// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Lints in the Rust compiler. //! //! This contains lints which can feasibly be implemented as their own //! AST visitor. Also see `rustc::lint::builtin`, which contains the //! definitions of lints that are emitted directly inside the main //! compiler. //! //! To add a new lint to rustc, declare it here using `declare_lint!()`. //! Then add code to emit the new lint in the appropriate circumstances. //! You can do that in an existing `LintPass` if it makes sense, or in a //! new `LintPass`, or using `Session::add_lint` elsewhere in the //! compiler. Only do the latter if the check can't be written cleanly as a //! `LintPass` (also, note that such lints will need to be defined in //! `rustc::lint::builtin`, not here). //! //! If you define a new `LintPass`, you will also need to add it to the //! `add_builtin!` or `add_builtin_with_new!` invocation in `lib.rs`. //! Use the former for unit-like structs and the latter for structs with //! a `pub fn new()`. use rustc::hir::def::Def; use rustc::hir::def_id::DefId; use rustc::cfg; use rustc::ty::subst::Substs; use rustc::ty::{self, Ty, TyCtxt}; use rustc::traits::{self, Reveal}; use rustc::hir::map as hir_map; use util::nodemap::NodeSet; use lint::{Level, LateContext, LintContext, LintArray}; use lint::{LintPass, LateLintPass, EarlyLintPass, EarlyContext}; use std::collections::HashSet; use syntax::ast; use syntax::attr; use syntax::feature_gate::{AttributeGate, AttributeType, Stability, deprecated_attributes}; use syntax_pos::Span; use syntax::symbol::keywords; use rustc::hir::{self, PatKind}; use rustc::hir::intravisit::FnKind; use bad_style::{MethodLateContext, method_context}; // hardwired lints from librustc pub use lint::builtin::*; declare_lint! { WHILE_TRUE, Warn, "suggest using `loop { }` instead of `while true { }`" } #[derive(Copy, Clone)] pub struct WhileTrue; impl LintPass for WhileTrue { fn get_lints(&self) -> LintArray { lint_array!(WHILE_TRUE) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for WhileTrue { fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { if let hir::ExprWhile(ref cond, ..) = e.node { if let hir::ExprLit(ref lit) = cond.node { if let ast::LitKind::Bool(true) = lit.node { cx.span_lint(WHILE_TRUE, e.span, "denote infinite loops with loop { ... }"); } } } } } declare_lint! { BOX_POINTERS, Allow, "use of owned (Box type) heap memory" } #[derive(Copy, Clone)] pub struct BoxPointers; impl BoxPointers { fn check_heap_type<'a, 'tcx>(&self, cx: &LateContext, span: Span, ty: Ty) { for leaf_ty in ty.walk() { if leaf_ty.is_box() { let m = format!("type uses owned (Box type) pointers: {}", ty); cx.span_lint(BOX_POINTERS, span, &m); } } } } impl LintPass for BoxPointers { fn get_lints(&self) -> LintArray { lint_array!(BOX_POINTERS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for BoxPointers { fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { match it.node { hir::ItemFn(..) | hir::ItemTy(..) | hir::ItemEnum(..) | hir::ItemStruct(..) | hir::ItemUnion(..) => { let def_id = cx.tcx.hir.local_def_id(it.id); self.check_heap_type(cx, it.span, cx.tcx.type_of(def_id)) } _ => () } // If it's a struct, we also have to check the fields' types match it.node { hir::ItemStruct(ref struct_def, _) | hir::ItemUnion(ref struct_def, _) => { for struct_field in struct_def.fields() { let def_id = cx.tcx.hir.local_def_id(struct_field.id); self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id)); } } _ => (), } } fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { let ty = cx.tables.node_id_to_type(e.id); self.check_heap_type(cx, e.span, ty); } } declare_lint! { NON_SHORTHAND_FIELD_PATTERNS, Warn, "using `Struct { x: x }` instead of `Struct { x }`" } #[derive(Copy, Clone)] pub struct NonShorthandFieldPatterns; impl LintPass for NonShorthandFieldPatterns { fn get_lints(&self) -> LintArray { lint_array!(NON_SHORTHAND_FIELD_PATTERNS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonShorthandFieldPatterns { fn check_pat(&mut self, cx: &LateContext, pat: &hir::Pat) { if let PatKind::Struct(_, ref field_pats, _) = pat.node { for fieldpat in field_pats { if fieldpat.node.is_shorthand { continue; } if let PatKind::Binding(_, _, ident, None) = fieldpat.node.pat.node { if ident.node == fieldpat.node.name { cx.span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, &format!("the `{}:` in this pattern is redundant and can \ be removed", ident.node)) } } } } } } declare_lint! { UNSAFE_CODE, Allow, "usage of `unsafe` code" } #[derive(Copy, Clone)] pub struct UnsafeCode; impl LintPass for UnsafeCode { fn get_lints(&self) -> LintArray { lint_array!(UNSAFE_CODE) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnsafeCode { fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { if let hir::ExprBlock(ref blk) = e.node { // Don't warn about generated blocks, that'll just pollute the output. if blk.rules == hir::UnsafeBlock(hir::UserProvided) { cx.span_lint(UNSAFE_CODE, blk.span, "usage of an `unsafe` block"); } } } fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { match it.node { hir::ItemTrait(hir::Unsafety::Unsafe, ..) => { cx.span_lint(UNSAFE_CODE, it.span, "declaration of an `unsafe` trait") } hir::ItemImpl(hir::Unsafety::Unsafe, ..) => { cx.span_lint(UNSAFE_CODE, it.span, "implementation of an `unsafe` trait") } _ => return, } } fn check_fn(&mut self, cx: &LateContext, fk: FnKind<'tcx>, _: &hir::FnDecl, _: &hir::Body, span: Span, _: ast::NodeId) { match fk { FnKind::ItemFn(_, _, hir::Unsafety::Unsafe, ..) => { cx.span_lint(UNSAFE_CODE, span, "declaration of an `unsafe` function") } FnKind::Method(_, sig, ..) => { if sig.unsafety == hir::Unsafety::Unsafe { cx.span_lint(UNSAFE_CODE, span, "implementation of an `unsafe` method") } } _ => (), } } fn check_trait_item(&mut self, cx: &LateContext, item: &hir::TraitItem) { if let hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Required(_)) = item.node { if sig.unsafety == hir::Unsafety::Unsafe { cx.span_lint(UNSAFE_CODE, item.span, "declaration of an `unsafe` method") } } } } declare_lint! { MISSING_DOCS, Allow, "detects missing documentation for public members" } pub struct MissingDoc { /// Stack of whether #[doc(hidden)] is set /// at each level which has lint attributes. doc_hidden_stack: Vec, /// Private traits or trait items that leaked through. Don't check their methods. private_traits: HashSet, } impl MissingDoc { pub fn new() -> MissingDoc { MissingDoc { doc_hidden_stack: vec![false], private_traits: HashSet::new(), } } fn doc_hidden(&self) -> bool { *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") } fn check_missing_docs_attrs(&self, cx: &LateContext, id: Option, attrs: &[ast::Attribute], sp: Span, desc: &'static str) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.sess().opts.test { return; } // `#[doc(hidden)]` disables missing_docs check. if self.doc_hidden() { return; } // Only check publicly-visible items, using the result from the privacy pass. // It's an option so the crate root can also use this function (it doesn't // have a NodeId). if let Some(id) = id { if !cx.access_levels.is_exported(id) { return; } } let has_doc = attrs.iter().any(|a| a.is_value_str() && a.check_name("doc")); if !has_doc { cx.span_lint(MISSING_DOCS, sp, &format!("missing documentation for {}", desc)); } } } impl LintPass for MissingDoc { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DOCS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDoc { fn enter_lint_attrs(&mut self, _: &LateContext, attrs: &[ast::Attribute]) { let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| { attr.check_name("doc") && match attr.meta_item_list() { None => false, Some(l) => attr::list_contains_name(&l, "hidden"), } }); self.doc_hidden_stack.push(doc_hidden); } fn exit_lint_attrs(&mut self, _: &LateContext, _attrs: &[ast::Attribute]) { self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); } fn check_crate(&mut self, cx: &LateContext, krate: &hir::Crate) { self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate"); } fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { let desc = match it.node { hir::ItemFn(..) => "a function", hir::ItemMod(..) => "a module", hir::ItemEnum(..) => "an enum", hir::ItemStruct(..) => "a struct", hir::ItemUnion(..) => "a union", hir::ItemTrait(.., ref trait_item_refs) => { // Issue #11592, traits are always considered exported, even when private. if it.vis == hir::Visibility::Inherited { self.private_traits.insert(it.id); for trait_item_ref in trait_item_refs { self.private_traits.insert(trait_item_ref.id.node_id); } return; } "a trait" } hir::ItemTy(..) => "a type alias", hir::ItemImpl(.., Some(ref trait_ref), _, ref impl_item_refs) => { // If the trait is private, add the impl items to private_traits so they don't get // reported for missing docs. let real_trait = trait_ref.path.def.def_id(); if let Some(node_id) = cx.tcx.hir.as_local_node_id(real_trait) { match cx.tcx.hir.find(node_id) { Some(hir_map::NodeItem(item)) => { if item.vis == hir::Visibility::Inherited { for impl_item_ref in impl_item_refs { self.private_traits.insert(impl_item_ref.id.node_id); } } } _ => {} } } return; } hir::ItemConst(..) => "a constant", hir::ItemStatic(..) => "a static", _ => return, }; self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs, it.span, desc); } fn check_trait_item(&mut self, cx: &LateContext, trait_item: &hir::TraitItem) { if self.private_traits.contains(&trait_item.id) { return; } let desc = match trait_item.node { hir::TraitItemKind::Const(..) => "an associated constant", hir::TraitItemKind::Method(..) => "a trait method", hir::TraitItemKind::Type(..) => "an associated type", }; self.check_missing_docs_attrs(cx, Some(trait_item.id), &trait_item.attrs, trait_item.span, desc); } fn check_impl_item(&mut self, cx: &LateContext, impl_item: &hir::ImplItem) { // If the method is an impl for a trait, don't doc. if method_context(cx, impl_item.id) == MethodLateContext::TraitImpl { return; } let desc = match impl_item.node { hir::ImplItemKind::Const(..) => "an associated constant", hir::ImplItemKind::Method(..) => "a method", hir::ImplItemKind::Type(_) => "an associated type", }; self.check_missing_docs_attrs(cx, Some(impl_item.id), &impl_item.attrs, impl_item.span, desc); } fn check_struct_field(&mut self, cx: &LateContext, sf: &hir::StructField) { if !sf.is_positional() { self.check_missing_docs_attrs(cx, Some(sf.id), &sf.attrs, sf.span, "a struct field") } } fn check_variant(&mut self, cx: &LateContext, v: &hir::Variant, _: &hir::Generics) { self.check_missing_docs_attrs(cx, Some(v.node.data.id()), &v.node.attrs, v.span, "a variant"); } } declare_lint! { pub MISSING_COPY_IMPLEMENTATIONS, Allow, "detects potentially-forgotten implementations of `Copy`" } #[derive(Copy, Clone)] pub struct MissingCopyImplementations; impl LintPass for MissingCopyImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_COPY_IMPLEMENTATIONS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingCopyImplementations { fn check_item(&mut self, cx: &LateContext, item: &hir::Item) { if !cx.access_levels.is_reachable(item.id) { return; } let (def, ty) = match item.node { hir::ItemStruct(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } let def = cx.tcx.adt_def(cx.tcx.hir.local_def_id(item.id)); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } hir::ItemUnion(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } let def = cx.tcx.adt_def(cx.tcx.hir.local_def_id(item.id)); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } hir::ItemEnum(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } let def = cx.tcx.adt_def(cx.tcx.hir.local_def_id(item.id)); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } _ => return, }; if def.has_dtor(cx.tcx) { return; } let param_env = ty::ParamEnv::empty(); if !ty.moves_by_default(cx.tcx, param_env, item.span) { return; } if param_env.can_type_implement_copy(cx.tcx, ty, item.span).is_ok() { cx.span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, "type could implement `Copy`; consider adding `impl \ Copy`") } } } declare_lint! { MISSING_DEBUG_IMPLEMENTATIONS, Allow, "detects missing implementations of fmt::Debug" } pub struct MissingDebugImplementations { impling_types: Option, } impl MissingDebugImplementations { pub fn new() -> MissingDebugImplementations { MissingDebugImplementations { impling_types: None } } } impl LintPass for MissingDebugImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DEBUG_IMPLEMENTATIONS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDebugImplementations { fn check_item(&mut self, cx: &LateContext, item: &hir::Item) { if !cx.access_levels.is_reachable(item.id) { return; } match item.node { hir::ItemStruct(..) | hir::ItemUnion(..) | hir::ItemEnum(..) => {} _ => return, } let debug = match cx.tcx.lang_items.debug_trait() { Some(debug) => debug, None => return, }; if self.impling_types.is_none() { let debug_def = cx.tcx.trait_def(debug); let mut impls = NodeSet(); debug_def.for_each_impl(cx.tcx, |d| { if let Some(ty_def) = cx.tcx.type_of(d).ty_to_def_id() { if let Some(node_id) = cx.tcx.hir.as_local_node_id(ty_def) { impls.insert(node_id); } } }); self.impling_types = Some(impls); debug!("{:?}", self.impling_types); } if !self.impling_types.as_ref().unwrap().contains(&item.id) { cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, "type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \ or a manual implementation") } } } declare_lint! { pub ANONYMOUS_PARAMETERS, Allow, "detects anonymous parameters" } /// Checks for use of anonymous parameters (RFC 1685) #[derive(Clone)] pub struct AnonymousParameters; impl LintPass for AnonymousParameters { fn get_lints(&self) -> LintArray { lint_array!(ANONYMOUS_PARAMETERS) } } impl EarlyLintPass for AnonymousParameters { fn check_trait_item(&mut self, cx: &EarlyContext, it: &ast::TraitItem) { match it.node { ast::TraitItemKind::Method(ref sig, _) => { for arg in sig.decl.inputs.iter() { match arg.pat.node { ast::PatKind::Ident(_, ident, None) => { if ident.node.name == keywords::Invalid.name() { cx.span_lint(ANONYMOUS_PARAMETERS, arg.pat.span, "use of deprecated anonymous parameter"); } } _ => (), } } }, _ => (), } } } declare_lint! { DEPRECATED_ATTR, Warn, "detects use of deprecated attributes" } /// Checks for use of attributes which have been deprecated. #[derive(Clone)] pub struct DeprecatedAttr { // This is not free to compute, so we want to keep it around, rather than // compute it for every attribute. depr_attrs: Vec<&'static (&'static str, AttributeType, AttributeGate)>, } impl DeprecatedAttr { pub fn new() -> DeprecatedAttr { DeprecatedAttr { depr_attrs: deprecated_attributes(), } } } impl LintPass for DeprecatedAttr { fn get_lints(&self) -> LintArray { lint_array!(DEPRECATED_ATTR) } } impl EarlyLintPass for DeprecatedAttr { fn check_attribute(&mut self, cx: &EarlyContext, attr: &ast::Attribute) { let name = unwrap_or!(attr.name(), return); for &&(n, _, ref g) in &self.depr_attrs { if name == n { if let &AttributeGate::Gated(Stability::Deprecated(link), ref name, ref reason, _) = g { cx.span_lint(DEPRECATED, attr.span, &format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link)); } return; } } } } declare_lint! { pub ILLEGAL_FLOATING_POINT_LITERAL_PATTERN, Warn, "floating-point literals cannot be used in patterns" } /// Checks for floating point literals in patterns. #[derive(Clone)] pub struct IllegalFloatLiteralPattern; impl LintPass for IllegalFloatLiteralPattern { fn get_lints(&self) -> LintArray { lint_array!(ILLEGAL_FLOATING_POINT_LITERAL_PATTERN) } } fn fl_lit_check_expr(cx: &EarlyContext, expr: &ast::Expr) { use self::ast::{ExprKind, LitKind}; match expr.node { ExprKind::Lit(ref l) => { match l.node { LitKind::FloatUnsuffixed(..) | LitKind::Float(..) => { cx.span_lint(ILLEGAL_FLOATING_POINT_LITERAL_PATTERN, l.span, "floating-point literals cannot be used in patterns"); }, _ => (), } } // These may occur in patterns // and can maybe contain float literals ExprKind::Unary(_, ref f) => fl_lit_check_expr(cx, f), // These may occur in patterns // and can't contain float literals ExprKind::Path(..) => (), // If something unhandled is encountered, we need to expand the // search or ignore more ExprKinds. _ => span_bug!(expr.span, "Unhandled expression {:?} in float lit pattern lint", expr.node), } } impl EarlyLintPass for IllegalFloatLiteralPattern { fn check_pat(&mut self, cx: &EarlyContext, pat: &ast::Pat) { use self::ast::PatKind; pat.walk(&mut |p| { match p.node { // Wildcard patterns and paths are uninteresting for the lint PatKind::Wild | PatKind::Path(..) => (), // The walk logic recurses inside these PatKind::Ident(..) | PatKind::Struct(..) | PatKind::Tuple(..) | PatKind::TupleStruct(..) | PatKind::Ref(..) | PatKind::Box(..) | PatKind::Slice(..) => (), // Extract the expressions and check them PatKind::Lit(ref e) => fl_lit_check_expr(cx, e), PatKind::Range(ref st, ref en, _) => { fl_lit_check_expr(cx, st); fl_lit_check_expr(cx, en); }, PatKind::Mac(_) => bug!("lint must run post-expansion"), } true }); } } declare_lint! { pub UNCONDITIONAL_RECURSION, Warn, "functions that cannot return without calling themselves" } #[derive(Copy, Clone)] pub struct UnconditionalRecursion; impl LintPass for UnconditionalRecursion { fn get_lints(&self) -> LintArray { lint_array![UNCONDITIONAL_RECURSION] } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnconditionalRecursion { fn check_fn(&mut self, cx: &LateContext, fn_kind: FnKind, _: &hir::FnDecl, body: &hir::Body, sp: Span, id: ast::NodeId) { let method = match fn_kind { FnKind::ItemFn(..) => None, FnKind::Method(..) => { Some(cx.tcx.associated_item(cx.tcx.hir.local_def_id(id))) } // closures can't recur, so they don't matter. FnKind::Closure(_) => return, }; // Walk through this function (say `f`) looking to see if // every possible path references itself, i.e. the function is // called recursively unconditionally. This is done by trying // to find a path from the entry node to the exit node that // *doesn't* call `f` by traversing from the entry while // pretending that calls of `f` are sinks (i.e. ignoring any // exit edges from them). // // NB. this has an edge case with non-returning statements, // like `loop {}` or `panic!()`: control flow never reaches // the exit node through these, so one can have a function // that never actually calls itselfs but is still picked up by // this lint: // // fn f(cond: bool) { // if !cond { panic!() } // could come from `assert!(cond)` // f(false) // } // // In general, functions of that form may be able to call // itself a finite number of times and then diverge. The lint // considers this to be an error for two reasons, (a) it is // easier to implement, and (b) it seems rare to actually want // to have behaviour like the above, rather than // e.g. accidentally recurring after an assert. let cfg = cfg::CFG::new(cx.tcx, &body); let mut work_queue = vec![cfg.entry]; let mut reached_exit_without_self_call = false; let mut self_call_spans = vec![]; let mut visited = HashSet::new(); while let Some(idx) = work_queue.pop() { if idx == cfg.exit { // found a path! reached_exit_without_self_call = true; break; } let cfg_id = idx.node_id(); if visited.contains(&cfg_id) { // already done continue; } visited.insert(cfg_id); let node_id = cfg.graph.node_data(idx).id(); // is this a recursive call? let self_recursive = if node_id != ast::DUMMY_NODE_ID { match method { Some(ref method) => expr_refers_to_this_method(cx, method, node_id), None => expr_refers_to_this_fn(cx, id, node_id), } } else { false }; if self_recursive { self_call_spans.push(cx.tcx.hir.span(node_id)); // this is a self call, so we shouldn't explore past // this node in the CFG. continue; } // add the successors of this node to explore the graph further. for (_, edge) in cfg.graph.outgoing_edges(idx) { let target_idx = edge.target(); let target_cfg_id = target_idx.node_id(); if !visited.contains(&target_cfg_id) { work_queue.push(target_idx) } } } // Check the number of self calls because a function that // doesn't return (e.g. calls a `-> !` function or `loop { /* // no break */ }`) shouldn't be linted unless it actually // recurs. if !reached_exit_without_self_call && !self_call_spans.is_empty() { let mut db = cx.struct_span_lint(UNCONDITIONAL_RECURSION, sp, "function cannot return without recurring"); // FIXME #19668: these could be span_lint_note's instead of this manual guard. if cx.current_level(UNCONDITIONAL_RECURSION) != Level::Allow { // offer some help to the programmer. for call in &self_call_spans { db.span_note(*call, "recursive call site"); } db.help("a `loop` may express intention \ better if this is on purpose"); } db.emit(); } // all done return; // Functions for identifying if the given Expr NodeId `id` // represents a call to the function `fn_id`/method `method`. fn expr_refers_to_this_fn(cx: &LateContext, fn_id: ast::NodeId, id: ast::NodeId) -> bool { match cx.tcx.hir.get(id) { hir_map::NodeExpr(&hir::Expr { node: hir::ExprCall(ref callee, _), .. }) => { let def = if let hir::ExprPath(ref qpath) = callee.node { cx.tables.qpath_def(qpath, callee.id) } else { return false; }; def.def_id() == cx.tcx.hir.local_def_id(fn_id) } _ => false, } } // Check if the expression `id` performs a call to `method`. fn expr_refers_to_this_method(cx: &LateContext, method: &ty::AssociatedItem, id: ast::NodeId) -> bool { use rustc::ty::adjustment::*; // Ignore non-expressions. let expr = if let hir_map::NodeExpr(e) = cx.tcx.hir.get(id) { e } else { return false; }; // Check for overloaded autoderef method calls. if let Some(&Adjustment { kind: Adjust::DerefRef { ref autoderefs, .. }, .. }) = cx.tables.adjustments.get(&id) { let mut source = cx.tables.expr_ty(expr); for &overloaded in autoderefs { if let Some(deref) = overloaded { let (def_id, substs) = deref.method_call(cx.tcx, source); if method_call_refers_to_method(cx.tcx, method, def_id, substs, id) { return true; } source = deref.target; } else { source = source.builtin_deref(true, ty::LvaluePreference::NoPreference).unwrap().ty; } } } // Check for method calls and overloaded operators. if cx.tables.is_method_call(expr) { let def_id = cx.tables.type_dependent_defs[&id].def_id(); let substs = cx.tables.node_substs(id); if method_call_refers_to_method(cx.tcx, method, def_id, substs, id) { return true; } } // Check for calls to methods via explicit paths (e.g. `T::method()`). match expr.node { hir::ExprCall(ref callee, _) => { let def = if let hir::ExprPath(ref qpath) = callee.node { cx.tables.qpath_def(qpath, callee.id) } else { return false; }; match def { Def::Method(def_id) => { let substs = cx.tables.node_substs(callee.id); method_call_refers_to_method( cx.tcx, method, def_id, substs, id) } _ => false, } } _ => false, } } // Check if the method call to the method with the ID `callee_id` // and instantiated with `callee_substs` refers to method `method`. fn method_call_refers_to_method<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, method: &ty::AssociatedItem, callee_id: DefId, callee_substs: &Substs<'tcx>, expr_id: ast::NodeId) -> bool { let callee_item = tcx.associated_item(callee_id); match callee_item.container { // This is an inherent method, so the `def_id` refers // directly to the method definition. ty::ImplContainer(_) => callee_id == method.def_id, // A trait method, from any number of possible sources. // Attempt to select a concrete impl before checking. ty::TraitContainer(trait_def_id) => { let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, callee_substs); let trait_ref = ty::Binder(trait_ref); let span = tcx.hir.span(expr_id); let obligation = traits::Obligation::new(traits::ObligationCause::misc(span, expr_id), trait_ref.to_poly_trait_predicate()); let param_env = tcx.param_env(method.def_id); tcx.infer_ctxt(param_env, Reveal::UserFacing).enter(|infcx| { let mut selcx = traits::SelectionContext::new(&infcx); match selcx.select(&obligation) { // The method comes from a `T: Trait` bound. // If `T` is `Self`, then this call is inside // a default method definition. Ok(Some(traits::VtableParam(_))) => { let on_self = trait_ref.self_ty().is_self(); // We can only be recurring in a default // method if we're being called literally // on the `Self` type. on_self && callee_id == method.def_id } // The `impl` is known, so we check that with a // special case: Ok(Some(traits::VtableImpl(vtable_impl))) => { let container = ty::ImplContainer(vtable_impl.impl_def_id); // It matches if it comes from the same impl, // and has the same method name. container == method.container && callee_item.name == method.name } // There's no way to know if this call is // recursive, so we assume it's not. _ => false, } }) } } } } } declare_lint! { PLUGIN_AS_LIBRARY, Warn, "compiler plugin used as ordinary library in non-plugin crate" } #[derive(Copy, Clone)] pub struct PluginAsLibrary; impl LintPass for PluginAsLibrary { fn get_lints(&self) -> LintArray { lint_array![PLUGIN_AS_LIBRARY] } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for PluginAsLibrary { fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { if cx.sess().plugin_registrar_fn.get().is_some() { // We're compiling a plugin; it's fine to link other plugins. return; } match it.node { hir::ItemExternCrate(..) => (), _ => return, }; let prfn = match cx.sess().cstore.extern_mod_stmt_cnum(it.id) { Some(cnum) => cx.sess().cstore.plugin_registrar_fn(cnum), None => { // Probably means we aren't linking the crate for some reason. // // Not sure if / when this could happen. return; } }; if prfn.is_some() { cx.span_lint(PLUGIN_AS_LIBRARY, it.span, "compiler plugin used as an ordinary library"); } } } declare_lint! { PRIVATE_NO_MANGLE_FNS, Warn, "functions marked #[no_mangle] should be exported" } declare_lint! { PRIVATE_NO_MANGLE_STATICS, Warn, "statics marked #[no_mangle] should be exported" } declare_lint! { NO_MANGLE_CONST_ITEMS, Deny, "const items will not have their symbols exported" } declare_lint! { NO_MANGLE_GENERIC_ITEMS, Warn, "generic items must be mangled" } #[derive(Copy, Clone)] pub struct InvalidNoMangleItems; impl LintPass for InvalidNoMangleItems { fn get_lints(&self) -> LintArray { lint_array!(PRIVATE_NO_MANGLE_FNS, PRIVATE_NO_MANGLE_STATICS, NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidNoMangleItems { fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { match it.node { hir::ItemFn(.., ref generics, _) => { if attr::contains_name(&it.attrs, "no_mangle") { if !cx.access_levels.is_reachable(it.id) { let msg = format!("function {} is marked #[no_mangle], but not exported", it.name); cx.span_lint(PRIVATE_NO_MANGLE_FNS, it.span, &msg); } if generics.is_type_parameterized() { cx.span_lint(NO_MANGLE_GENERIC_ITEMS, it.span, "functions generic over types must be mangled"); } } } hir::ItemStatic(..) => { if attr::contains_name(&it.attrs, "no_mangle") && !cx.access_levels.is_reachable(it.id) { let msg = format!("static {} is marked #[no_mangle], but not exported", it.name); cx.span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, &msg); } } hir::ItemConst(..) => { if attr::contains_name(&it.attrs, "no_mangle") { // Const items do not refer to a particular location in memory, and therefore // don't have anything to attach a symbol to let msg = "const items should never be #[no_mangle], consider instead using \ `pub static`"; cx.span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg); } } _ => {} } } } #[derive(Clone, Copy)] pub struct MutableTransmutes; declare_lint! { MUTABLE_TRANSMUTES, Deny, "mutating transmuted &mut T from &T may cause undefined behavior" } impl LintPass for MutableTransmutes { fn get_lints(&self) -> LintArray { lint_array!(MUTABLE_TRANSMUTES) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MutableTransmutes { fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) { use syntax::abi::Abi::RustIntrinsic; let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \ consider instead using an UnsafeCell"; match get_transmute_from_to(cx, expr) { Some((&ty::TyRef(_, from_mt), &ty::TyRef(_, to_mt))) => { if to_mt.mutbl == hir::Mutability::MutMutable && from_mt.mutbl == hir::Mutability::MutImmutable { cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg); } } _ => (), } fn get_transmute_from_to<'a, 'tcx> (cx: &LateContext<'a, 'tcx>, expr: &hir::Expr) -> Option<(&'tcx ty::TypeVariants<'tcx>, &'tcx ty::TypeVariants<'tcx>)> { let def = if let hir::ExprPath(ref qpath) = expr.node { cx.tables.qpath_def(qpath, expr.id) } else { return None; }; if let Def::Fn(did) = def { if !def_id_is_transmute(cx, did) { return None; } let typ = cx.tables.node_id_to_type(expr.id); match typ.sty { ty::TyFnDef(.., bare_fn) if bare_fn.abi() == RustIntrinsic => { let from = bare_fn.inputs().skip_binder()[0]; let to = *bare_fn.output().skip_binder(); return Some((&from.sty, &to.sty)); } _ => (), } } None } fn def_id_is_transmute(cx: &LateContext, def_id: DefId) -> bool { match cx.tcx.type_of(def_id).sty { ty::TyFnDef(.., bfty) if bfty.abi() == RustIntrinsic => (), _ => return false, } cx.tcx.item_name(def_id) == "transmute" } } } /// Forbids using the `#[feature(...)]` attribute #[derive(Copy, Clone)] pub struct UnstableFeatures; declare_lint! { UNSTABLE_FEATURES, Allow, "enabling unstable features (deprecated. do not use)" } impl LintPass for UnstableFeatures { fn get_lints(&self) -> LintArray { lint_array!(UNSTABLE_FEATURES) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnstableFeatures { fn check_attribute(&mut self, ctx: &LateContext, attr: &ast::Attribute) { if attr.check_name("feature") { if let Some(items) = attr.meta_item_list() { for item in items { ctx.span_lint(UNSTABLE_FEATURES, item.span(), "unstable feature"); } } } } } /// Lint for unions that contain fields with possibly non-trivial destructors. pub struct UnionsWithDropFields; declare_lint! { UNIONS_WITH_DROP_FIELDS, Warn, "use of unions that contain fields with possibly non-trivial drop code" } impl LintPass for UnionsWithDropFields { fn get_lints(&self) -> LintArray { lint_array!(UNIONS_WITH_DROP_FIELDS) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnionsWithDropFields { fn check_item(&mut self, ctx: &LateContext, item: &hir::Item) { if let hir::ItemUnion(ref vdata, _) = item.node { let item_def_id = ctx.tcx.hir.local_def_id(item.id); let param_env = ctx.tcx.param_env(item_def_id); for field in vdata.fields() { let field_ty = ctx.tcx.type_of(ctx.tcx.hir.local_def_id(field.id)); if field_ty.needs_drop(ctx.tcx, param_env) { ctx.span_lint(UNIONS_WITH_DROP_FIELDS, field.span, "union contains a field with possibly non-trivial drop code, \ drop code of union fields is ignored when dropping the union"); return; } } } } }