/* * Kinds are types of type. * * Every type has a kind. Every type parameter has a set of kind-capabilities * saying which kind of type may be passed as the parameter. * * The kinds are based on two capabilities: move and send. These may each be * present or absent, though only three of the four combinations can actually * occur: * * * * MOVE + SEND = "Unique": no shared substructures or pins, only * interiors and ~ boxes. * * MOVE + NOSEND = "Shared": structures containing @, fixed to the local * task heap/pool; or ~ structures pointing to * pinned values. * * NOMOVE + NOSEND = "Pinned": structures directly containing resources, or * by-alias closures as interior or * uniquely-boxed members. * * NOMOVE + SEND = -- : no types are like this. * * * Since this forms a lattice, we denote the capabilites in terms of a * worst-case requirement. That is, if your function needs to move-and-send * (or copy) your T, you write fn<~T>(...). If you need to move but not send, * you write fn<@T>(...). And if you need neither -- can work with any sort of * pinned data at all -- then you write fn(...). * * Most types are unique or shared. Other possible name combinations for these * two: (tree, graph; pruned, pooled; message, local; owned, common) are * plausible but nothing stands out as completely pithy-and-obvious. * * Pinned values arise in 2 contexts: resources and &-closures (blocks). The * latter absolutely must not be moved, since they could escape to the heap; * the former must not be copied, since they'd then be multiply-destructed. * We achieve the no-copy restriction by recycling the no-move restriction * in place on pinned kinds for &-closures; and as a benefit we can guarantee * that a resource passed by reference to C will never move during its life, * occasionally useful for FFI-code. * * Resources cannot be sent because we don't want to oblige the communication * system to run destructors in some weird limbo context of * messages-in-transit. It should always be ok to just free messages it's * dropping. Even if you wanted to send them, you'd need a new sigil for the * NOMOVE + SEND combination, and you couldn't use the move-mode library * interface to chan.send in that case (NOMOVE after all), so the whole thing * wouldn't really work as minimally as the encoding we have here. * * Note that obj~ and fn~ -- those that capture a unique environment -- can be * sent, so satisfy ~T. So can plain obj and fn. They can all also be copied. * * Further notes on copying and moving; sending is accomplished by calling a * move-in operator on something constrained to a unique type ~T. * * * COPYING: * -------- * * A copy is made any time you pass-by-value or execute the = operator in a * non-init expression. Copying requires discriminating on type constructor. * * @-boxes copy shallow, copying is always legal. * * ~-boxes copy deep, copying is only legal if pointee is unique-kind. * * Pinned-kind values (resources, &-closures) can't be copied. All other * unique-kind (eg. interior) values can be copied, and copy shallow. * * Note: If you have no type constructor -- only an opaque typaram -- then * you can only copy if the typaram is constrained to ~T; this is because @T * might be a "~resource" box, and making a copy would cause a deep * resource-copy. * * * MOVING: * ------- * * A move is made any time you pass-by-move (that is, with move mode '-') or * execute the move ('<-') or swap ('<->') operators. * */ import syntax::{ast, ast_util, visit, codemap}; import std::{vec, option, str}; import ast::{kind, kind_unique, kind_shared, kind_pinned}; fn kind_lteq(a: kind, b: kind) -> bool { alt a { kind_pinned. { true } kind_shared. { b != kind_pinned } kind_unique. { b == kind_unique } } } fn lower_kind(a: kind, b: kind) -> kind { if kind_lteq(a, b) { a } else { b } } fn kind_to_str(k: kind) -> str { alt k { ast::kind_pinned. { "pinned" } ast::kind_unique. { "unique" } ast::kind_shared. { "shared" } } } fn type_and_kind(tcx: ty::ctxt, e: @ast::expr) -> {ty: ty::t, kind: ast::kind} { let t = ty::expr_ty(tcx, e); let k = ty::type_kind(tcx, t); {ty: t, kind: k} } fn need_expr_kind(tcx: ty::ctxt, e: @ast::expr, k_need: ast::kind, descr: str) { let tk = type_and_kind(tcx, e); log #fmt["for %s: want %s type, got %s type %s", descr, kind_to_str(k_need), kind_to_str(tk.kind), util::ppaux::ty_to_str(tcx, tk.ty)]; demand_kind(tcx, e.span, tk.ty, k_need, descr); } fn demand_kind(tcx: ty::ctxt, sp: codemap::span, t: ty::t, k_need: ast::kind, descr: str) { let k = ty::type_kind(tcx, t); if !kind_lteq(k_need, k) { let s = #fmt["mismatched kinds for %s: needed %s type, got %s type %s", descr, kind_to_str(k_need), kind_to_str(k), util::ppaux::ty_to_str(tcx, t)]; tcx.sess.span_err(sp, s); } } fn need_shared_lhs_rhs(tcx: ty::ctxt, a: @ast::expr, b: @ast::expr, op: str) { need_expr_kind(tcx, a, ast::kind_shared, op + " lhs"); need_expr_kind(tcx, b, ast::kind_shared, op + " rhs"); } // Additional checks for copyability that require a little more nuance fn check_copy(tcx: ty::ctxt, e: @ast::expr) { alt ty::struct(tcx, ty::expr_ty(tcx, e)) { // Unique boxes most not contain pinned kinds ty::ty_uniq(mt) { demand_kind(tcx, e.span, mt.ty, ast::kind_shared, "unique box interior"); } _ { } } } fn check_expr(tcx: ty::ctxt, e: @ast::expr) { alt e.node { // FIXME: These rules do not fully implement the copy type-constructor // discrimination described by the block comment at the top of this // file. This code is wrong; it lets you copy anything shared-kind. ast::expr_move(a, b) { need_shared_lhs_rhs(tcx, a, b, "<-"); } ast::expr_assign(a, b) { need_shared_lhs_rhs(tcx, a, b, "="); check_copy(tcx, b); } ast::expr_assign_op(_, a, b) { need_shared_lhs_rhs(tcx, a, b, "op="); } ast::expr_swap(a, b) { need_shared_lhs_rhs(tcx, a, b, "<->"); } ast::expr_copy(a) { need_expr_kind(tcx, a, ast::kind_shared, "'copy' operand"); } ast::expr_ret(option::some(a)) { need_expr_kind(tcx, a, ast::kind_shared, "'ret' operand"); } ast::expr_be(a) { need_expr_kind(tcx, a, ast::kind_shared, "'be' operand"); } ast::expr_fail(option::some(a)) { need_expr_kind(tcx, a, ast::kind_shared, "'fail' operand"); } ast::expr_call(callee, _) { let tpt = ty::expr_ty_params_and_ty(tcx, callee); // If we have typarams, we're calling an item; we need to check // that all the types we're supplying as typarams conform to the // typaram kind constraints on that item. if vec::len(tpt.params) != 0u { let callee_def = ast_util::def_id_of_def(tcx.def_map.get(callee.id)); let item_tk = ty::lookup_item_type(tcx, callee_def); let i = 0; assert (vec::len(item_tk.kinds) == vec::len(tpt.params)); for k_need: ast::kind in item_tk.kinds { let t = tpt.params[i]; demand_kind(tcx, e.span, t, k_need, #fmt("typaram %d", i)); i += 1; } } } _ { } } } fn check_crate(tcx: ty::ctxt, crate: @ast::crate) { let visit = visit::mk_simple_visitor(@{visit_expr: bind check_expr(tcx, _) with *visit::default_simple_visitor()}); visit::visit_crate(*crate, (), visit); tcx.sess.abort_if_errors(); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //