use crate::ty::needs_ordered_drop; use crate::{get_enclosing_block, path_to_local_id}; use core::ops::ControlFlow; use rustc_hir as hir; use rustc_hir::def::{CtorKind, DefKind, Res}; use rustc_hir::intravisit::{self, walk_block, walk_expr, Visitor}; use rustc_hir::{ Arm, Block, BlockCheckMode, Body, BodyId, Expr, ExprKind, HirId, ItemId, ItemKind, Let, Pat, QPath, Stmt, UnOp, UnsafeSource, Unsafety, }; use rustc_lint::LateContext; use rustc_middle::hir::map::Map; use rustc_middle::hir::nested_filter; use rustc_middle::ty::adjustment::Adjust; use rustc_middle::ty::{self, Ty, TypeckResults}; use rustc_span::Span; mod internal { /// Trait for visitor functions to control whether or not to descend to child nodes. Implemented /// for only two types. `()` always descends. `Descend` allows controlled descent. pub trait Continue { fn descend(&self) -> bool; } } use internal::Continue; impl Continue for () { fn descend(&self) -> bool { true } } /// Allows for controlled descent when using visitor functions. Use `()` instead when always /// descending into child nodes. #[derive(Clone, Copy)] pub enum Descend { Yes, No, } impl From for Descend { fn from(from: bool) -> Self { if from { Self::Yes } else { Self::No } } } impl Continue for Descend { fn descend(&self) -> bool { matches!(self, Self::Yes) } } /// Calls the given function once for each expression contained. This does not enter any bodies or /// nested items. pub fn for_each_expr<'tcx, B, C: Continue>( node: impl Visitable<'tcx>, f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow, ) -> Option { struct V { f: F, res: Option, } impl<'tcx, B, C: Continue, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow> Visitor<'tcx> for V { fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) { if self.res.is_some() { return; } match (self.f)(e) { ControlFlow::Continue(c) if c.descend() => walk_expr(self, e), ControlFlow::Break(b) => self.res = Some(b), ControlFlow::Continue(_) => (), } } // Avoid unnecessary `walk_*` calls. fn visit_ty(&mut self, _: &'tcx hir::Ty<'tcx>) {} fn visit_pat(&mut self, _: &'tcx Pat<'tcx>) {} fn visit_qpath(&mut self, _: &'tcx QPath<'tcx>, _: HirId, _: Span) {} // Avoid monomorphising all `visit_*` functions. fn visit_nested_item(&mut self, _: ItemId) {} } let mut v = V { f, res: None }; node.visit(&mut v); v.res } /// Convenience method for creating a `Visitor` with just `visit_expr` overridden and nested /// bodies (i.e. closures) are visited. /// If the callback returns `true`, the expr just provided to the callback is walked. #[must_use] pub fn expr_visitor<'tcx>(cx: &LateContext<'tcx>, f: impl FnMut(&'tcx Expr<'tcx>) -> bool) -> impl Visitor<'tcx> { struct V<'tcx, F> { hir: Map<'tcx>, f: F, } impl<'tcx, F: FnMut(&'tcx Expr<'tcx>) -> bool> Visitor<'tcx> for V<'tcx, F> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.hir } fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) { if (self.f)(expr) { walk_expr(self, expr); } } } V { hir: cx.tcx.hir(), f } } /// Convenience method for creating a `Visitor` with just `visit_expr` overridden and nested /// bodies (i.e. closures) are not visited. /// If the callback returns `true`, the expr just provided to the callback is walked. #[must_use] pub fn expr_visitor_no_bodies<'tcx>(f: impl FnMut(&'tcx Expr<'tcx>) -> bool) -> impl Visitor<'tcx> { struct V(F); impl<'tcx, F: FnMut(&'tcx Expr<'tcx>) -> bool> Visitor<'tcx> for V { fn visit_expr(&mut self, e: &'tcx Expr<'_>) { if (self.0)(e) { walk_expr(self, e); } } } V(f) } /// returns `true` if expr contains match expr desugared from try fn contains_try(expr: &hir::Expr<'_>) -> bool { let mut found = false; expr_visitor_no_bodies(|e| { if !found { found = matches!(e.kind, hir::ExprKind::Match(_, _, hir::MatchSource::TryDesugar)); } !found }) .visit_expr(expr); found } pub fn find_all_ret_expressions<'hir, F>(_cx: &LateContext<'_>, expr: &'hir hir::Expr<'hir>, callback: F) -> bool where F: FnMut(&'hir hir::Expr<'hir>) -> bool, { struct RetFinder { in_stmt: bool, failed: bool, cb: F, } struct WithStmtGuarg<'a, F> { val: &'a mut RetFinder, prev_in_stmt: bool, } impl RetFinder { fn inside_stmt(&mut self, in_stmt: bool) -> WithStmtGuarg<'_, F> { let prev_in_stmt = std::mem::replace(&mut self.in_stmt, in_stmt); WithStmtGuarg { val: self, prev_in_stmt, } } } impl std::ops::Deref for WithStmtGuarg<'_, F> { type Target = RetFinder; fn deref(&self) -> &Self::Target { self.val } } impl std::ops::DerefMut for WithStmtGuarg<'_, F> { fn deref_mut(&mut self) -> &mut Self::Target { self.val } } impl Drop for WithStmtGuarg<'_, F> { fn drop(&mut self) { self.val.in_stmt = self.prev_in_stmt; } } impl<'hir, F: FnMut(&'hir hir::Expr<'hir>) -> bool> intravisit::Visitor<'hir> for RetFinder { fn visit_stmt(&mut self, stmt: &'hir hir::Stmt<'_>) { intravisit::walk_stmt(&mut *self.inside_stmt(true), stmt); } fn visit_expr(&mut self, expr: &'hir hir::Expr<'_>) { if self.failed { return; } if self.in_stmt { match expr.kind { hir::ExprKind::Ret(Some(expr)) => self.inside_stmt(false).visit_expr(expr), _ => intravisit::walk_expr(self, expr), } } else { match expr.kind { hir::ExprKind::If(cond, then, else_opt) => { self.inside_stmt(true).visit_expr(cond); self.visit_expr(then); if let Some(el) = else_opt { self.visit_expr(el); } }, hir::ExprKind::Match(cond, arms, _) => { self.inside_stmt(true).visit_expr(cond); for arm in arms { self.visit_expr(arm.body); } }, hir::ExprKind::Block(..) => intravisit::walk_expr(self, expr), hir::ExprKind::Ret(Some(expr)) => self.visit_expr(expr), _ => self.failed |= !(self.cb)(expr), } } } } !contains_try(expr) && { let mut ret_finder = RetFinder { in_stmt: false, failed: false, cb: callback, }; ret_finder.visit_expr(expr); !ret_finder.failed } } /// A type which can be visited. pub trait Visitable<'tcx> { /// Calls the corresponding `visit_*` function on the visitor. fn visit>(self, visitor: &mut V); } macro_rules! visitable_ref { ($t:ident, $f:ident) => { impl<'tcx> Visitable<'tcx> for &'tcx $t<'tcx> { fn visit>(self, visitor: &mut V) { visitor.$f(self); } } }; } visitable_ref!(Arm, visit_arm); visitable_ref!(Block, visit_block); visitable_ref!(Body, visit_body); visitable_ref!(Expr, visit_expr); visitable_ref!(Stmt, visit_stmt); // impl<'tcx, I: IntoIterator> Visitable<'tcx> for I // where // I::Item: Visitable<'tcx>, // { // fn visit>(self, visitor: &mut V) { // for x in self { // x.visit(visitor); // } // } // } /// Checks if the given resolved path is used in the given body. pub fn is_res_used(cx: &LateContext<'_>, res: Res, body: BodyId) -> bool { let mut found = false; expr_visitor(cx, |e| { if found { return false; } if let ExprKind::Path(p) = &e.kind { if cx.qpath_res(p, e.hir_id) == res { found = true; } } !found }) .visit_expr(&cx.tcx.hir().body(body).value); found } /// Checks if the given local is used. pub fn is_local_used<'tcx>(cx: &LateContext<'tcx>, visitable: impl Visitable<'tcx>, id: HirId) -> bool { let mut is_used = false; let mut visitor = expr_visitor(cx, |expr| { if !is_used { is_used = path_to_local_id(expr, id); } !is_used }); visitable.visit(&mut visitor); drop(visitor); is_used } /// Checks if the given expression is a constant. pub fn is_const_evaluatable<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> bool { struct V<'a, 'tcx> { cx: &'a LateContext<'tcx>, is_const: bool, } impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } fn visit_expr(&mut self, e: &'tcx Expr<'_>) { if !self.is_const { return; } match e.kind { ExprKind::ConstBlock(_) => return, ExprKind::Call( &Expr { kind: ExprKind::Path(ref p), hir_id, .. }, _, ) if self .cx .qpath_res(p, hir_id) .opt_def_id() .map_or(false, |id| self.cx.tcx.is_const_fn_raw(id)) => {}, ExprKind::MethodCall(..) if self .cx .typeck_results() .type_dependent_def_id(e.hir_id) .map_or(false, |id| self.cx.tcx.is_const_fn_raw(id)) => {}, ExprKind::Binary(_, lhs, rhs) if self.cx.typeck_results().expr_ty(lhs).peel_refs().is_primitive_ty() && self.cx.typeck_results().expr_ty(rhs).peel_refs().is_primitive_ty() => {}, ExprKind::Unary(UnOp::Deref, e) if self.cx.typeck_results().expr_ty(e).is_ref() => (), ExprKind::Unary(_, e) if self.cx.typeck_results().expr_ty(e).peel_refs().is_primitive_ty() => (), ExprKind::Index(base, _) if matches!( self.cx.typeck_results().expr_ty(base).peel_refs().kind(), ty::Slice(_) | ty::Array(..) ) => {}, ExprKind::Path(ref p) if matches!( self.cx.qpath_res(p, e.hir_id), Res::Def( DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::ConstParam | DefKind::Ctor(..) | DefKind::Fn | DefKind::AssocFn, _ ) | Res::SelfCtor(_) ) => {}, ExprKind::AddrOf(..) | ExprKind::Array(_) | ExprKind::Block(..) | ExprKind::Cast(..) | ExprKind::DropTemps(_) | ExprKind::Field(..) | ExprKind::If(..) | ExprKind::Let(..) | ExprKind::Lit(_) | ExprKind::Match(..) | ExprKind::Repeat(..) | ExprKind::Struct(..) | ExprKind::Tup(_) | ExprKind::Type(..) => (), _ => { self.is_const = false; return; }, } walk_expr(self, e); } } let mut v = V { cx, is_const: true }; v.visit_expr(e); v.is_const } /// Checks if the given expression performs an unsafe operation outside of an unsafe block. pub fn is_expr_unsafe<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> bool { struct V<'a, 'tcx> { cx: &'a LateContext<'tcx>, is_unsafe: bool, } impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } fn visit_expr(&mut self, e: &'tcx Expr<'_>) { if self.is_unsafe { return; } match e.kind { ExprKind::Unary(UnOp::Deref, e) if self.cx.typeck_results().expr_ty(e).is_unsafe_ptr() => { self.is_unsafe = true; }, ExprKind::MethodCall(..) if self .cx .typeck_results() .type_dependent_def_id(e.hir_id) .map_or(false, |id| self.cx.tcx.fn_sig(id).unsafety() == Unsafety::Unsafe) => { self.is_unsafe = true; }, ExprKind::Call(func, _) => match *self.cx.typeck_results().expr_ty(func).peel_refs().kind() { ty::FnDef(id, _) if self.cx.tcx.fn_sig(id).unsafety() == Unsafety::Unsafe => self.is_unsafe = true, ty::FnPtr(sig) if sig.unsafety() == Unsafety::Unsafe => self.is_unsafe = true, _ => walk_expr(self, e), }, ExprKind::Path(ref p) if self .cx .qpath_res(p, e.hir_id) .opt_def_id() .map_or(false, |id| self.cx.tcx.is_mutable_static(id)) => { self.is_unsafe = true; }, _ => walk_expr(self, e), } } fn visit_block(&mut self, b: &'tcx Block<'_>) { if !matches!(b.rules, BlockCheckMode::UnsafeBlock(_)) { walk_block(self, b); } } fn visit_nested_item(&mut self, id: ItemId) { if let ItemKind::Impl(i) = &self.cx.tcx.hir().item(id).kind { self.is_unsafe = i.unsafety == Unsafety::Unsafe; } } } let mut v = V { cx, is_unsafe: false }; v.visit_expr(e); v.is_unsafe } /// Checks if the given expression contains an unsafe block pub fn contains_unsafe_block<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) -> bool { struct V<'cx, 'tcx> { cx: &'cx LateContext<'tcx>, found_unsafe: bool, } impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } fn visit_block(&mut self, b: &'tcx Block<'_>) { if self.found_unsafe { return; } if b.rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) { self.found_unsafe = true; return; } walk_block(self, b); } } let mut v = V { cx, found_unsafe: false, }; v.visit_expr(e); v.found_unsafe } /// Runs the given function for each sub-expression producing the final value consumed by the parent /// of the give expression. /// /// e.g. for the following expression /// ```rust,ignore /// if foo { /// f(0) /// } else { /// 1 + 1 /// } /// ``` /// this will pass both `f(0)` and `1+1` to the given function. pub fn for_each_value_source<'tcx, B>( e: &'tcx Expr<'tcx>, f: &mut impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow, ) -> ControlFlow { match e.kind { ExprKind::Block(Block { expr: Some(e), .. }, _) => for_each_value_source(e, f), ExprKind::Match(_, arms, _) => { for arm in arms { for_each_value_source(arm.body, f)?; } ControlFlow::Continue(()) }, ExprKind::If(_, if_expr, Some(else_expr)) => { for_each_value_source(if_expr, f)?; for_each_value_source(else_expr, f) }, ExprKind::DropTemps(e) => for_each_value_source(e, f), _ => f(e), } } /// Runs the given function for each path expression referencing the given local which occur after /// the given expression. pub fn for_each_local_use_after_expr<'tcx, B>( cx: &LateContext<'tcx>, local_id: HirId, expr_id: HirId, f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow, ) -> ControlFlow { struct V<'cx, 'tcx, F, B> { cx: &'cx LateContext<'tcx>, local_id: HirId, expr_id: HirId, found: bool, res: ControlFlow, f: F, } impl<'cx, 'tcx, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow, B> Visitor<'tcx> for V<'cx, 'tcx, F, B> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) { if !self.found { if e.hir_id == self.expr_id { self.found = true; } else { walk_expr(self, e); } return; } if self.res.is_break() { return; } if path_to_local_id(e, self.local_id) { self.res = (self.f)(e); } else { walk_expr(self, e); } } } if let Some(b) = get_enclosing_block(cx, local_id) { let mut v = V { cx, local_id, expr_id, found: false, res: ControlFlow::Continue(()), f, }; v.visit_block(b); v.res } else { ControlFlow::Continue(()) } } // Calls the given function for every unconsumed temporary created by the expression. Note the // function is only guaranteed to be called for types which need to be dropped, but it may be called // for other types. pub fn for_each_unconsumed_temporary<'tcx, B>( cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>, mut f: impl FnMut(Ty<'tcx>) -> ControlFlow, ) -> ControlFlow { // Todo: Handle partially consumed values. fn helper<'tcx, B>( typeck: &'tcx TypeckResults<'tcx>, consume: bool, e: &'tcx Expr<'tcx>, f: &mut impl FnMut(Ty<'tcx>) -> ControlFlow, ) -> ControlFlow { if !consume || matches!( typeck.expr_adjustments(e), [adjust, ..] if matches!(adjust.kind, Adjust::Borrow(_) | Adjust::Deref(_)) ) { match e.kind { ExprKind::Path(QPath::Resolved(None, p)) if matches!(p.res, Res::Def(DefKind::Ctor(_, CtorKind::Const), _)) => { f(typeck.expr_ty(e))?; }, ExprKind::Path(_) | ExprKind::Unary(UnOp::Deref, _) | ExprKind::Index(..) | ExprKind::Field(..) | ExprKind::AddrOf(..) => (), _ => f(typeck.expr_ty(e))?, } } match e.kind { ExprKind::AddrOf(_, _, e) | ExprKind::Field(e, _) | ExprKind::Unary(UnOp::Deref, e) | ExprKind::Match(e, ..) | ExprKind::Let(&Let { init: e, .. }) => { helper(typeck, false, e, f)?; }, ExprKind::Block(&Block { expr: Some(e), .. }, _) | ExprKind::Box(e) | ExprKind::Cast(e, _) | ExprKind::Unary(_, e) => { helper(typeck, true, e, f)?; }, ExprKind::Call(callee, args) => { helper(typeck, true, callee, f)?; for arg in args { helper(typeck, true, arg, f)?; } }, ExprKind::MethodCall(_, receiver, args, _) => { helper(typeck, true, receiver, f)?; for arg in args { helper(typeck, true, arg, f)?; } }, ExprKind::Tup(args) | ExprKind::Array(args) => { for arg in args { helper(typeck, true, arg, f)?; } }, ExprKind::Index(borrowed, consumed) | ExprKind::Assign(borrowed, consumed, _) | ExprKind::AssignOp(_, borrowed, consumed) => { helper(typeck, false, borrowed, f)?; helper(typeck, true, consumed, f)?; }, ExprKind::Binary(_, lhs, rhs) => { helper(typeck, true, lhs, f)?; helper(typeck, true, rhs, f)?; }, ExprKind::Struct(_, fields, default) => { for field in fields { helper(typeck, true, field.expr, f)?; } if let Some(default) = default { helper(typeck, false, default, f)?; } }, ExprKind::If(cond, then, else_expr) => { helper(typeck, true, cond, f)?; helper(typeck, true, then, f)?; if let Some(else_expr) = else_expr { helper(typeck, true, else_expr, f)?; } }, ExprKind::Type(e, _) => { helper(typeck, consume, e, f)?; }, // Either drops temporaries, jumps out of the current expression, or has no sub expression. ExprKind::DropTemps(_) | ExprKind::Ret(_) | ExprKind::Break(..) | ExprKind::Yield(..) | ExprKind::Block(..) | ExprKind::Loop(..) | ExprKind::Repeat(..) | ExprKind::Lit(_) | ExprKind::ConstBlock(_) | ExprKind::Closure { .. } | ExprKind::Path(_) | ExprKind::Continue(_) | ExprKind::InlineAsm(_) | ExprKind::Err => (), } ControlFlow::Continue(()) } helper(cx.typeck_results(), true, e, &mut f) } pub fn any_temporaries_need_ordered_drop<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) -> bool { for_each_unconsumed_temporary(cx, e, |ty| { if needs_ordered_drop(cx, ty) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) } }) .is_break() } /// Runs the given function for each path expression referencing the given local which occur after /// the given expression. pub fn for_each_local_assignment<'tcx, B>( cx: &LateContext<'tcx>, local_id: HirId, f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow, ) -> ControlFlow { struct V<'cx, 'tcx, F, B> { cx: &'cx LateContext<'tcx>, local_id: HirId, res: ControlFlow, f: F, } impl<'cx, 'tcx, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow, B> Visitor<'tcx> for V<'cx, 'tcx, F, B> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) { if let ExprKind::Assign(lhs, rhs, _) = e.kind && self.res.is_continue() && path_to_local_id(lhs, self.local_id) { self.res = (self.f)(rhs); self.visit_expr(rhs); } else { walk_expr(self, e); } } } if let Some(b) = get_enclosing_block(cx, local_id) { let mut v = V { cx, local_id, res: ControlFlow::Continue(()), f, }; v.visit_block(b); v.res } else { ControlFlow::Continue(()) } }