use crate::prelude::*; struct PrintOnPanic String>(F); impl String> Drop for PrintOnPanic { fn drop(&mut self) { if ::std::thread::panicking() { println!("{}", (self.0)()); } } } pub fn trans_mono_item<'a, 'tcx: 'a>( tcx: TyCtxt<'a, 'tcx, 'tcx>, module: &mut Module, caches: &mut Caches, ccx: &mut crate::constant::ConstantCx, mono_item: MonoItem<'tcx>, ) { match mono_item { MonoItem::Fn(inst) => { let _inst_guard = PrintOnPanic(|| format!("{:?}", inst)); let _mir_guard = PrintOnPanic(|| { match inst.def { InstanceDef::Item(_) | InstanceDef::DropGlue(_, _) | InstanceDef::Virtual(_, _) => { let mut mir = ::std::io::Cursor::new(Vec::new()); ::rustc_mir::util::write_mir_pretty(tcx, Some(inst.def_id()), &mut mir) .unwrap(); String::from_utf8(mir.into_inner()).unwrap() } InstanceDef::FnPtrShim(_, _) | InstanceDef::ClosureOnceShim { .. } | InstanceDef::CloneShim(_, _) => { // FIXME fix write_mir_pretty for these instances format!("{:#?}", tcx.instance_mir(inst.def)) } InstanceDef::Intrinsic(_) => bug!("tried to codegen intrinsic"), } }); trans_fn(tcx, module, ccx, caches, inst); } MonoItem::Static(def_id) => { crate::constant::codegen_static(ccx, def_id); } MonoItem::GlobalAsm(node_id) => tcx .sess .fatal(&format!("Unimplemented global asm mono item {:?}", node_id)), } } fn trans_fn<'a, 'tcx: 'a>( tcx: TyCtxt<'a, 'tcx, 'tcx>, module: &mut Module, constants: &mut crate::constant::ConstantCx, caches: &mut Caches, instance: Instance<'tcx>, ) { // Step 1. Get mir let mir = tcx.instance_mir(instance.def); // Step 2. Declare function let (name, sig) = get_function_name_and_sig(tcx, instance); let func_id = module .declare_function(&name, Linkage::Export, &sig) .unwrap(); // Step 3. Make FunctionBuilder let mut func = Function::with_name_signature(ExternalName::user(0, 0), sig); let mut func_ctx = FunctionBuilderContext::new(); let mut bcx: FunctionBuilder = FunctionBuilder::new(&mut func, &mut func_ctx); // Step 4. Predefine ebb's let start_ebb = bcx.create_ebb(); let mut ebb_map: HashMap = HashMap::new(); for (bb, _bb_data) in mir.basic_blocks().iter_enumerated() { ebb_map.insert(bb, bcx.create_ebb()); } // Step 5. Make FunctionCx let mut fx = FunctionCx { tcx, module, instance, mir, bcx, param_substs: { assert!(!instance.substs.needs_infer()); instance.substs }, ebb_map, local_map: HashMap::new(), comments: HashMap::new(), constants, caches, top_nop: None, }; // Step 6. Codegen function crate::abi::codegen_fn_prelude(&mut fx, start_ebb); codegen_fn_content(&mut fx); fx.bcx.seal_all_blocks(); fx.bcx.finalize(); // Step 7. Write function to file for debugging let mut writer = crate::pretty_clif::CommentWriter(fx.comments); let mut cton = String::new(); if cfg!(debug_assertions) { ::cranelift::codegen::write::decorate_function(&mut writer, &mut cton, &func, None) .unwrap(); let clif_file_name = "target/out/clif/".to_string() + &tcx.symbol_name(instance).as_str(); ::std::fs::write(clif_file_name, cton.as_bytes()).unwrap(); } // Step 8. Verify function verify_func(tcx, writer, &func); // Step 9. Define function // TODO: cranelift doesn't yet support some of the things needed if should_codegen(tcx.sess) { caches.context.func = func; module .define_function(func_id, &mut caches.context) .unwrap(); caches.context.clear(); } } fn verify_func(tcx: TyCtxt, writer: crate::pretty_clif::CommentWriter, func: &Function) { let flags = settings::Flags::new(settings::builder()); match ::cranelift::codegen::verify_function(&func, &flags) { Ok(_) => {} Err(err) => { tcx.sess.err(&format!("{:?}", err)); let pretty_error = ::cranelift::codegen::print_errors::pretty_verifier_error( &func, None, Some(Box::new(writer)), err, ); tcx.sess .fatal(&format!("cretonne verify error:\n{}", pretty_error)); } } } fn codegen_fn_content<'a, 'tcx: 'a>(fx: &mut FunctionCx<'a, 'tcx, impl Backend>) { for (bb, bb_data) in fx.mir.basic_blocks().iter_enumerated() { let ebb = fx.get_ebb(bb); fx.bcx.switch_to_block(ebb); fx.bcx.ins().nop(); for stmt in &bb_data.statements { trans_stmt(fx, ebb, stmt); } let mut terminator_head = "\n".to_string(); bb_data .terminator() .kind .fmt_head(&mut terminator_head) .unwrap(); let inst = fx.bcx.func.layout.last_inst(ebb).unwrap(); fx.add_comment(inst, terminator_head); match &bb_data.terminator().kind { TerminatorKind::Goto { target } => { let ebb = fx.get_ebb(*target); fx.bcx.ins().jump(ebb, &[]); } TerminatorKind::Return => { crate::abi::codegen_return(fx); } TerminatorKind::Assert { cond, expected, msg: _, target, cleanup: _, } => { let cond = trans_operand(fx, cond).load_value(fx); // TODO HACK brz/brnz for i8/i16 is not yet implemented let cond = fx.bcx.ins().uextend(types::I32, cond); let target = fx.get_ebb(*target); if *expected { fx.bcx.ins().brnz(cond, target, &[]); } else { fx.bcx.ins().brz(cond, target, &[]); }; fx.bcx.ins().trap(TrapCode::User(!0)); } TerminatorKind::SwitchInt { discr, switch_ty: _, values, targets, } => { // TODO: prevent panics on large and negative disciminants if should_codegen(fx.tcx.sess) { let discr = trans_operand(fx, discr).load_value(fx); let mut jt_data = JumpTableData::new(); for (i, value) in values.iter().enumerate() { let ebb = fx.get_ebb(targets[i]); jt_data.set_entry(*value as usize, ebb); } let jump_table = fx.bcx.create_jump_table(jt_data); fx.bcx.ins().br_table(discr, jump_table); let otherwise_ebb = fx.get_ebb(targets[targets.len() - 1]); fx.bcx.ins().jump(otherwise_ebb, &[]); } else { fx.bcx.ins().trap(TrapCode::User(0)); } } TerminatorKind::Call { func, args, destination, cleanup: _, } => { crate::abi::codegen_call(fx, func, args, destination); } TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Unreachable => { fx.bcx.ins().trap(TrapCode::User(!0)); } TerminatorKind::Yield { .. } | TerminatorKind::FalseEdges { .. } | TerminatorKind::FalseUnwind { .. } => { bug!("shouldn't exist at trans {:?}", bb_data.terminator()); } TerminatorKind::Drop { target, .. } | TerminatorKind::DropAndReplace { target, .. } => { // TODO call drop impl // unimplemented!("terminator {:?}", bb_data.terminator()); let target_ebb = fx.get_ebb(*target); fx.bcx.ins().jump(target_ebb, &[]); } TerminatorKind::GeneratorDrop => { unimplemented!("terminator GeneratorDrop"); } }; } fx.bcx.seal_all_blocks(); fx.bcx.finalize(); } fn trans_stmt<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, cur_ebb: Ebb, stmt: &Statement<'tcx>, ) { let _print_guard = PrintOnPanic(|| format!("stmt {:?}", stmt)); match &stmt.kind { StatementKind::StorageLive(..) | StatementKind::StorageDead(..) => {} // Those are not very useful _ => { let inst = fx.bcx.func.layout.last_inst(cur_ebb).unwrap(); fx.add_comment(inst, format!("{:?}", stmt)); } } match &stmt.kind { StatementKind::SetDiscriminant { place, variant_index, } => { let place = trans_place(fx, place); let layout = place.layout(); if layout.for_variant(&*fx, *variant_index).abi == layout::Abi::Uninhabited { return; } match layout.variants { layout::Variants::Single { index } => { assert_eq!(index, *variant_index); } layout::Variants::Tagged { .. } => { let ptr = place.place_field(fx, mir::Field::new(0)); let to = layout .ty .ty_adt_def() .unwrap() .discriminant_for_variant(fx.tcx, *variant_index) .val; let discr = CValue::const_val(fx, ptr.layout().ty, to as u64 as i64); ptr.write_cvalue(fx, discr); } layout::Variants::NicheFilling { dataful_variant, ref niche_variants, niche_start, .. } => { if *variant_index != dataful_variant { let niche = place.place_field(fx, mir::Field::new(0)); //let niche_llty = niche.layout.immediate_llvm_type(bx.cx); let niche_value = ((variant_index - *niche_variants.start()) as u128) .wrapping_add(niche_start); // FIXME(eddyb) Check the actual primitive type here. let niche_llval = if niche_value == 0 { CValue::const_val(fx, niche.layout().ty, 0) } else { CValue::const_val(fx, niche.layout().ty, niche_value as u64 as i64) }; niche.write_cvalue(fx, niche_llval); } } } } StatementKind::Assign(to_place, rval) => { let lval = trans_place(fx, to_place); let dest_layout = lval.layout(); match rval { Rvalue::Use(operand) => { let val = trans_operand(fx, operand); lval.write_cvalue(fx, val); } Rvalue::Ref(_, _, place) => { let place = trans_place(fx, place); place.write_place_ref(fx, lval); } Rvalue::BinaryOp(bin_op, lhs, rhs) => { let ty = fx.monomorphize(&lhs.ty(&fx.mir.local_decls, fx.tcx)); let lhs = trans_operand(fx, lhs); let rhs = trans_operand(fx, rhs); let res = match ty.sty { ty::Bool => trans_bool_binop(fx, *bin_op, lhs, rhs, lval.layout().ty), ty::Uint(_) => { trans_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, false) } ty::Int(_) => { trans_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, true) } ty::Float(_) => trans_float_binop(fx, *bin_op, lhs, rhs, lval.layout().ty), ty::Char => trans_char_binop(fx, *bin_op, lhs, rhs, lval.layout().ty), ty::RawPtr(..) => trans_ptr_binop(fx, *bin_op, lhs, rhs, lval.layout().ty), _ => unimplemented!("binop {:?} for {:?}", bin_op, ty), }; lval.write_cvalue(fx, res); } Rvalue::CheckedBinaryOp(bin_op, lhs, rhs) => { let ty = fx.monomorphize(&lhs.ty(&fx.mir.local_decls, fx.tcx)); let lhs = trans_operand(fx, lhs); let rhs = trans_operand(fx, rhs); let res = match ty.sty { ty::Uint(_) => { trans_checked_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, false) } ty::Int(_) => { trans_checked_int_binop(fx, *bin_op, lhs, rhs, lval.layout().ty, true) } _ => unimplemented!("checked binop {:?} for {:?}", bin_op, ty), }; lval.write_cvalue(fx, res); } Rvalue::UnaryOp(un_op, operand) => { let ty = fx.monomorphize(&operand.ty(&fx.mir.local_decls, fx.tcx)); let layout = fx.layout_of(ty); let val = trans_operand(fx, operand).load_value(fx); let res = match un_op { UnOp::Not => fx.bcx.ins().bnot(val), UnOp::Neg => match ty.sty { ty::Int(_) => { let clif_ty = fx.cton_type(ty).unwrap(); let zero = fx.bcx.ins().iconst(clif_ty, 0); fx.bcx.ins().isub(zero, val) } ty::Float(_) => fx.bcx.ins().fneg(val), _ => unimplemented!("un op Neg for {:?}", ty), }, }; lval.write_cvalue(fx, CValue::ByVal(res, layout)); } Rvalue::Cast(CastKind::ReifyFnPointer, operand, ty) => { let operand = trans_operand(fx, operand); let layout = fx.layout_of(ty); lval.write_cvalue(fx, operand.unchecked_cast_to(layout)); } Rvalue::Cast(CastKind::UnsafeFnPointer, operand, ty) => { let operand = trans_operand(fx, operand); let layout = fx.layout_of(ty); lval.write_cvalue(fx, operand.unchecked_cast_to(layout)); } Rvalue::Cast(CastKind::Misc, operand, to_ty) => { let operand = trans_operand(fx, operand); let from_ty = operand.layout().ty; match (&from_ty.sty, &to_ty.sty) { (ty::Ref(..), ty::Ref(..)) | (ty::Ref(..), ty::RawPtr(..)) | (ty::RawPtr(..), ty::Ref(..)) | (ty::RawPtr(..), ty::RawPtr(..)) => { lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout)); } (ty::RawPtr(..), ty::Uint(_)) | (ty::FnPtr(..), ty::Uint(_)) if to_ty.sty == fx.tcx.types.usize.sty => { lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout)); } (ty::Uint(_), ty::RawPtr(..)) if from_ty.sty == fx.tcx.types.usize.sty => { lval.write_cvalue(fx, operand.unchecked_cast_to(dest_layout)); } (ty::Char, ty::Uint(_)) | (ty::Uint(_), ty::Char) | (ty::Uint(_), ty::Int(_)) | (ty::Uint(_), ty::Uint(_)) => { let from = operand.load_value(fx); let res = crate::common::cton_intcast( fx, from, fx.cton_type(to_ty).unwrap(), false, ); lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } (ty::Int(_), ty::Int(_)) | (ty::Int(_), ty::Uint(_)) => { let from = operand.load_value(fx); let res = crate::common::cton_intcast( fx, from, fx.cton_type(to_ty).unwrap(), true, ); lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } (ty::Float(from_flt), ty::Float(to_flt)) => { let from = operand.load_value(fx); let res = match (from_flt, to_flt) { (FloatTy::F32, FloatTy::F64) => { fx.bcx.ins().fpromote(types::F64, from) } (FloatTy::F64, FloatTy::F32) => { fx.bcx.ins().fdemote(types::F32, from) } _ => from, }; lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } (ty::Int(_), ty::Float(_)) => { let from = operand.load_value(fx); let f_type = fx.cton_type(to_ty).unwrap(); let res = fx.bcx.ins().fcvt_from_sint(f_type, from); lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } (ty::Uint(_), ty::Float(_)) => { let from = operand.load_value(fx); let f_type = fx.cton_type(to_ty).unwrap(); let res = fx.bcx.ins().fcvt_from_uint(f_type, from); lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } (ty::Bool, ty::Uint(_)) | (ty::Bool, ty::Int(_)) => { let to_ty = fx.cton_type(to_ty).unwrap(); let from = operand.load_value(fx); let res = if to_ty != types::I8 { fx.bcx.ins().uextend(to_ty, from) } else { from }; lval.write_cvalue(fx, CValue::ByVal(res, dest_layout)); } _ => unimpl!("rval misc {:?} {:?}", from_ty, to_ty), } } Rvalue::Cast(CastKind::ClosureFnPointer, operand, ty) => { unimplemented!("rval closure_fn_ptr {:?} {:?}", operand, ty) } Rvalue::Cast(CastKind::Unsize, operand, ty) => { let operand = trans_operand(fx, operand); operand.unsize_value(fx, lval); } Rvalue::Discriminant(place) => { let place = trans_place(fx, place).to_cvalue(fx); let discr = trans_get_discriminant(fx, place, dest_layout); lval.write_cvalue(fx, discr); } Rvalue::Repeat(operand, times) => { let operand = trans_operand(fx, operand); for i in 0..*times { let index = fx.bcx.ins().iconst(fx.module.pointer_type(), i as i64); let to = lval.place_index(fx, index); to.write_cvalue(fx, operand); } } Rvalue::Len(place) => { let place = trans_place(fx, place); let size = match place { CPlace::Addr(_, size, _) => size.unwrap(), CPlace::Var(_, _) => unreachable!(), }; let usize_layout = fx.layout_of(fx.tcx.types.usize); lval.write_cvalue(fx, CValue::ByVal(size, usize_layout)); } Rvalue::NullaryOp(NullOp::Box, content_ty) => { use rustc::middle::lang_items::ExchangeMallocFnLangItem; let usize_type = fx.cton_type(fx.tcx.types.usize).unwrap(); let (size, align) = fx.layout_of(content_ty).size_and_align(); let llsize = fx.bcx.ins().iconst(usize_type, size.bytes() as i64); let llalign = fx.bcx.ins().iconst(usize_type, align.abi() as i64); let box_layout = fx.layout_of(fx.tcx.mk_box(content_ty)); // Allocate space: let def_id = match fx.tcx.lang_items().require(ExchangeMallocFnLangItem) { Ok(id) => id, Err(s) => { fx.tcx.sess.fatal(&format!("allocation of `{}` {}", box_layout.ty, s)); } }; let instance = ty::Instance::mono(fx.tcx, def_id); let func_ref = fx.get_function_ref(instance); let call = fx.bcx.ins().call(func_ref, &[llsize, llalign]); let ptr = fx.bcx.inst_results(call)[0]; lval.write_cvalue(fx, CValue::ByVal(ptr, box_layout)); }, Rvalue::NullaryOp(NullOp::SizeOf, ty) => { assert!( lval.layout() .ty .is_sized(fx.tcx.at(DUMMY_SP), ParamEnv::reveal_all()) ); let ty_size = fx.layout_of(ty).size.bytes(); let val = CValue::const_val(fx, fx.tcx.types.usize, ty_size as i64); lval.write_cvalue(fx, val); } Rvalue::Aggregate(kind, operands) => match **kind { AggregateKind::Array(_ty) => { for (i, operand) in operands.into_iter().enumerate() { let operand = trans_operand(fx, operand); let index = fx.bcx.ins().iconst(fx.module.pointer_type(), i as i64); let to = lval.place_index(fx, index); to.write_cvalue(fx, operand); } } _ => unimpl!("shouldn't exist at trans {:?}", rval), }, } } StatementKind::StorageLive(_) | StatementKind::StorageDead(_) | StatementKind::Nop | StatementKind::ReadForMatch(_) | StatementKind::Validate(_, _) | StatementKind::EndRegion(_) | StatementKind::UserAssertTy(_, _) => {} StatementKind::InlineAsm { .. } => unimpl!("Inline assembly is not supported"), } } pub fn trans_get_discriminant<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, value: CValue<'tcx>, dest_layout: TyLayout<'tcx>, ) -> CValue<'tcx> { let layout = value.layout(); if layout.abi == layout::Abi::Uninhabited { fx.bcx.ins().trap(TrapCode::User(!0)); } match layout.variants { layout::Variants::Single { index } => { let discr_val = layout.ty.ty_adt_def().map_or(index as u128, |def| { def.discriminant_for_variant(fx.tcx, index).val }); return CValue::const_val(fx, dest_layout.ty, discr_val as u64 as i64); } layout::Variants::Tagged { .. } | layout::Variants::NicheFilling { .. } => {} } let discr = value.value_field(fx, mir::Field::new(0)); let discr_ty = discr.layout().ty; let lldiscr = discr.load_value(fx); match layout.variants { layout::Variants::Single { .. } => bug!(), layout::Variants::Tagged { ref tag, .. } => { let signed = match tag.value { layout::Int(_, signed) => signed, _ => false, }; let val = cton_intcast(fx, lldiscr, fx.cton_type(dest_layout.ty).unwrap(), signed); return CValue::ByVal(val, dest_layout); } layout::Variants::NicheFilling { dataful_variant, ref niche_variants, niche_start, .. } => { let niche_llty = fx.cton_type(discr_ty).unwrap(); let dest_cton_ty = fx.cton_type(dest_layout.ty).unwrap(); if niche_variants.start() == niche_variants.end() { let b = fx .bcx .ins() .icmp_imm(IntCC::Equal, lldiscr, niche_start as u64 as i64); let if_true = fx .bcx .ins() .iconst(dest_cton_ty, *niche_variants.start() as u64 as i64); let if_false = fx .bcx .ins() .iconst(dest_cton_ty, dataful_variant as u64 as i64); let val = fx.bcx.ins().select(b, if_true, if_false); return CValue::ByVal(val, dest_layout); } else { // Rebase from niche values to discriminant values. let delta = niche_start.wrapping_sub(*niche_variants.start() as u128); let delta = fx.bcx.ins().iconst(niche_llty, delta as u64 as i64); let lldiscr = fx.bcx.ins().isub(lldiscr, delta); let b = fx.bcx.ins().icmp_imm( IntCC::UnsignedLessThanOrEqual, lldiscr, *niche_variants.end() as u64 as i64, ); let if_true = cton_intcast(fx, lldiscr, fx.cton_type(dest_layout.ty).unwrap(), false); let if_false = fx .bcx .ins() .iconst(dest_cton_ty, dataful_variant as u64 as i64); let val = fx.bcx.ins().select(b, if_true, if_false); return CValue::ByVal(val, dest_layout); } } } } macro_rules! binop_match { (@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, bug) => { bug!("binop {} on {} lhs: {:?} rhs: {:?}", stringify!($var), $bug_fmt, $lhs, $rhs) }; (@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, icmp($cc:ident)) => {{ assert_eq!($fx.tcx.types.bool, $ret_ty); let ret_layout = $fx.layout_of($ret_ty); // TODO HACK no encoding for icmp.i8 use crate::common::cton_intcast; let (lhs, rhs) = ( cton_intcast($fx, $lhs, types::I64, $signed), cton_intcast($fx, $rhs, types::I64, $signed), ); let b = $fx.bcx.ins().icmp(IntCC::$cc, lhs, rhs); CValue::ByVal($fx.bcx.ins().bint(types::I8, b), ret_layout) }}; (@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, fcmp($cc:ident)) => {{ assert_eq!($fx.tcx.types.bool, $ret_ty); let ret_layout = $fx.layout_of($ret_ty); let b = $fx.bcx.ins().fcmp(FloatCC::$cc, $lhs, $rhs); CValue::ByVal($fx.bcx.ins().bint(types::I8, b), ret_layout) }}; (@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, custom(|| $body:expr)) => {{ $body }}; (@single $fx:expr, $bug_fmt:expr, $var:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, $name:ident) => {{ let ret_layout = $fx.layout_of($ret_ty); CValue::ByVal($fx.bcx.ins().$name($lhs, $rhs), ret_layout) }}; ( $fx:expr, $bin_op:expr, $signed:expr, $lhs:expr, $rhs:expr, $ret_ty:expr, $bug_fmt:expr; $( $var:ident ($sign:pat) $name:tt $( ( $($next:tt)* ) )? ; )* ) => {{ let lhs = $lhs.load_value($fx); let rhs = $rhs.load_value($fx); match ($bin_op, $signed) { $( (BinOp::$var, $sign) => binop_match!(@single $fx, $bug_fmt, $var, $signed, lhs, rhs, $ret_ty, $name $( ( $($next)* ) )?), )* } }} } fn trans_bool_binop<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>, ) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, false, lhs, rhs, ty, "bool"; Add (_) bug; Sub (_) bug; Mul (_) bug; Div (_) bug; Rem (_) bug; BitXor (_) bxor; BitAnd (_) band; BitOr (_) bor; Shl (_) bug; Shr (_) bug; Eq (_) icmp(Equal); Lt (_) icmp(UnsignedLessThan); Le (_) icmp(UnsignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (_) icmp(UnsignedGreaterThanOrEqual); Gt (_) icmp(UnsignedGreaterThan); Offset (_) bug; }; res } pub fn trans_int_binop<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, out_ty: Ty<'tcx>, signed: bool, ) -> CValue<'tcx> { if bin_op != BinOp::Shl && bin_op != BinOp::Shr { assert_eq!( lhs.layout().ty, rhs.layout().ty, "int binop requires lhs and rhs of same type" ); } binop_match! { fx, bin_op, signed, lhs, rhs, out_ty, "int/uint"; Add (_) iadd; Sub (_) isub; Mul (_) imul; Div (false) udiv; Div (true) sdiv; Rem (false) urem; Rem (true) srem; BitXor (_) bxor; BitAnd (_) band; BitOr (_) bor; Shl (_) ishl; Shr (false) ushr; Shr (true) sshr; Eq (_) icmp(Equal); Lt (false) icmp(UnsignedLessThan); Lt (true) icmp(SignedLessThan); Le (false) icmp(UnsignedLessThanOrEqual); Le (true) icmp(SignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (false) icmp(UnsignedGreaterThanOrEqual); Ge (true) icmp(SignedGreaterThanOrEqual); Gt (false) icmp(UnsignedGreaterThan); Gt (true) icmp(SignedGreaterThan); Offset (_) bug; } } pub fn trans_checked_int_binop<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, bin_op: BinOp, in_lhs: CValue<'tcx>, in_rhs: CValue<'tcx>, out_ty: Ty<'tcx>, signed: bool, ) -> CValue<'tcx> { if bin_op != BinOp::Shl && bin_op != BinOp::Shr { assert_eq!( in_lhs.layout().ty, in_rhs.layout().ty, "checked int binop requires lhs and rhs of same type" ); } let res_ty = match out_ty.sty { ty::Tuple(tys) => tys[0], _ => bug!( "Checked int binop requires tuple as output, but got {:?}", out_ty ), }; let lhs = in_lhs.load_value(fx); let rhs = in_rhs.load_value(fx); let res = match bin_op { BinOp::Add => fx.bcx.ins().iadd(lhs, rhs), BinOp::Sub => fx.bcx.ins().isub(lhs, rhs), BinOp::Mul => fx.bcx.ins().imul(lhs, rhs), BinOp::Shl => fx.bcx.ins().ishl(lhs, rhs), BinOp::Shr => if !signed { fx.bcx.ins().ushr(lhs, rhs) } else { fx.bcx.ins().sshr(lhs, rhs) }, _ => bug!( "binop {:?} on checked int/uint lhs: {:?} rhs: {:?}", bin_op, in_lhs, in_rhs ), }; // TODO: check for overflow let has_overflow = fx.bcx.ins().iconst(types::I8, 0); let out_place = CPlace::temp(fx, out_ty); let out_layout = out_place.layout(); out_place.write_cvalue(fx, CValue::ByValPair(res, has_overflow, out_layout)); out_place.to_cvalue(fx) } fn trans_float_binop<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>, ) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, false, lhs, rhs, ty, "float"; Add (_) fadd; Sub (_) fsub; Mul (_) fmul; Div (_) fdiv; Rem (_) custom(|| { assert_eq!(lhs.layout().ty, ty); assert_eq!(rhs.layout().ty, ty); match ty.sty { ty::Float(FloatTy::F32) => fx.easy_call("fmodf", &[lhs, rhs], ty), ty::Float(FloatTy::F64) => fx.easy_call("fmod", &[lhs, rhs], ty), _ => bug!(), } }); BitXor (_) bxor; BitAnd (_) band; BitOr (_) bor; Shl (_) bug; Shr (_) bug; Eq (_) fcmp(Equal); Lt (_) fcmp(LessThan); Le (_) fcmp(LessThanOrEqual); Ne (_) fcmp(NotEqual); Ge (_) fcmp(GreaterThanOrEqual); Gt (_) fcmp(GreaterThan); Offset (_) bug; }; res } fn trans_char_binop<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>, ) -> CValue<'tcx> { let res = binop_match! { fx, bin_op, false, lhs, rhs, ty, "char"; Add (_) bug; Sub (_) bug; Mul (_) bug; Div (_) bug; Rem (_) bug; BitXor (_) bug; BitAnd (_) bug; BitOr (_) bug; Shl (_) bug; Shr (_) bug; Eq (_) icmp(Equal); Lt (_) icmp(UnsignedLessThan); Le (_) icmp(UnsignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (_) icmp(UnsignedGreaterThanOrEqual); Gt (_) icmp(UnsignedGreaterThan); Offset (_) bug; }; res } fn trans_ptr_binop<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, bin_op: BinOp, lhs: CValue<'tcx>, rhs: CValue<'tcx>, ty: Ty<'tcx>, ) -> CValue<'tcx> { match lhs.layout().ty.sty { ty::RawPtr(TypeAndMut { ty, mutbl: _ }) => { if !ty.is_sized(fx.tcx.at(DUMMY_SP), ParamEnv::reveal_all()) { unimpl!("Unsized values are not yet implemented"); } } _ => bug!("trans_ptr_binop on non ptr"), } binop_match! { fx, bin_op, false, lhs, rhs, ty, "ptr"; Add (_) bug; Sub (_) bug; Mul (_) bug; Div (_) bug; Rem (_) bug; BitXor (_) bug; BitAnd (_) bug; BitOr (_) bug; Shl (_) bug; Shr (_) bug; Eq (_) icmp(Equal); Lt (_) icmp(UnsignedLessThan); Le (_) icmp(UnsignedLessThanOrEqual); Ne (_) icmp(NotEqual); Ge (_) icmp(UnsignedGreaterThanOrEqual); Gt (_) icmp(UnsignedGreaterThan); Offset (_) iadd; } } pub fn trans_place<'a, 'tcx: 'a>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, place: &Place<'tcx>, ) -> CPlace<'tcx> { match place { Place::Local(local) => fx.get_local_place(*local), Place::Promoted(promoted) => crate::constant::trans_promoted(fx, promoted.0), Place::Static(static_) => crate::constant::codegen_static_ref(fx, static_), Place::Projection(projection) => { let base = trans_place(fx, &projection.base); match projection.elem { ProjectionElem::Deref => base.place_deref(fx), ProjectionElem::Field(field, _ty) => base.place_field(fx, field), ProjectionElem::Index(local) => { let index = fx.get_local_place(local).to_cvalue(fx).load_value(fx); base.place_index(fx, index) } ProjectionElem::ConstantIndex { offset, min_length: _, from_end: false, } => unimplemented!( "projection const index {:?} offset {:?} not from end", projection.base, offset ), ProjectionElem::ConstantIndex { offset, min_length: _, from_end: true, } => unimplemented!( "projection const index {:?} offset {:?} from end", projection.base, offset ), ProjectionElem::Subslice { from, to } => unimplemented!( "projection subslice {:?} from {} to {}", projection.base, from, to ), ProjectionElem::Downcast(_adt_def, variant) => base.downcast_variant(fx, variant), } } } } pub fn trans_operand<'a, 'tcx>( fx: &mut FunctionCx<'a, 'tcx, impl Backend>, operand: &Operand<'tcx>, ) -> CValue<'tcx> { match operand { Operand::Move(place) | Operand::Copy(place) => { let cplace = trans_place(fx, place); cplace.to_cvalue(fx) } Operand::Constant(const_) => crate::constant::trans_constant(fx, const_), } }