//! lint when there is a large size difference between variants on an enum use crate::utils::{snippet_opt, span_lint_and_then}; use rustc_errors::Applicability; use rustc_hir::{Item, ItemKind, VariantData}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_target::abi::LayoutOf; declare_clippy_lint! { /// **What it does:** Checks for large size differences between variants on /// `enum`s. /// /// **Why is this bad?** Enum size is bounded by the largest variant. Having a /// large variant can penalize the memory layout of that enum. /// /// **Known problems:** This lint obviously cannot take the distribution of /// variants in your running program into account. It is possible that the /// smaller variants make up less than 1% of all instances, in which case /// the overhead is negligible and the boxing is counter-productive. Always /// measure the change this lint suggests. /// /// **Example:** /// /// ```rust /// // Bad /// enum Test { /// A(i32), /// B([i32; 8000]), /// } /// /// // Possibly better /// enum Test2 { /// A(i32), /// B(Box<[i32; 8000]>), /// } /// ``` pub LARGE_ENUM_VARIANT, perf, "large size difference between variants on an enum" } #[derive(Copy, Clone)] pub struct LargeEnumVariant { maximum_size_difference_allowed: u64, } impl LargeEnumVariant { #[must_use] pub fn new(maximum_size_difference_allowed: u64) -> Self { Self { maximum_size_difference_allowed, } } } impl_lint_pass!(LargeEnumVariant => [LARGE_ENUM_VARIANT]); impl<'tcx> LateLintPass<'tcx> for LargeEnumVariant { fn check_item(&mut self, cx: &LateContext<'_>, item: &Item<'_>) { if in_external_macro(cx.tcx.sess, item.span) { return; } let did = cx.tcx.hir().local_def_id(item.hir_id); if let ItemKind::Enum(ref def, _) = item.kind { let ty = cx.tcx.type_of(did); let adt = ty.ty_adt_def().expect("already checked whether this is an enum"); let mut largest_variant: Option<(_, _)> = None; let mut second_variant: Option<(_, _)> = None; for (i, variant) in adt.variants.iter().enumerate() { let size: u64 = variant .fields .iter() .filter_map(|f| { let ty = cx.tcx.type_of(f.did); // don't count generics by filtering out everything // that does not have a layout cx.layout_of(ty).ok().map(|l| l.size.bytes()) }) .sum(); let grouped = (size, (i, variant)); if grouped.0 >= largest_variant.map_or(0, |x| x.0) { second_variant = largest_variant; largest_variant = Some(grouped); } } if let (Some(largest), Some(second)) = (largest_variant, second_variant) { let difference = largest.0 - second.0; if difference > self.maximum_size_difference_allowed { let (i, variant) = largest.1; let help_text = "consider boxing the large fields to reduce the total size of the enum"; span_lint_and_then( cx, LARGE_ENUM_VARIANT, def.variants[i].span, "large size difference between variants", |diag| { diag.span_label( def.variants[(largest.1).0].span, &format!("this variant is {} bytes", largest.0), ); diag.span_note( def.variants[(second.1).0].span, &format!("and the second-largest variant is {} bytes:", second.0), ); if variant.fields.len() == 1 { let span = match def.variants[i].data { VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, ..) => { fields[0].ty.span }, VariantData::Unit(..) => unreachable!(), }; if let Some(snip) = snippet_opt(cx, span) { diag.span_suggestion( span, help_text, format!("Box<{}>", snip), Applicability::MaybeIncorrect, ); return; } } diag.span_help(def.variants[i].span, help_text); }, ); } } } } }