// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A growable list type with heap-allocated contents, written `Vec` but //! pronounced 'vector.' //! //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and //! `O(1)` pop (from the end). //! //! # Examples //! //! You can explicitly create a `Vec` with `new()`: //! //! ``` //! let v: Vec = Vec::new(); //! ``` //! //! ...or by using the `vec!` macro: //! //! ``` //! let v: Vec = vec![]; //! //! let v = vec![1, 2, 3, 4, 5]; //! //! let v = vec![0; 10]; // ten zeroes //! ``` //! //! You can `push` values onto the end of a vector (which will grow the vector //! as needed): //! //! ``` //! let mut v = vec![1, 2]; //! //! v.push(3); //! ``` //! //! Popping values works in much the same way: //! //! ``` //! let mut v = vec![1, 2]; //! //! let two = v.pop(); //! ``` //! //! Vectors also support indexing (through the `Index` and `IndexMut` traits): //! //! ``` //! let mut v = vec![1, 2, 3]; //! let three = v[2]; //! v[1] = v[1] + 5; //! ``` #![stable(feature = "rust1", since = "1.0.0")] use alloc::raw_vec::RawVec; use alloc::boxed::Box; use alloc::heap::EMPTY; use core::cmp::Ordering; use core::fmt; use core::hash::{self, Hash}; use core::intrinsics::{arith_offset, assume, needs_drop}; use core::iter::FromIterator; use core::mem; use core::ops::{Index, IndexMut, Deref}; use core::ops; use core::ptr; use core::slice; use borrow::{Cow, IntoCow}; use super::range::RangeArgument; /// A growable list type, written `Vec` but pronounced 'vector.' /// /// # Examples /// /// ``` /// let mut vec = Vec::new(); /// vec.push(1); /// vec.push(2); /// /// assert_eq!(vec.len(), 2); /// assert_eq!(vec[0], 1); /// /// assert_eq!(vec.pop(), Some(2)); /// assert_eq!(vec.len(), 1); /// /// vec[0] = 7; /// assert_eq!(vec[0], 7); /// /// vec.extend([1, 2, 3].iter().cloned()); /// /// for x in &vec { /// println!("{}", x); /// } /// assert_eq!(vec, [7, 1, 2, 3]); /// ``` /// /// The `vec!` macro is provided to make initialization more convenient: /// /// ``` /// let mut vec = vec![1, 2, 3]; /// vec.push(4); /// assert_eq!(vec, [1, 2, 3, 4]); /// ``` /// /// It can also initialize each element of a `Vec` with a given value: /// /// ``` /// let vec = vec![0; 5]; /// assert_eq!(vec, [0, 0, 0, 0, 0]); /// ``` /// /// Use a `Vec` as an efficient stack: /// /// ``` /// let mut stack = Vec::new(); /// /// stack.push(1); /// stack.push(2); /// stack.push(3); /// /// while let Some(top) = stack.pop() { /// // Prints 3, 2, 1 /// println!("{}", top); /// } /// ``` /// /// # Capacity and reallocation /// /// The capacity of a vector is the amount of space allocated for any future /// elements that will be added onto the vector. This is not to be confused with /// the *length* of a vector, which specifies the number of actual elements /// within the vector. If a vector's length exceeds its capacity, its capacity /// will automatically be increased, but its elements will have to be /// reallocated. /// /// For example, a vector with capacity 10 and length 0 would be an empty vector /// with space for 10 more elements. Pushing 10 or fewer elements onto the /// vector will not change its capacity or cause reallocation to occur. However, /// if the vector's length is increased to 11, it will have to reallocate, which /// can be slow. For this reason, it is recommended to use `Vec::with_capacity` /// whenever possible to specify how big the vector is expected to get. /// /// # Guarantees /// /// Due to its incredibly fundamental nature, Vec makes a lot of guarantees /// about its design. This ensures that it's as low-overhead as possible in /// the general case, and can be correctly manipulated in primitive ways /// by unsafe code. Note that these guarantees refer to an unqualified `Vec`. /// If additional type parameters are added (e.g. to support custom allocators), /// overriding their defaults may change the behavior. /// /// Most fundamentally, Vec is and always will be a (pointer, capacity, length) /// triplet. No more, no less. The order of these fields is completely /// unspecified, and you should use the appropriate methods to modify these. /// The pointer will never be null, so this type is null-pointer-optimized. /// /// However, the pointer may not actually point to allocated memory. In particular, /// if you construct a Vec with capacity 0 via `Vec::new()`, `vec![]`, /// `Vec::with_capacity(0)`, or by calling `shrink_to_fit()` on an empty Vec, it /// will not allocate memory. Similarly, if you store zero-sized types inside /// a Vec, it will not allocate space for them. *Note that in this case the /// Vec may not report a `capacity()` of 0*. Vec will allocate if and only /// if `mem::size_of::() * capacity() > 0`. In general, Vec's allocation /// details are subtle enough that it is strongly recommended that you only /// free memory allocated by a Vec by creating a new Vec and dropping it. /// /// If a Vec *has* allocated memory, then the memory it points to is on the heap /// (as defined by the allocator Rust is configured to use by default), and its /// pointer points to `len()` initialized elements in order (what you would see /// if you coerced it to a slice), followed by `capacity() - len()` logically /// uninitialized elements. /// /// Vec will never perform a "small optimization" where elements are actually /// stored on the stack for two reasons: /// /// * It would make it more difficult for unsafe code to correctly manipulate /// a Vec. The contents of a Vec wouldn't have a stable address if it were /// only moved, and it would be more difficult to determine if a Vec had /// actually allocated memory. /// /// * It would penalize the general case, incurring an additional branch /// on every access. /// /// Vec will never automatically shrink itself, even if completely empty. This /// ensures no unnecessary allocations or deallocations occur. Emptying a Vec /// and then filling it back up to the same `len()` should incur no calls to /// the allocator. If you wish to free up unused memory, use `shrink_to_fit`. /// /// `push` and `insert` will never (re)allocate if the reported capacity is /// sufficient. `push` and `insert` *will* (re)allocate if `len() == capacity()`. /// That is, the reported capacity is completely accurate, and can be relied on. /// It can even be used to manually free the memory allocated by a Vec if /// desired. Bulk insertion methods *may* reallocate, even when not necessary. /// /// Vec does not guarantee any particular growth strategy when reallocating /// when full, nor when `reserve` is called. The current strategy is basic /// and it may prove desirable to use a non-constant growth factor. Whatever /// strategy is used will of course guarantee `O(1)` amortized `push`. /// /// `vec![x; n]`, `vec![a, b, c, d]`, and `Vec::with_capacity(n)`, will all /// produce a Vec with exactly the requested capacity. If `len() == capacity()`, /// (as is the case for the `vec!` macro), then a `Vec` can be converted /// to and from a `Box<[T]>` without reallocating or moving the elements. /// /// Vec will not specifically overwrite any data that is removed from it, /// but also won't specifically preserve it. Its uninitialized memory is /// scratch space that it may use however it wants. It will generally just do /// whatever is most efficient or otherwise easy to implement. Do not rely on /// removed data to be erased for security purposes. Even if you drop a Vec, its /// buffer may simply be reused by another Vec. Even if you zero a Vec's memory /// first, that may not actually happen because the optimizer does not consider /// this a side-effect that must be preserved. /// /// Vec does not currently guarantee the order in which elements are dropped /// (the order has changed in the past, and may change again). /// #[unsafe_no_drop_flag] #[stable(feature = "rust1", since = "1.0.0")] pub struct Vec { buf: RawVec, len: usize, } //////////////////////////////////////////////////////////////////////////////// // Inherent methods //////////////////////////////////////////////////////////////////////////////// impl Vec { /// Constructs a new, empty `Vec`. /// /// The vector will not allocate until elements are pushed onto it. /// /// # Examples /// /// ``` /// # #![allow(unused_mut)] /// let mut vec: Vec = Vec::new(); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> Vec { Vec { buf: RawVec::new(), len: 0, } } /// Constructs a new, empty `Vec` with the specified capacity. /// /// The vector will be able to hold exactly `capacity` elements without /// reallocating. If `capacity` is 0, the vector will not allocate. /// /// It is important to note that this function does not specify the *length* /// of the returned vector, but only the *capacity*. (For an explanation of /// the difference between length and capacity, see the main `Vec` docs /// above, 'Capacity and reallocation'.) /// /// # Examples /// /// ``` /// let mut vec = Vec::with_capacity(10); /// /// // The vector contains no items, even though it has capacity for more /// assert_eq!(vec.len(), 0); /// /// // These are all done without reallocating... /// for i in 0..10 { /// vec.push(i); /// } /// /// // ...but this may make the vector reallocate /// vec.push(11); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> Vec { Vec { buf: RawVec::with_capacity(capacity), len: 0, } } /// Creates a `Vec` directly from the raw components of another vector. /// /// # Safety /// /// This is highly unsafe, due to the number of invariants that aren't /// checked: /// /// * `ptr` needs to have been previously allocated via `String`/`Vec` /// (at least, it's highly likely to be incorrect if it wasn't). /// * `length` needs to be the length that less than or equal to `capacity`. /// * `capacity` needs to be the capacity that the pointer was allocated with. /// /// Violating these may cause problems like corrupting the allocator's /// internal datastructures. /// /// # Examples /// /// ``` /// use std::ptr; /// use std::mem; /// /// fn main() { /// let mut v = vec![1, 2, 3]; /// /// // Pull out the various important pieces of information about `v` /// let p = v.as_mut_ptr(); /// let len = v.len(); /// let cap = v.capacity(); /// /// unsafe { /// // Cast `v` into the void: no destructor run, so we are in /// // complete control of the allocation to which `p` points. /// mem::forget(v); /// /// // Overwrite memory with 4, 5, 6 /// for i in 0..len as isize { /// ptr::write(p.offset(i), 4 + i); /// } /// /// // Put everything back together into a Vec /// let rebuilt = Vec::from_raw_parts(p, len, cap); /// assert_eq!(rebuilt, [4, 5, 6]); /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec { Vec { buf: RawVec::from_raw_parts(ptr, capacity), len: length, } } /// Returns the number of elements the vector can hold without /// reallocating. /// /// # Examples /// /// ``` /// let vec: Vec = Vec::with_capacity(10); /// assert_eq!(vec.capacity(), 10); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.buf.cap() } /// Reserves capacity for at least `additional` more elements to be inserted /// in the given `Vec`. The collection may reserve more space to avoid /// frequent reallocations. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec![1]; /// vec.reserve(10); /// assert!(vec.capacity() >= 11); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { self.buf.reserve(self.len, additional); } /// Reserves the minimum capacity for exactly `additional` more elements to /// be inserted in the given `Vec`. Does nothing if the capacity is already /// sufficient. /// /// Note that the allocator may give the collection more space than it /// requests. Therefore capacity can not be relied upon to be precisely /// minimal. Prefer `reserve` if future insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec![1]; /// vec.reserve_exact(10); /// assert!(vec.capacity() >= 11); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve_exact(&mut self, additional: usize) { self.buf.reserve_exact(self.len, additional); } /// Shrinks the capacity of the vector as much as possible. /// /// It will drop down as close as possible to the length but the allocator /// may still inform the vector that there is space for a few more elements. /// /// # Examples /// /// ``` /// let mut vec = Vec::with_capacity(10); /// vec.extend([1, 2, 3].iter().cloned()); /// assert_eq!(vec.capacity(), 10); /// vec.shrink_to_fit(); /// assert!(vec.capacity() >= 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { self.buf.shrink_to_fit(self.len); } /// Converts the vector into Box<[T]>. /// /// Note that this will drop any excess capacity. Calling this and /// converting back to a vector with `into_vec()` is equivalent to calling /// `shrink_to_fit()`. #[stable(feature = "rust1", since = "1.0.0")] pub fn into_boxed_slice(mut self) -> Box<[T]> { unsafe { self.shrink_to_fit(); let buf = ptr::read(&self.buf); mem::forget(self); buf.into_box() } } /// Shorten a vector to be `len` elements long, dropping excess elements. /// /// If `len` is greater than the vector's current length, this has no /// effect. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3, 4, 5]; /// vec.truncate(2); /// assert_eq!(vec, [1, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn truncate(&mut self, len: usize) { unsafe { // drop any extra elements while len < self.len { // decrement len before the read(), so a panic on Drop doesn't // re-drop the just-failed value. self.len -= 1; ptr::read(self.get_unchecked(self.len)); } } } /// Extracts a slice containing the entire vector. /// /// Equivalent to `&s[..]`. #[inline] #[unstable(feature = "convert", reason = "waiting on RFC revision", issue = "27729")] pub fn as_slice(&self) -> &[T] { self } /// Extracts a mutable slice of the entire vector. /// /// Equivalent to `&mut s[..]`. #[inline] #[unstable(feature = "convert", reason = "waiting on RFC revision", issue = "27729")] pub fn as_mut_slice(&mut self) -> &mut [T] { &mut self[..] } /// Sets the length of a vector. /// /// This will explicitly set the size of the vector, without actually /// modifying its buffers, so it is up to the caller to ensure that the /// vector is actually the specified size. /// /// # Examples /// /// ``` /// let mut v = vec![1, 2, 3, 4]; /// unsafe { /// v.set_len(1); /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn set_len(&mut self, len: usize) { self.len = len; } /// Removes an element from anywhere in the vector and return it, replacing /// it with the last element. /// /// This does not preserve ordering, but is O(1). /// /// # Panics /// /// Panics if `index` is out of bounds. /// /// # Examples /// /// ``` /// let mut v = vec!["foo", "bar", "baz", "qux"]; /// /// assert_eq!(v.swap_remove(1), "bar"); /// assert_eq!(v, ["foo", "qux", "baz"]); /// /// assert_eq!(v.swap_remove(0), "foo"); /// assert_eq!(v, ["baz", "qux"]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn swap_remove(&mut self, index: usize) -> T { let length = self.len(); self.swap(index, length - 1); self.pop().unwrap() } /// Inserts an element at position `index` within the vector, shifting all /// elements after position `i` one position to the right. /// /// # Panics /// /// Panics if `index` is greater than the vector's length. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3]; /// vec.insert(1, 4); /// assert_eq!(vec, [1, 4, 2, 3]); /// vec.insert(4, 5); /// assert_eq!(vec, [1, 4, 2, 3, 5]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, index: usize, element: T) { let len = self.len(); assert!(index <= len); // space for the new element if len == self.buf.cap() { self.buf.double(); } unsafe { // infallible // The spot to put the new value { let p = self.as_mut_ptr().offset(index as isize); // Shift everything over to make space. (Duplicating the // `index`th element into two consecutive places.) ptr::copy(p, p.offset(1), len - index); // Write it in, overwriting the first copy of the `index`th // element. ptr::write(p, element); } self.set_len(len + 1); } } /// Removes and returns the element at position `index` within the vector, /// shifting all elements after position `index` one position to the left. /// /// # Panics /// /// Panics if `index` is out of bounds. /// /// # Examples /// /// ``` /// let mut v = vec![1, 2, 3]; /// assert_eq!(v.remove(1), 2); /// assert_eq!(v, [1, 3]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(&mut self, index: usize) -> T { let len = self.len(); assert!(index < len); unsafe { // infallible let ret; { // the place we are taking from. let ptr = self.as_mut_ptr().offset(index as isize); // copy it out, unsafely having a copy of the value on // the stack and in the vector at the same time. ret = ptr::read(ptr); // Shift everything down to fill in that spot. ptr::copy(ptr.offset(1), ptr, len - index - 1); } self.set_len(len - 1); ret } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns false. /// This method operates in place and preserves the order of the retained /// elements. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3, 4]; /// vec.retain(|&x| x%2 == 0); /// assert_eq!(vec, [2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn retain(&mut self, mut f: F) where F: FnMut(&T) -> bool { let len = self.len(); let mut del = 0; { let v = &mut **self; for i in 0..len { if !f(&v[i]) { del += 1; } else if del > 0 { v.swap(i - del, i); } } } if del > 0 { self.truncate(len - del); } } /// Appends an element to the back of a collection. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2]; /// vec.push(3); /// assert_eq!(vec, [1, 2, 3]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn push(&mut self, value: T) { // This will panic or abort if we would allocate > isize::MAX bytes // or if the length increment would overflow for zero-sized types. if self.len == self.buf.cap() { self.buf.double(); } unsafe { let end = self.as_mut_ptr().offset(self.len as isize); ptr::write(end, value); self.len += 1; } } /// Removes the last element from a vector and returns it, or `None` if it /// is empty. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3]; /// assert_eq!(vec.pop(), Some(3)); /// assert_eq!(vec, [1, 2]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { unsafe { self.len -= 1; Some(ptr::read(self.get_unchecked(self.len()))) } } } /// Moves all the elements of `other` into `Self`, leaving `other` empty. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `usize`. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 3]; /// let mut vec2 = vec![4, 5, 6]; /// vec.append(&mut vec2); /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); /// assert_eq!(vec2, []); /// ``` #[inline] #[stable(feature = "append", since = "1.4.0")] pub fn append(&mut self, other: &mut Self) { self.reserve(other.len()); let len = self.len(); unsafe { ptr::copy_nonoverlapping(other.as_ptr(), self.get_unchecked_mut(len), other.len()); } self.len += other.len(); unsafe { other.set_len(0); } } /// Create a draining iterator that removes the specified range in the vector /// and yields the removed items from start to end. The element range is /// removed even if the iterator is not consumed until the end. /// /// Note: It is unspecified how many elements are removed from the vector, /// if the `Drain` value is leaked. /// /// # Panics /// /// Panics if the starting point is greater than the end point or if /// the end point is greater than the length of the vector. /// /// # Examples /// /// ``` /// // Draining using `..` clears the whole vector. /// let mut v = vec![1, 2, 3]; /// let u: Vec<_> = v.drain(..).collect(); /// assert_eq!(v, &[]); /// assert_eq!(u, &[1, 2, 3]); /// ``` #[stable(feature = "drain", since = "1.6.0")] pub fn drain(&mut self, range: R) -> Drain where R: RangeArgument { // Memory safety // // When the Drain is first created, it shortens the length of // the source vector to make sure no uninitalized or moved-from elements // are accessible at all if the Drain's destructor never gets to run. // // Drain will ptr::read out the values to remove. // When finished, remaining tail of the vec is copied back to cover // the hole, and the vector length is restored to the new length. // let len = self.len(); let start = *range.start().unwrap_or(&0); let end = *range.end().unwrap_or(&len); assert!(start <= end); assert!(end <= len); unsafe { // set self.vec length's to start, to be safe in case Drain is leaked self.set_len(start); // Use the borrow in the IterMut to indicate borrowing behavior of the // whole Drain iterator (like &mut T). let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize), end - start); Drain { tail_start: end, tail_len: len - end, iter: range_slice.iter_mut(), vec: self as *mut _, } } } /// Clears the vector, removing all values. /// /// # Examples /// /// ``` /// let mut v = vec![1, 2, 3]; /// /// v.clear(); /// /// assert!(v.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { self.truncate(0) } /// Returns the number of elements in the vector. /// /// # Examples /// /// ``` /// let a = vec![1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.len } /// Returns `true` if the vector contains no elements. /// /// # Examples /// /// ``` /// let mut v = Vec::new(); /// assert!(v.is_empty()); /// /// v.push(1); /// assert!(!v.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Splits the collection into two at the given index. /// /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`, /// and the returned `Self` contains elements `[at, len)`. /// /// Note that the capacity of `self` does not change. /// /// # Panics /// /// Panics if `at > len`. /// /// # Examples /// /// ``` /// let mut vec = vec![1,2,3]; /// let vec2 = vec.split_off(1); /// assert_eq!(vec, [1]); /// assert_eq!(vec2, [2, 3]); /// ``` #[inline] #[stable(feature = "split_off", since = "1.4.0")] pub fn split_off(&mut self, at: usize) -> Self { assert!(at <= self.len(), "`at` out of bounds"); let other_len = self.len - at; let mut other = Vec::with_capacity(other_len); // Unsafely `set_len` and copy items to `other`. unsafe { self.set_len(at); other.set_len(other_len); ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize), other.as_mut_ptr(), other.len()); } other } } impl Vec { /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`. /// /// If `new_len` is greater than `len()`, the `Vec` is extended by the /// difference, with each additional slot filled with `value`. /// If `new_len` is less than `len()`, the `Vec` is simply truncated. /// /// # Examples /// /// ``` /// let mut vec = vec!["hello"]; /// vec.resize(3, "world"); /// assert_eq!(vec, ["hello", "world", "world"]); /// /// let mut vec = vec![1, 2, 3, 4]; /// vec.resize(2, 0); /// assert_eq!(vec, [1, 2]); /// ``` #[stable(feature = "vec_resize", since = "1.5.0")] pub fn resize(&mut self, new_len: usize, value: T) { let len = self.len(); if new_len > len { self.extend_with_element(new_len - len, value); } else { self.truncate(new_len); } } /// Extend the vector by `n` additional clones of `value`. fn extend_with_element(&mut self, n: usize, value: T) { self.reserve(n); unsafe { let len = self.len(); let mut ptr = self.as_mut_ptr().offset(len as isize); // Write all elements except the last one for i in 1..n { ptr::write(ptr, value.clone()); ptr = ptr.offset(1); // Increment the length in every step in case clone() panics self.set_len(len + i); } if n > 0 { // We can write the last element directly without cloning needlessly ptr::write(ptr, value); self.set_len(len + n); } } } #[allow(missing_docs)] #[inline] #[unstable(feature = "vec_push_all", reason = "likely to be replaced by a more optimized extend", issue = "27744")] #[rustc_deprecated(reason = "renamed to extend_from_slice", since = "1.6.0")] pub fn push_all(&mut self, other: &[T]) { self.extend_from_slice(other) } /// Appends all elements in a slice to the `Vec`. /// /// Iterates over the slice `other`, clones each element, and then appends /// it to this `Vec`. The `other` vector is traversed in-order. /// /// Note that this function is same as `extend` except that it is /// specialized to work with slices instead. If and when Rust gets /// specialization this function will likely be deprecated (but still /// available). /// /// # Examples /// /// ``` /// let mut vec = vec![1]; /// vec.extend_from_slice(&[2, 3, 4]); /// assert_eq!(vec, [1, 2, 3, 4]); /// ``` #[stable(feature = "vec_extend_from_slice", since = "1.6.0")] pub fn extend_from_slice(&mut self, other: &[T]) { self.reserve(other.len()); for i in 0..other.len() { let len = self.len(); // Unsafe code so this can be optimised to a memcpy (or something // similarly fast) when T is Copy. LLVM is easily confused, so any // extra operations during the loop can prevent this optimisation. unsafe { ptr::write(self.get_unchecked_mut(len), other.get_unchecked(i).clone()); self.set_len(len + 1); } } } } impl Vec { /// Removes consecutive repeated elements in the vector. /// /// If the vector is sorted, this removes all duplicates. /// /// # Examples /// /// ``` /// let mut vec = vec![1, 2, 2, 3, 2]; /// /// vec.dedup(); /// /// assert_eq!(vec, [1, 2, 3, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn dedup(&mut self) { unsafe { // Although we have a mutable reference to `self`, we cannot make // *arbitrary* changes. The `PartialEq` comparisons could panic, so we // must ensure that the vector is in a valid state at all time. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then truncate the // vector. This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, so // we swap self[r] and self[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, // so swap self[r] and self[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of vec. Truncate to w. let ln = self.len(); if ln <= 1 { return; } // Avoid bounds checks by using raw pointers. let p = self.as_mut_ptr(); let mut r: usize = 1; let mut w: usize = 1; while r < ln { let p_r = p.offset(r as isize); let p_wm1 = p.offset((w - 1) as isize); if *p_r != *p_wm1 { if r != w { let p_w = p_wm1.offset(1); mem::swap(&mut *p_r, &mut *p_w); } w += 1; } r += 1; } self.truncate(w); } } } //////////////////////////////////////////////////////////////////////////////// // Internal methods and functions //////////////////////////////////////////////////////////////////////////////// #[doc(hidden)] #[stable(feature = "rust1", since = "1.0.0")] pub fn from_elem(elem: T, n: usize) -> Vec { let mut v = Vec::with_capacity(n); v.extend_with_element(n, elem); v } //////////////////////////////////////////////////////////////////////////////// // Common trait implementations for Vec //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Vec { #[cfg(not(test))] fn clone(&self) -> Vec { <[T]>::to_vec(&**self) } // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is // required for this method definition, is not available. Instead use the // `slice::to_vec` function which is only available with cfg(test) // NB see the slice::hack module in slice.rs for more information #[cfg(test)] fn clone(&self) -> Vec { ::slice::to_vec(&**self) } fn clone_from(&mut self, other: &Vec) { // drop anything in self that will not be overwritten self.truncate(other.len()); let len = self.len(); // reuse the contained values' allocations/resources. self.clone_from_slice(&other[..len]); // self.len <= other.len due to the truncate above, so the // slice here is always in-bounds. self.extend_from_slice(&other[len..]); } } #[stable(feature = "rust1", since = "1.0.0")] impl Hash for Vec { #[inline] fn hash(&self, state: &mut H) { Hash::hash(&**self, state) } } #[stable(feature = "rust1", since = "1.0.0")] impl Index for Vec { type Output = T; #[inline] fn index(&self, index: usize) -> &T { // NB built-in indexing via `&[T]` &(**self)[index] } } #[stable(feature = "rust1", since = "1.0.0")] impl IndexMut for Vec { #[inline] fn index_mut(&mut self, index: usize) -> &mut T { // NB built-in indexing via `&mut [T]` &mut (**self)[index] } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for Vec { type Output = [T]; #[inline] fn index(&self, index: ops::Range) -> &[T] { Index::index(&**self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for Vec { type Output = [T]; #[inline] fn index(&self, index: ops::RangeTo) -> &[T] { Index::index(&**self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index> for Vec { type Output = [T]; #[inline] fn index(&self, index: ops::RangeFrom) -> &[T] { Index::index(&**self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Index for Vec { type Output = [T]; #[inline] fn index(&self, _index: ops::RangeFull) -> &[T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut> for Vec { #[inline] fn index_mut(&mut self, index: ops::Range) -> &mut [T] { IndexMut::index_mut(&mut **self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut> for Vec { #[inline] fn index_mut(&mut self, index: ops::RangeTo) -> &mut [T] { IndexMut::index_mut(&mut **self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut> for Vec { #[inline] fn index_mut(&mut self, index: ops::RangeFrom) -> &mut [T] { IndexMut::index_mut(&mut **self, index) } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::IndexMut for Vec { #[inline] fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::Deref for Vec { type Target = [T]; fn deref(&self) -> &[T] { unsafe { let p = self.buf.ptr(); assume(!p.is_null()); slice::from_raw_parts(p, self.len) } } } #[stable(feature = "rust1", since = "1.0.0")] impl ops::DerefMut for Vec { fn deref_mut(&mut self) -> &mut [T] { unsafe { let ptr = self.buf.ptr(); assume(!ptr.is_null()); slice::from_raw_parts_mut(ptr, self.len) } } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator for Vec { #[inline] fn from_iter>(iterable: I) -> Vec { // Unroll the first iteration, as the vector is going to be // expanded on this iteration in every case when the iterable is not // empty, but the loop in extend_desugared() is not going to see the // vector being full in the few subsequent loop iterations. // So we get better branch prediction. let mut iterator = iterable.into_iter(); let mut vector = match iterator.next() { None => return Vec::new(), Some(element) => { let (lower, _) = iterator.size_hint(); let mut vector = Vec::with_capacity(lower.saturating_add(1)); unsafe { ptr::write(vector.get_unchecked_mut(0), element); vector.set_len(1); } vector } }; vector.extend_desugared(iterator); vector } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for Vec { type Item = T; type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each value out of /// the vector (from start to end). The vector cannot be used after calling /// this. /// /// # Examples /// /// ``` /// let v = vec!["a".to_string(), "b".to_string()]; /// for s in v.into_iter() { /// // s has type String, not &String /// println!("{}", s); /// } /// ``` #[inline] fn into_iter(mut self) -> IntoIter { unsafe { let ptr = self.as_mut_ptr(); assume(!ptr.is_null()); let begin = ptr as *const T; let end = if mem::size_of::() == 0 { arith_offset(ptr as *const i8, self.len() as isize) as *const T } else { ptr.offset(self.len() as isize) as *const T }; let buf = ptr::read(&self.buf); mem::forget(self); IntoIter { _buf: buf, ptr: begin, end: end, } } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a Vec { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; fn into_iter(self) -> slice::Iter<'a, T> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a mut Vec { type Item = &'a mut T; type IntoIter = slice::IterMut<'a, T>; fn into_iter(mut self) -> slice::IterMut<'a, T> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl Extend for Vec { #[inline] fn extend>(&mut self, iterable: I) { self.extend_desugared(iterable.into_iter()) } } impl Vec { fn extend_desugared>(&mut self, mut iterator: I) { // This function should be the moral equivalent of: // // for item in iterator { // self.push(item); // } while let Some(element) = iterator.next() { let len = self.len(); if len == self.capacity() { let (lower, _) = iterator.size_hint(); self.reserve(lower.saturating_add(1)); } unsafe { ptr::write(self.get_unchecked_mut(len), element); // NB can't overflow since we would have had to alloc the address space self.set_len(len + 1); } } } } #[stable(feature = "extend_ref", since = "1.2.0")] impl<'a, T: 'a + Copy> Extend<&'a T> for Vec { fn extend>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()); } } macro_rules! __impl_slice_eq1 { ($Lhs: ty, $Rhs: ty) => { __impl_slice_eq1! { $Lhs, $Rhs, Sized } }; ($Lhs: ty, $Rhs: ty, $Bound: ident) => { #[stable(feature = "rust1", since = "1.0.0")] impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq { #[inline] fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] } #[inline] fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] } } } } __impl_slice_eq1! { Vec, Vec } __impl_slice_eq1! { Vec, &'b [B] } __impl_slice_eq1! { Vec, &'b mut [B] } __impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone } __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone } __impl_slice_eq1! { Cow<'a, [A]>, Vec, Clone } macro_rules! array_impls { ($($N: expr)+) => { $( // NOTE: some less important impls are omitted to reduce code bloat __impl_slice_eq1! { Vec, [B; $N] } __impl_slice_eq1! { Vec, &'b [B; $N] } // __impl_slice_eq1! { Vec, &'b mut [B; $N] } // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone } // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone } // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone } )+ } } array_impls! { 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Vec { #[inline] fn partial_cmp(&self, other: &Vec) -> Option { PartialOrd::partial_cmp(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Vec {} #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Vec { #[inline] fn cmp(&self, other: &Vec) -> Ordering { Ord::cmp(&**self, &**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Drop for Vec { #[unsafe_destructor_blind_to_params] fn drop(&mut self) { if self.buf.unsafe_no_drop_flag_needs_drop() { unsafe { // The branch on needs_drop() is an -O1 performance optimization. // Without the branch, dropping Vec takes linear time. if needs_drop::() { for x in self.iter_mut() { ptr::drop_in_place(x); } } } } // RawVec handles deallocation } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for Vec { fn default() -> Vec { Vec::new() } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Vec { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef> for Vec { fn as_ref(&self) -> &Vec { self } } #[stable(feature = "vec_as_mut", since = "1.5.0")] impl AsMut> for Vec { fn as_mut(&mut self) -> &mut Vec { self } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef<[T]> for Vec { fn as_ref(&self) -> &[T] { self } } #[stable(feature = "vec_as_mut", since = "1.5.0")] impl AsMut<[T]> for Vec { fn as_mut(&mut self) -> &mut [T] { self } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T: Clone> From<&'a [T]> for Vec { #[cfg(not(test))] fn from(s: &'a [T]) -> Vec { s.to_vec() } #[cfg(test)] fn from(s: &'a [T]) -> Vec { ::slice::to_vec(s) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a> From<&'a str> for Vec { fn from(s: &'a str) -> Vec { From::from(s.as_bytes()) } } //////////////////////////////////////////////////////////////////////////////// // Clone-on-write //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> FromIterator for Cow<'a, [T]> where T: Clone { fn from_iter>(it: I) -> Cow<'a, [T]> { Cow::Owned(FromIterator::from_iter(it)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T: 'a> IntoCow<'a, [T]> for Vec where T: Clone { fn into_cow(self) -> Cow<'a, [T]> { Cow::Owned(self) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoCow<'a, [T]> for &'a [T] where T: Clone { fn into_cow(self) -> Cow<'a, [T]> { Cow::Borrowed(self) } } //////////////////////////////////////////////////////////////////////////////// // Iterators //////////////////////////////////////////////////////////////////////////////// /// An iterator that moves out of a vector. #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { _buf: RawVec, ptr: *const T, end: *const T, } #[stable(feature = "rust1", since = "1.0.0")] unsafe impl Send for IntoIter {} #[stable(feature = "rust1", since = "1.0.0")] unsafe impl Sync for IntoIter {} #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = T; #[inline] fn next(&mut self) -> Option { unsafe { if self.ptr == self.end { None } else { if mem::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. self.ptr = arith_offset(self.ptr as *const i8, 1) as *const T; // Use a non-null pointer value Some(ptr::read(EMPTY as *mut T)) } else { let old = self.ptr; self.ptr = self.ptr.offset(1); Some(ptr::read(old)) } } } } #[inline] fn size_hint(&self) -> (usize, Option) { let diff = (self.end as usize) - (self.ptr as usize); let size = mem::size_of::(); let exact = diff / (if size == 0 { 1 } else { size }); (exact, Some(exact)) } #[inline] fn count(self) -> usize { self.size_hint().0 } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { unsafe { if self.end == self.ptr { None } else { if mem::size_of::() == 0 { // See above for why 'ptr.offset' isn't used self.end = arith_offset(self.end as *const i8, -1) as *const T; // Use a non-null pointer value Some(ptr::read(EMPTY as *mut T)) } else { self.end = self.end.offset(-1); Some(ptr::read(self.end)) } } } } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter {} #[stable(feature = "rust1", since = "1.0.0")] impl Drop for IntoIter { #[unsafe_destructor_blind_to_params] fn drop(&mut self) { // destroy the remaining elements for _x in self {} // RawVec handles deallocation } } /// A draining iterator for `Vec`. #[stable(feature = "drain", since = "1.6.0")] pub struct Drain<'a, T: 'a> { /// Index of tail to preserve tail_start: usize, /// Length of tail tail_len: usize, /// Current remaining range to remove iter: slice::IterMut<'a, T>, vec: *mut Vec, } #[stable(feature = "drain", since = "1.6.0")] unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {} #[stable(feature = "drain", since = "1.6.0")] unsafe impl<'a, T: Send> Send for Drain<'a, T> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for Drain<'a, T> { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) }) } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) }) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Drop for Drain<'a, T> { fn drop(&mut self) { // exhaust self first while let Some(_) = self.next() {} if self.tail_len > 0 { unsafe { let source_vec = &mut *self.vec; // memmove back untouched tail, update to new length let start = source_vec.len(); let tail = self.tail_start; let src = source_vec.as_ptr().offset(tail as isize); let dst = source_vec.as_mut_ptr().offset(start as isize); ptr::copy(src, dst, self.tail_len); source_vec.set_len(start + self.tail_len); } } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> ExactSizeIterator for Drain<'a, T> {}