TyFloat(_) | ty::TyStr | ty::TyNever | ty::TyForeign(..) | ty::TyRawPtr(..) | ty::TyRef(..) | ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyGeneratorWitness(..) => { // these types never have a destructor Ok(DtorckConstraint::empty()) } ty::TyArray(ety, _) | ty::TySlice(ety) => { // single-element containers, behave like their element dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ety) } ty::TyTuple(tys) => tys.iter() .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty)) .collect(), ty::TyClosure(def_id, substs) => substs .upvar_tys(def_id, tcx) .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty)) .collect(), ty::TyGenerator(def_id, substs, _) => { // Note that the interior types are ignored here. // Any type reachable inside the interior must also be reachable // through the upvars. substs .upvar_tys(def_id, tcx) .map(|ty| dtorck_constraint_for_ty(tcx, span, for_ty, depth + 1, ty)) .collect() } ty::TyAdt(def, substs) => { let DtorckConstraint { dtorck_types, outlives, overflows, } = tcx.at(span).adt_dtorck_constraint(def.did)?; Ok(DtorckConstraint { // FIXME: we can try to recursively `dtorck_constraint_on_ty` // there, but that needs some way to handle cycles. dtorck_types: dtorck_types.subst(tcx, substs), outlives: outlives.subst(tcx, substs), overflows: overflows.subst(tcx, substs), }) } // Objects must be alive in order for their destructor // to be called. ty::TyDynamic(..) => Ok(DtorckConstraint { outlives: vec![ty.into()], dtorck_types: vec![], overflows: vec![], }), // Types that can't be resolved. Pass them forward. ty::TyProjection(..) | ty::TyAnon(..) | ty::TyParam(..) => Ok(DtorckConstraint { outlives: vec![], dtorck_types: vec![ty], overflows: vec![], }), ty::TyInfer(..) | ty::TyError => { // By the time this code runs, all type variables ought to // be fully resolved. Err(NoSolution) } }; debug!("dtorck_constraint_for_ty({:?}) = {:?}", ty, result); result } /// Calculates the dtorck constraint for a type. crate fn adt_dtorck_constraint<'a, 'tcx>( tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId, ) -> Result, NoSolution> { let def = tcx.adt_def(def_id); let span = tcx.def_span(def_id); debug!("dtorck_constraint: {:?}", def); if def.is_phantom_data() { let result = DtorckConstraint { outlives: vec![], dtorck_types: vec![tcx.mk_param_from_def(&tcx.generics_of(def_id).types[0])], overflows: vec![], }; debug!("dtorck_constraint: {:?} => {:?}", def, result); return Ok(result); } let mut result = def.all_fields() .map(|field| tcx.type_of(field.did)) .map(|fty| dtorck_constraint_for_ty(tcx, span, fty, 0, fty)) .collect::>()?; result.outlives.extend(tcx.destructor_constraints(def)); dedup_dtorck_constraint(&mut result); debug!("dtorck_constraint: {:?} => {:?}", def, result); Ok(result) } fn dedup_dtorck_constraint<'tcx>(c: &mut DtorckConstraint<'tcx>) { let mut outlives = FxHashSet(); let mut dtorck_types = FxHashSet(); c.outlives.retain(|&val| outlives.replace(val).is_none()); c.dtorck_types .retain(|&val| dtorck_types.replace(val).is_none()); }