// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::{link, abi}; use lib::llvm::{ValueRef}; use lib; use middle::trans::base::*; use middle::trans::cabi; use middle::trans::cabi_x86; use middle::trans::cabi_x86_64; use middle::trans::cabi_arm; use middle::trans::cabi_mips; use middle::trans::build::*; use middle::trans::callee::*; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::Ignore; use middle::trans::machine::llsize_of; use middle::trans::glue; use middle::trans::machine; use middle::trans::type_of::*; use middle::trans::type_of; use middle::ty; use middle::ty::FnSig; use util::ppaux::ty_to_str; use std::uint; use std::vec; use syntax::codemap::span; use syntax::{ast, ast_util}; use syntax::{attr, ast_map}; use syntax::opt_vec; use syntax::parse::token::special_idents; use syntax::parse::token; use syntax::abi::{X86, X86_64, Arm, Mips}; use syntax::abi::{RustIntrinsic, Rust, Stdcall, Fastcall, Cdecl, Aapcs, C}; use middle::trans::type_::Type; fn abi_info(ccx: @mut CrateContext) -> @cabi::ABIInfo { return match ccx.sess.targ_cfg.arch { X86 => cabi_x86::abi_info(ccx), X86_64 => cabi_x86_64::abi_info(), Arm => cabi_arm::abi_info(), Mips => cabi_mips::abi_info(), } } pub fn link_name(ccx: &CrateContext, i: &ast::foreign_item) -> @str { match attr::first_attr_value_str_by_name(i.attrs, "link_name") { None => ccx.sess.str_of(i.ident), Some(ln) => ln, } } struct ShimTypes { fn_sig: ty::FnSig, /// LLVM types that will appear on the foreign function llsig: LlvmSignature, /// True if there is a return value (not bottom, not unit) ret_def: bool, /// Type of the struct we will use to shuttle values back and forth. /// This is always derived from the llsig. bundle_ty: Type, /// Type of the shim function itself. shim_fn_ty: Type, /// Adapter object for handling native ABI rules (trust me, you /// don't want to know). fn_ty: cabi::FnType } struct LlvmSignature { llarg_tys: ~[Type], llret_ty: Type, sret: bool, } fn foreign_signature(ccx: &mut CrateContext, fn_sig: &ty::FnSig) -> LlvmSignature { /*! * The ForeignSignature is the LLVM types of the arguments/return type * of a function. Note that these LLVM types are not quite the same * as the LLVM types would be for a native Rust function because foreign * functions just plain ignore modes. They also don't pass aggregate * values by pointer like we do. */ let llarg_tys = fn_sig.inputs.map(|arg_ty| type_of(ccx, *arg_ty)); let llret_ty = type_of::type_of(ccx, fn_sig.output); LlvmSignature { llarg_tys: llarg_tys, llret_ty: llret_ty, sret: !ty::type_is_immediate(ccx.tcx, fn_sig.output), } } fn shim_types(ccx: @mut CrateContext, id: ast::node_id) -> ShimTypes { let fn_sig = match ty::get(ty::node_id_to_type(ccx.tcx, id)).sty { ty::ty_bare_fn(ref fn_ty) => copy fn_ty.sig, _ => ccx.sess.bug("c_arg_and_ret_lltys called on non-function type") }; let llsig = foreign_signature(ccx, &fn_sig); let bundle_ty = Type::struct_(llsig.llarg_tys + &[llsig.llret_ty.ptr_to()], false); let ret_def = !ty::type_is_bot(fn_sig.output) && !ty::type_is_nil(fn_sig.output); let fn_ty = abi_info(ccx).compute_info(llsig.llarg_tys, llsig.llret_ty, ret_def); ShimTypes { fn_sig: fn_sig, llsig: llsig, ret_def: ret_def, bundle_ty: bundle_ty, shim_fn_ty: Type::func([bundle_ty.ptr_to()], &Type::void()), fn_ty: fn_ty } } type shim_arg_builder<'self> = &'self fn(bcx: block, tys: &ShimTypes, llargbundle: ValueRef) -> ~[ValueRef]; type shim_ret_builder<'self> = &'self fn(bcx: block, tys: &ShimTypes, llargbundle: ValueRef, llretval: ValueRef); fn build_shim_fn_(ccx: @mut CrateContext, shim_name: &str, llbasefn: ValueRef, tys: &ShimTypes, cc: lib::llvm::CallConv, arg_builder: shim_arg_builder, ret_builder: shim_ret_builder) -> ValueRef { let llshimfn = decl_internal_cdecl_fn( ccx.llmod, shim_name, tys.shim_fn_ty); // Declare the body of the shim function: let fcx = new_fn_ctxt(ccx, ~[], llshimfn, tys.fn_sig.output, None); let bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; let llargbundle = get_param(llshimfn, 0u); let llargvals = arg_builder(bcx, tys, llargbundle); // Create the call itself and store the return value: let llretval = CallWithConv(bcx, llbasefn, llargvals, cc); ret_builder(bcx, tys, llargbundle, llretval); // Don't finish up the function in the usual way, because this doesn't // follow the normal Rust calling conventions. tie_up_header_blocks(fcx, lltop); let ret_cx = raw_block(fcx, false, fcx.llreturn); RetVoid(ret_cx); return llshimfn; } type wrap_arg_builder<'self> = &'self fn(bcx: block, tys: &ShimTypes, llwrapfn: ValueRef, llargbundle: ValueRef); type wrap_ret_builder<'self> = &'self fn(bcx: block, tys: &ShimTypes, llargbundle: ValueRef); fn build_wrap_fn_(ccx: @mut CrateContext, tys: &ShimTypes, llshimfn: ValueRef, llwrapfn: ValueRef, shim_upcall: ValueRef, needs_c_return: bool, arg_builder: wrap_arg_builder, ret_builder: wrap_ret_builder) { let _icx = push_ctxt("foreign::build_wrap_fn_"); let fcx = new_fn_ctxt(ccx, ~[], llwrapfn, tys.fn_sig.output, None); // Patch up the return type if it's not immediate and we're returning via // the C ABI. if needs_c_return && !ty::type_is_immediate(ccx.tcx, tys.fn_sig.output) { let lloutputtype = type_of::type_of(fcx.ccx, tys.fn_sig.output); fcx.llretptr = Some(alloca(raw_block(fcx, false, fcx.llstaticallocas), lloutputtype)); } let bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; // Allocate the struct and write the arguments into it. let llargbundle = alloca(bcx, tys.bundle_ty); arg_builder(bcx, tys, llwrapfn, llargbundle); // Create call itself. let llshimfnptr = PointerCast(bcx, llshimfn, Type::i8p()); let llrawargbundle = PointerCast(bcx, llargbundle, Type::i8p()); Call(bcx, shim_upcall, [llrawargbundle, llshimfnptr]); ret_builder(bcx, tys, llargbundle); // Perform a custom version of `finish_fn`. First, tie up the header // blocks. tie_up_header_blocks(fcx, lltop); // Then return according to the C ABI. let return_context = raw_block(fcx, false, fcx.llreturn); let llfunctiontype = val_ty(llwrapfn); let llfunctiontype = llfunctiontype.element_type(); let return_type = llfunctiontype.return_type(); if return_type.kind() == ::lib::llvm::Void { // XXX: This might be wrong if there are any functions for which // the C ABI specifies a void output pointer and the Rust ABI // does not. RetVoid(return_context); } else { // Cast if we have to... // XXX: This is ugly. let llretptr = BitCast(return_context, fcx.llretptr.get(), return_type.ptr_to()); Ret(return_context, Load(return_context, llretptr)); } } // For each foreign function F, we generate a wrapper function W and a shim // function S that all work together. The wrapper function W is the function // that other rust code actually invokes. Its job is to marshall the // arguments into a struct. It then uses a small bit of assembly to switch // over to the C stack and invoke the shim function. The shim function S then // unpacks the arguments from the struct and invokes the actual function F // according to its specified calling convention. // // Example: Given a foreign c-stack function F(x: X, y: Y) -> Z, // we generate a wrapper function W that looks like: // // void W(Z* dest, void *env, X x, Y y) { // struct { X x; Y y; Z *z; } args = { x, y, z }; // call_on_c_stack_shim(S, &args); // } // // The shim function S then looks something like: // // void S(struct { X x; Y y; Z *z; } *args) { // *args->z = F(args->x, args->y); // } // // However, if the return type of F is dynamically sized or of aggregate type, // the shim function looks like: // // void S(struct { X x; Y y; Z *z; } *args) { // F(args->z, args->x, args->y); // } // // Note: on i386, the layout of the args struct is generally the same // as the desired layout of the arguments on the C stack. Therefore, // we could use upcall_alloc_c_stack() to allocate the `args` // structure and switch the stack pointer appropriately to avoid a // round of copies. (In fact, the shim function itself is // unnecessary). We used to do this, in fact, and will perhaps do so // in the future. pub fn trans_foreign_mod(ccx: @mut CrateContext, path: &ast_map::path, foreign_mod: &ast::foreign_mod) { let _icx = push_ctxt("foreign::trans_foreign_mod"); let arch = ccx.sess.targ_cfg.arch; let abi = match foreign_mod.abis.for_arch(arch) { None => { ccx.sess.fatal( fmt!("No suitable ABI for target architecture \ in module %s", ast_map::path_to_str(*path, ccx.sess.intr()))); } Some(abi) => abi, }; for foreign_mod.items.iter().advance |&foreign_item| { match foreign_item.node { ast::foreign_item_fn(*) => { let id = foreign_item.id; match abi { RustIntrinsic => { // Intrinsics are emitted by monomorphic fn } Rust => { // FIXME(#3678) Implement linking to foreign fns with Rust ABI ccx.sess.unimpl( fmt!("Foreign functions with Rust ABI")); } Stdcall => { build_foreign_fn(ccx, id, foreign_item, lib::llvm::X86StdcallCallConv); } Fastcall => { build_foreign_fn(ccx, id, foreign_item, lib::llvm::X86FastcallCallConv); } Cdecl => { // FIXME(#3678) should really be more specific build_foreign_fn(ccx, id, foreign_item, lib::llvm::CCallConv); } Aapcs => { // FIXME(#3678) should really be more specific build_foreign_fn(ccx, id, foreign_item, lib::llvm::CCallConv); } C => { build_foreign_fn(ccx, id, foreign_item, lib::llvm::CCallConv); } } } ast::foreign_item_static(*) => { let ident = token::ident_to_str(&foreign_item.ident); ccx.item_symbols.insert(foreign_item.id, /* bad */ident.to_owned()); } } } fn build_foreign_fn(ccx: @mut CrateContext, id: ast::node_id, foreign_item: @ast::foreign_item, cc: lib::llvm::CallConv) { let llwrapfn = get_item_val(ccx, id); let tys = shim_types(ccx, id); if attr::attrs_contains_name(foreign_item.attrs, "rust_stack") { build_direct_fn(ccx, llwrapfn, foreign_item, &tys, cc); } else if attr::attrs_contains_name(foreign_item.attrs, "fast_ffi") { build_fast_ffi_fn(ccx, llwrapfn, foreign_item, &tys, cc); } else { let llshimfn = build_shim_fn(ccx, foreign_item, &tys, cc); build_wrap_fn(ccx, &tys, llshimfn, llwrapfn); } } fn build_shim_fn(ccx: @mut CrateContext, foreign_item: &ast::foreign_item, tys: &ShimTypes, cc: lib::llvm::CallConv) -> ValueRef { /*! * * Build S, from comment above: * * void S(struct { X x; Y y; Z *z; } *args) { * F(args->z, args->x, args->y); * } */ let _icx = push_ctxt("foreign::build_shim_fn"); fn build_args(bcx: block, tys: &ShimTypes, llargbundle: ValueRef) -> ~[ValueRef] { let _icx = push_ctxt("foreign::shim::build_args"); tys.fn_ty.build_shim_args(bcx, tys.llsig.llarg_tys, llargbundle) } fn build_ret(bcx: block, tys: &ShimTypes, llargbundle: ValueRef, llretval: ValueRef) { let _icx = push_ctxt("foreign::shim::build_ret"); tys.fn_ty.build_shim_ret(bcx, tys.llsig.llarg_tys, tys.ret_def, llargbundle, llretval); build_return(bcx); } let lname = link_name(ccx, foreign_item); let llbasefn = base_fn(ccx, lname, tys, cc); // Name the shim function let shim_name = fmt!("%s__c_stack_shim", lname); build_shim_fn_(ccx, shim_name, llbasefn, tys, cc, build_args, build_ret) } fn base_fn(ccx: &CrateContext, lname: &str, tys: &ShimTypes, cc: lib::llvm::CallConv) -> ValueRef { // Declare the "prototype" for the base function F: do tys.fn_ty.decl_fn |fnty| { decl_fn(ccx.llmod, lname, cc, fnty) } } // FIXME (#2535): this is very shaky and probably gets ABIs wrong all // over the place fn build_direct_fn(ccx: @mut CrateContext, decl: ValueRef, item: &ast::foreign_item, tys: &ShimTypes, cc: lib::llvm::CallConv) { debug!("build_direct_fn(%s)", link_name(ccx, item)); let fcx = new_fn_ctxt(ccx, ~[], decl, tys.fn_sig.output, None); let bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; let llbasefn = base_fn(ccx, link_name(ccx, item), tys, cc); let ty = ty::lookup_item_type(ccx.tcx, ast_util::local_def(item.id)).ty; let ret_ty = ty::ty_fn_ret(ty); let args = vec::from_fn(ty::ty_fn_args(ty).len(), |i| { get_param(decl, fcx.arg_pos(i)) }); let retval = Call(bcx, llbasefn, args); if !ty::type_is_nil(ret_ty) && !ty::type_is_bot(ret_ty) { Store(bcx, retval, fcx.llretptr.get()); } build_return(bcx); finish_fn(fcx, lltop); } // FIXME (#2535): this is very shaky and probably gets ABIs wrong all // over the place fn build_fast_ffi_fn(ccx: @mut CrateContext, decl: ValueRef, item: &ast::foreign_item, tys: &ShimTypes, cc: lib::llvm::CallConv) { debug!("build_fast_ffi_fn(%s)", link_name(ccx, item)); let fcx = new_fn_ctxt(ccx, ~[], decl, tys.fn_sig.output, None); let bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; let llbasefn = base_fn(ccx, link_name(ccx, item), tys, cc); set_no_inline(fcx.llfn); set_fixed_stack_segment(fcx.llfn); let ty = ty::lookup_item_type(ccx.tcx, ast_util::local_def(item.id)).ty; let ret_ty = ty::ty_fn_ret(ty); let args = vec::from_fn(ty::ty_fn_args(ty).len(), |i| { get_param(decl, fcx.arg_pos(i)) }); let retval = Call(bcx, llbasefn, args); if !ty::type_is_nil(ret_ty) && !ty::type_is_bot(ret_ty) { Store(bcx, retval, fcx.llretptr.get()); } build_return(bcx); finish_fn(fcx, lltop); } fn build_wrap_fn(ccx: @mut CrateContext, tys: &ShimTypes, llshimfn: ValueRef, llwrapfn: ValueRef) { /*! * * Build W, from comment above: * * void W(Z* dest, void *env, X x, Y y) { * struct { X x; Y y; Z *z; } args = { x, y, z }; * call_on_c_stack_shim(S, &args); * } * * One thing we have to be very careful of is to * account for the Rust modes. */ let _icx = push_ctxt("foreign::build_wrap_fn"); build_wrap_fn_(ccx, tys, llshimfn, llwrapfn, ccx.upcalls.call_shim_on_c_stack, false, build_args, build_ret); fn build_args(bcx: block, tys: &ShimTypes, llwrapfn: ValueRef, llargbundle: ValueRef) { let _icx = push_ctxt("foreign::wrap::build_args"); let ccx = bcx.ccx(); let n = tys.llsig.llarg_tys.len(); for uint::range(0, n) |i| { let arg_i = bcx.fcx.arg_pos(i); let mut llargval = get_param(llwrapfn, arg_i); // In some cases, Rust will pass a pointer which the // native C type doesn't have. In that case, just // load the value from the pointer. if type_of::arg_is_indirect(ccx, &tys.fn_sig.inputs[i]) { llargval = Load(bcx, llargval); } store_inbounds(bcx, llargval, llargbundle, [0u, i]); } for bcx.fcx.llretptr.iter().advance |&retptr| { store_inbounds(bcx, retptr, llargbundle, [0u, n]); } } fn build_ret(bcx: block, shim_types: &ShimTypes, llargbundle: ValueRef) { let _icx = push_ctxt("foreign::wrap::build_ret"); let arg_count = shim_types.fn_sig.inputs.len(); for bcx.fcx.llretptr.iter().advance |&retptr| { let llretptr = load_inbounds(bcx, llargbundle, [0, arg_count]); Store(bcx, Load(bcx, llretptr), retptr); } build_return(bcx); } } } pub fn trans_intrinsic(ccx: @mut CrateContext, decl: ValueRef, item: &ast::foreign_item, path: ast_map::path, substs: @param_substs, attributes: &[ast::attribute], ref_id: Option) { debug!("trans_intrinsic(item.ident=%s)", ccx.sess.str_of(item.ident)); let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx, item.id)); let fcx = new_fn_ctxt_w_id(ccx, path, decl, item.id, output_type, Some(substs), Some(item.span)); // Set the fixed stack segment flag if necessary. if attr::attrs_contains_name(attributes, "fixed_stack_segment") { set_fixed_stack_segment(fcx.llfn); } let mut bcx = top_scope_block(fcx, None); let lltop = bcx.llbb; let first_real_arg = fcx.arg_pos(0u); let nm = ccx.sess.str_of(item.ident); let name = nm.as_slice(); // This requires that atomic intrinsics follow a specific naming pattern: // "atomic_[_], and no ordering means SeqCst if name.starts_with("atomic_") { let split : ~[&str] = name.split_iter('_').collect(); assert!(split.len() >= 2, "Atomic intrinsic not correct format"); let order = if split.len() == 2 { lib::llvm::SequentiallyConsistent } else { match split[2] { "relaxed" => lib::llvm::Monotonic, "acq" => lib::llvm::Acquire, "rel" => lib::llvm::Release, "acqrel" => lib::llvm::AcquireRelease, _ => ccx.sess.fatal("Unknown ordering in atomic intrinsic") } }; match split[1] { "cxchg" => { let old = AtomicCmpXchg(bcx, get_param(decl, first_real_arg), get_param(decl, first_real_arg + 1u), get_param(decl, first_real_arg + 2u), order); Store(bcx, old, fcx.llretptr.get()); } "load" => { let old = AtomicLoad(bcx, get_param(decl, first_real_arg), order); Store(bcx, old, fcx.llretptr.get()); } "store" => { AtomicStore(bcx, get_param(decl, first_real_arg + 1u), get_param(decl, first_real_arg), order); } op => { // These are all AtomicRMW ops let atom_op = match op { "xchg" => lib::llvm::Xchg, "xadd" => lib::llvm::Add, "xsub" => lib::llvm::Sub, "and" => lib::llvm::And, "nand" => lib::llvm::Nand, "or" => lib::llvm::Or, "xor" => lib::llvm::Xor, "max" => lib::llvm::Max, "min" => lib::llvm::Min, "umax" => lib::llvm::UMax, "umin" => lib::llvm::UMin, _ => ccx.sess.fatal("Unknown atomic operation") }; let old = AtomicRMW(bcx, atom_op, get_param(decl, first_real_arg), get_param(decl, first_real_arg + 1u), order); Store(bcx, old, fcx.llretptr.get()); } } build_return(bcx); finish_fn(fcx, lltop); return; } match name { "size_of" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); Store(bcx, C_uint(ccx, machine::llsize_of_real(ccx, lltp_ty)), fcx.llretptr.get()); } "move_val" => { // Create a datum reflecting the value being moved. // Use `appropriate_mode` so that the datum is by ref // if the value is non-immediate. Note that, with // intrinsics, there are no argument cleanups to // concern ourselves with. let tp_ty = substs.tys[0]; let mode = appropriate_mode(ccx.tcx, tp_ty); let src = Datum {val: get_param(decl, first_real_arg + 1u), ty: tp_ty, mode: mode}; bcx = src.move_to(bcx, DROP_EXISTING, get_param(decl, first_real_arg)); } "move_val_init" => { // See comments for `"move_val"`. let tp_ty = substs.tys[0]; let mode = appropriate_mode(ccx.tcx, tp_ty); let src = Datum {val: get_param(decl, first_real_arg + 1u), ty: tp_ty, mode: mode}; bcx = src.move_to(bcx, INIT, get_param(decl, first_real_arg)); } "min_align_of" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); Store(bcx, C_uint(ccx, machine::llalign_of_min(ccx, lltp_ty)), fcx.llretptr.get()); } "pref_align_of"=> { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); Store(bcx, C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty)), fcx.llretptr.get()); } "get_tydesc" => { let tp_ty = substs.tys[0]; let static_ti = get_tydesc(ccx, tp_ty); glue::lazily_emit_all_tydesc_glue(ccx, static_ti); // FIXME (#3730): ideally this shouldn't need a cast, // but there's a circularity between translating rust types to llvm // types and having a tydesc type available. So I can't directly access // the llvm type of intrinsic::TyDesc struct. let userland_tydesc_ty = type_of::type_of(ccx, output_type); let td = PointerCast(bcx, static_ti.tydesc, userland_tydesc_ty); Store(bcx, td, fcx.llretptr.get()); } "init" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); if !ty::type_is_nil(tp_ty) { Store(bcx, C_null(lltp_ty), fcx.llretptr.get()); } } "uninit" => { // Do nothing, this is effectively a no-op } "forget" => {} "transmute" => { let (in_type, out_type) = (substs.tys[0], substs.tys[1]); let llintype = type_of::type_of(ccx, in_type); let llouttype = type_of::type_of(ccx, out_type); let in_type_size = machine::llbitsize_of_real(ccx, llintype); let out_type_size = machine::llbitsize_of_real(ccx, llouttype); if in_type_size != out_type_size { let sp = match ccx.tcx.items.get_copy(&ref_id.get()) { ast_map::node_expr(e) => e.span, _ => fail!("transmute has non-expr arg"), }; let pluralize = |n| if 1u == n { "" } else { "s" }; ccx.sess.span_fatal(sp, fmt!("transmute called on types with \ different sizes: %s (%u bit%s) to \ %s (%u bit%s)", ty_to_str(ccx.tcx, in_type), in_type_size, pluralize(in_type_size), ty_to_str(ccx.tcx, out_type), out_type_size, pluralize(out_type_size))); } if !ty::type_is_nil(out_type) { // NB: Do not use a Load and Store here. This causes massive // code bloat when `transmute` is used on large structural // types. let lldestptr = fcx.llretptr.get(); let lldestptr = PointerCast(bcx, lldestptr, Type::i8p()); let llsrcval = get_param(decl, first_real_arg); let llsrcptr = if ty::type_is_immediate(ccx.tcx, in_type) { let llsrcptr = alloca(bcx, llintype); Store(bcx, llsrcval, llsrcptr); llsrcptr } else { llsrcval }; let llsrcptr = PointerCast(bcx, llsrcptr, Type::i8p()); let llsize = llsize_of(ccx, llintype); call_memcpy(bcx, lldestptr, llsrcptr, llsize, 1); } } "needs_drop" => { let tp_ty = substs.tys[0]; Store(bcx, C_bool(ty::type_needs_drop(ccx.tcx, tp_ty)), fcx.llretptr.get()); } "contains_managed" => { let tp_ty = substs.tys[0]; Store(bcx, C_bool(ty::type_contents(ccx.tcx, tp_ty).contains_managed()), fcx.llretptr.get()); } "visit_tydesc" => { let td = get_param(decl, first_real_arg); let visitor = get_param(decl, first_real_arg + 1u); //let llvisitorptr = alloca(bcx, val_ty(visitor)); //Store(bcx, visitor, llvisitorptr); let td = PointerCast(bcx, td, ccx.tydesc_type.ptr_to()); glue::call_tydesc_glue_full(bcx, visitor, td, abi::tydesc_field_visit_glue, None); } "frame_address" => { let frameaddress = ccx.intrinsics.get_copy(& &"llvm.frameaddress"); let frameaddress_val = Call(bcx, frameaddress, [C_i32(0i32)]); let star_u8 = ty::mk_imm_ptr( bcx.tcx(), ty::mk_mach_uint(ast::ty_u8)); let fty = ty::mk_closure(bcx.tcx(), ty::ClosureTy { purity: ast::impure_fn, sigil: ast::BorrowedSigil, onceness: ast::Many, region: ty::re_bound(ty::br_anon(0)), bounds: ty::EmptyBuiltinBounds(), sig: FnSig { bound_lifetime_names: opt_vec::Empty, inputs: ~[ star_u8 ], output: ty::mk_nil() } }); let datum = Datum {val: get_param(decl, first_real_arg), mode: ByRef(ZeroMem), ty: fty}; let arg_vals = ~[frameaddress_val]; bcx = trans_call_inner( bcx, None, fty, ty::mk_nil(), |bcx| Callee {bcx: bcx, data: Closure(datum)}, ArgVals(arg_vals), Ignore, DontAutorefArg); } "morestack_addr" => { // XXX This is a hack to grab the address of this particular // native function. There should be a general in-language // way to do this let llfty = type_of_fn(bcx.ccx(), [], ty::mk_nil()); let morestack_addr = decl_cdecl_fn( bcx.ccx().llmod, "__morestack", llfty); let morestack_addr = PointerCast(bcx, morestack_addr, Type::nil().ptr_to()); Store(bcx, morestack_addr, fcx.llretptr.get()); } "memcpy32" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = C_i32(machine::llsize_of_real(ccx, lltp_ty) as i32); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p()); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(& &"llvm.memcpy.p0i8.p0i8.i32"); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, volatile]); } "memcpy64" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = C_i64(machine::llsize_of_real(ccx, lltp_ty) as i64); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p()); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(& &"llvm.memcpy.p0i8.p0i8.i64"); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, volatile]); } "memmove32" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = C_i32(machine::llsize_of_real(ccx, lltp_ty) as i32); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p()); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(& &"llvm.memmove.p0i8.p0i8.i32"); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, volatile]); } "memmove64" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = C_i64(machine::llsize_of_real(ccx, lltp_ty) as i64); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p()); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(& &"llvm.memmove.p0i8.p0i8.i64"); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, volatile]); } "memset32" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = C_i32(machine::llsize_of_real(ccx, lltp_ty) as i32); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let val = get_param(decl, first_real_arg + 1); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(& &"llvm.memset.p0i8.i32"); Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, volatile]); } "memset64" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = C_i64(machine::llsize_of_real(ccx, lltp_ty) as i64); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let val = get_param(decl, first_real_arg + 1); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(& &"llvm.memset.p0i8.i64"); Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, volatile]); } "sqrtf32" => { let x = get_param(decl, first_real_arg); let sqrtf = ccx.intrinsics.get_copy(& &"llvm.sqrt.f32"); Store(bcx, Call(bcx, sqrtf, [x]), fcx.llretptr.get()); } "sqrtf64" => { let x = get_param(decl, first_real_arg); let sqrtf = ccx.intrinsics.get_copy(& &"llvm.sqrt.f64"); Store(bcx, Call(bcx, sqrtf, [x]), fcx.llretptr.get()); } "powif32" => { let a = get_param(decl, first_real_arg); let x = get_param(decl, first_real_arg + 1u); let powif = ccx.intrinsics.get_copy(& &"llvm.powi.f32"); Store(bcx, Call(bcx, powif, [a, x]), fcx.llretptr.get()); } "powif64" => { let a = get_param(decl, first_real_arg); let x = get_param(decl, first_real_arg + 1u); let powif = ccx.intrinsics.get_copy(& &"llvm.powi.f64"); Store(bcx, Call(bcx, powif, [a, x]), fcx.llretptr.get()); } "sinf32" => { let x = get_param(decl, first_real_arg); let sinf = ccx.intrinsics.get_copy(& &"llvm.sin.f32"); Store(bcx, Call(bcx, sinf, [x]), fcx.llretptr.get()); } "sinf64" => { let x = get_param(decl, first_real_arg); let sinf = ccx.intrinsics.get_copy(& &"llvm.sin.f64"); Store(bcx, Call(bcx, sinf, [x]), fcx.llretptr.get()); } "cosf32" => { let x = get_param(decl, first_real_arg); let cosf = ccx.intrinsics.get_copy(& &"llvm.cos.f32"); Store(bcx, Call(bcx, cosf, [x]), fcx.llretptr.get()); } "cosf64" => { let x = get_param(decl, first_real_arg); let cosf = ccx.intrinsics.get_copy(& &"llvm.cos.f64"); Store(bcx, Call(bcx, cosf, [x]), fcx.llretptr.get()); } "powf32" => { let a = get_param(decl, first_real_arg); let x = get_param(decl, first_real_arg + 1u); let powf = ccx.intrinsics.get_copy(& &"llvm.pow.f32"); Store(bcx, Call(bcx, powf, [a, x]), fcx.llretptr.get()); } "powf64" => { let a = get_param(decl, first_real_arg); let x = get_param(decl, first_real_arg + 1u); let powf = ccx.intrinsics.get_copy(& &"llvm.pow.f64"); Store(bcx, Call(bcx, powf, [a, x]), fcx.llretptr.get()); } "expf32" => { let x = get_param(decl, first_real_arg); let expf = ccx.intrinsics.get_copy(& &"llvm.exp.f32"); Store(bcx, Call(bcx, expf, [x]), fcx.llretptr.get()); } "expf64" => { let x = get_param(decl, first_real_arg); let expf = ccx.intrinsics.get_copy(& &"llvm.exp.f64"); Store(bcx, Call(bcx, expf, [x]), fcx.llretptr.get()); } "exp2f32" => { let x = get_param(decl, first_real_arg); let exp2f = ccx.intrinsics.get_copy(& &"llvm.exp2.f32"); Store(bcx, Call(bcx, exp2f, [x]), fcx.llretptr.get()); } "exp2f64" => { let x = get_param(decl, first_real_arg); let exp2f = ccx.intrinsics.get_copy(& &"llvm.exp2.f64"); Store(bcx, Call(bcx, exp2f, [x]), fcx.llretptr.get()); } "logf32" => { let x = get_param(decl, first_real_arg); let logf = ccx.intrinsics.get_copy(& &"llvm.log.f32"); Store(bcx, Call(bcx, logf, [x]), fcx.llretptr.get()); } "logf64" => { let x = get_param(decl, first_real_arg); let logf = ccx.intrinsics.get_copy(& &"llvm.log.f64"); Store(bcx, Call(bcx, logf, [x]), fcx.llretptr.get()); } "log10f32" => { let x = get_param(decl, first_real_arg); let log10f = ccx.intrinsics.get_copy(& &"llvm.log10.f32"); Store(bcx, Call(bcx, log10f, [x]), fcx.llretptr.get()); } "log10f64" => { let x = get_param(decl, first_real_arg); let log10f = ccx.intrinsics.get_copy(& &"llvm.log10.f64"); Store(bcx, Call(bcx, log10f, [x]), fcx.llretptr.get()); } "log2f32" => { let x = get_param(decl, first_real_arg); let log2f = ccx.intrinsics.get_copy(& &"llvm.log2.f32"); Store(bcx, Call(bcx, log2f, [x]), fcx.llretptr.get()); } "log2f64" => { let x = get_param(decl, first_real_arg); let log2f = ccx.intrinsics.get_copy(& &"llvm.log2.f64"); Store(bcx, Call(bcx, log2f, [x]), fcx.llretptr.get()); } "fmaf32" => { let a = get_param(decl, first_real_arg); let b = get_param(decl, first_real_arg + 1u); let c = get_param(decl, first_real_arg + 2u); let fmaf = ccx.intrinsics.get_copy(& &"llvm.fma.f32"); Store(bcx, Call(bcx, fmaf, [a, b, c]), fcx.llretptr.get()); } "fmaf64" => { let a = get_param(decl, first_real_arg); let b = get_param(decl, first_real_arg + 1u); let c = get_param(decl, first_real_arg + 2u); let fmaf = ccx.intrinsics.get_copy(& &"llvm.fma.f64"); Store(bcx, Call(bcx, fmaf, [a, b, c]), fcx.llretptr.get()); } "fabsf32" => { let x = get_param(decl, first_real_arg); let fabsf = ccx.intrinsics.get_copy(& &"llvm.fabs.f32"); Store(bcx, Call(bcx, fabsf, [x]), fcx.llretptr.get()); } "fabsf64" => { let x = get_param(decl, first_real_arg); let fabsf = ccx.intrinsics.get_copy(& &"llvm.fabs.f64"); Store(bcx, Call(bcx, fabsf, [x]), fcx.llretptr.get()); } "floorf32" => { let x = get_param(decl, first_real_arg); let floorf = ccx.intrinsics.get_copy(& &"llvm.floor.f32"); Store(bcx, Call(bcx, floorf, [x]), fcx.llretptr.get()); } "floorf64" => { let x = get_param(decl, first_real_arg); let floorf = ccx.intrinsics.get_copy(& &"llvm.floor.f64"); Store(bcx, Call(bcx, floorf, [x]), fcx.llretptr.get()); } "ceilf32" => { let x = get_param(decl, first_real_arg); let ceilf = ccx.intrinsics.get_copy(& &"llvm.ceil.f32"); Store(bcx, Call(bcx, ceilf, [x]), fcx.llretptr.get()); } "ceilf64" => { let x = get_param(decl, first_real_arg); let ceilf = ccx.intrinsics.get_copy(& &"llvm.ceil.f64"); Store(bcx, Call(bcx, ceilf, [x]), fcx.llretptr.get()); } "truncf32" => { let x = get_param(decl, first_real_arg); let truncf = ccx.intrinsics.get_copy(& &"llvm.trunc.f32"); Store(bcx, Call(bcx, truncf, [x]), fcx.llretptr.get()); } "truncf64" => { let x = get_param(decl, first_real_arg); let truncf = ccx.intrinsics.get_copy(& &"llvm.trunc.f64"); Store(bcx, Call(bcx, truncf, [x]), fcx.llretptr.get()); } "ctpop8" => { let x = get_param(decl, first_real_arg); let ctpop = ccx.intrinsics.get_copy(& &"llvm.ctpop.i8"); Store(bcx, Call(bcx, ctpop, [x]), fcx.llretptr.get()) } "ctpop16" => { let x = get_param(decl, first_real_arg); let ctpop = ccx.intrinsics.get_copy(& &"llvm.ctpop.i16"); Store(bcx, Call(bcx, ctpop, [x]), fcx.llretptr.get()) } "ctpop32" => { let x = get_param(decl, first_real_arg); let ctpop = ccx.intrinsics.get_copy(& &"llvm.ctpop.i32"); Store(bcx, Call(bcx, ctpop, [x]), fcx.llretptr.get()) } "ctpop64" => { let x = get_param(decl, first_real_arg); let ctpop = ccx.intrinsics.get_copy(& &"llvm.ctpop.i64"); Store(bcx, Call(bcx, ctpop, [x]), fcx.llretptr.get()) } "ctlz8" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let ctlz = ccx.intrinsics.get_copy(& &"llvm.ctlz.i8"); Store(bcx, Call(bcx, ctlz, [x, y]), fcx.llretptr.get()) } "ctlz16" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let ctlz = ccx.intrinsics.get_copy(& &"llvm.ctlz.i16"); Store(bcx, Call(bcx, ctlz, [x, y]), fcx.llretptr.get()) } "ctlz32" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let ctlz = ccx.intrinsics.get_copy(& &"llvm.ctlz.i32"); Store(bcx, Call(bcx, ctlz, [x, y]), fcx.llretptr.get()) } "ctlz64" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let ctlz = ccx.intrinsics.get_copy(& &"llvm.ctlz.i64"); Store(bcx, Call(bcx, ctlz, [x, y]), fcx.llretptr.get()) } "cttz8" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let cttz = ccx.intrinsics.get_copy(& &"llvm.cttz.i8"); Store(bcx, Call(bcx, cttz, [x, y]), fcx.llretptr.get()) } "cttz16" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let cttz = ccx.intrinsics.get_copy(& &"llvm.cttz.i16"); Store(bcx, Call(bcx, cttz, [x, y]), fcx.llretptr.get()) } "cttz32" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let cttz = ccx.intrinsics.get_copy(& &"llvm.cttz.i32"); Store(bcx, Call(bcx, cttz, [x, y]), fcx.llretptr.get()) } "cttz64" => { let x = get_param(decl, first_real_arg); let y = C_i1(false); let cttz = ccx.intrinsics.get_copy(& &"llvm.cttz.i64"); Store(bcx, Call(bcx, cttz, [x, y]), fcx.llretptr.get()) } "bswap16" => { let x = get_param(decl, first_real_arg); let cttz = ccx.intrinsics.get_copy(& &"llvm.bswap.i16"); Store(bcx, Call(bcx, cttz, [x]), fcx.llretptr.get()) } "bswap32" => { let x = get_param(decl, first_real_arg); let cttz = ccx.intrinsics.get_copy(& &"llvm.bswap.i32"); Store(bcx, Call(bcx, cttz, [x]), fcx.llretptr.get()) } "bswap64" => { let x = get_param(decl, first_real_arg); let cttz = ccx.intrinsics.get_copy(& &"llvm.bswap.i64"); Store(bcx, Call(bcx, cttz, [x]), fcx.llretptr.get()) } _ => { // Could we make this an enum rather than a string? does it get // checked earlier? ccx.sess.span_bug(item.span, "unknown intrinsic"); } } build_return(bcx); finish_fn(fcx, lltop); } /** * Translates a "crust" fn, meaning a Rust fn that can be called * from C code. In this case, we have to perform some adaptation * to (1) switch back to the Rust stack and (2) adapt the C calling * convention to our own. * * Example: Given a crust fn F(x: X, y: Y) -> Z, we generate a * Rust function R as normal: * * void R(Z* dest, void *env, X x, Y y) {...} * * and then we generate a wrapper function W that looks like: * * Z W(X x, Y y) { * struct { X x; Y y; Z *z; } args = { x, y, z }; * call_on_c_stack_shim(S, &args); * } * * Note that the wrapper follows the foreign (typically "C") ABI. * The wrapper is the actual "value" of the foreign fn. Finally, * we generate a shim function S that looks like: * * void S(struct { X x; Y y; Z *z; } *args) { * R(args->z, NULL, args->x, args->y); * } */ pub fn trans_foreign_fn(ccx: @mut CrateContext, path: ast_map::path, decl: &ast::fn_decl, body: &ast::blk, llwrapfn: ValueRef, id: ast::node_id) { let _icx = push_ctxt("foreign::build_foreign_fn"); fn build_rust_fn(ccx: @mut CrateContext, path: ast_map::path, decl: &ast::fn_decl, body: &ast::blk, id: ast::node_id) -> ValueRef { let _icx = push_ctxt("foreign::foreign::build_rust_fn"); let t = ty::node_id_to_type(ccx.tcx, id); // XXX: Bad copy. let ps = link::mangle_internal_name_by_path( ccx, vec::append_one(copy path, ast_map::path_name( special_idents::clownshoe_abi ))); let llty = type_of_fn_from_ty(ccx, t); let llfndecl = decl_internal_cdecl_fn(ccx.llmod, ps, llty); trans_fn(ccx, path, decl, body, llfndecl, no_self, None, id, []); return llfndecl; } fn build_shim_fn(ccx: @mut CrateContext, path: ast_map::path, llrustfn: ValueRef, tys: &ShimTypes) -> ValueRef { /*! * * Generate the shim S: * * void S(struct { X x; Y y; Z *z; } *args) { * R(args->z, NULL, &args->x, args->y); * } * * One complication is that we must adapt to the Rust * calling convention, which introduces indirection * in some cases. To demonstrate this, I wrote one of the * entries above as `&args->x`, because presumably `X` is * one of those types that is passed by pointer in Rust. */ let _icx = push_ctxt("foreign::foreign::build_shim_fn"); fn build_args(bcx: block, tys: &ShimTypes, llargbundle: ValueRef) -> ~[ValueRef] { let _icx = push_ctxt("foreign::extern::shim::build_args"); let ccx = bcx.ccx(); let mut llargvals = ~[]; let mut i = 0u; let n = tys.fn_sig.inputs.len(); if !ty::type_is_immediate(bcx.tcx(), tys.fn_sig.output) { let llretptr = load_inbounds(bcx, llargbundle, [0u, n]); llargvals.push(llretptr); } let llenvptr = C_null(Type::opaque_box(bcx.ccx()).ptr_to()); llargvals.push(llenvptr); while i < n { // Get a pointer to the argument: let mut llargval = GEPi(bcx, llargbundle, [0u, i]); if !type_of::arg_is_indirect(ccx, &tys.fn_sig.inputs[i]) { // If Rust would pass this by value, load the value. llargval = Load(bcx, llargval); } llargvals.push(llargval); i += 1u; } return llargvals; } fn build_ret(bcx: block, shim_types: &ShimTypes, llargbundle: ValueRef, llretval: ValueRef) { if bcx.fcx.llretptr.is_some() && ty::type_is_immediate(bcx.tcx(), shim_types.fn_sig.output) { // Write the value into the argument bundle. let arg_count = shim_types.fn_sig.inputs.len(); let llretptr = load_inbounds(bcx, llargbundle, [0, arg_count]); Store(bcx, llretval, llretptr); } else { // NB: The return pointer in the Rust ABI function is wired // directly into the return slot in the shim struct. } build_return(bcx); } let shim_name = link::mangle_internal_name_by_path( ccx, vec::append_one(path, ast_map::path_name( special_idents::clownshoe_stack_shim ))); build_shim_fn_(ccx, shim_name, llrustfn, tys, lib::llvm::CCallConv, build_args, build_ret) } fn build_wrap_fn(ccx: @mut CrateContext, llshimfn: ValueRef, llwrapfn: ValueRef, tys: &ShimTypes) { /*! * * Generate the wrapper W: * * Z W(X x, Y y) { * struct { X x; Y y; Z *z; } args = { x, y, z }; * call_on_c_stack_shim(S, &args); * } */ let _icx = push_ctxt("foreign::foreign::build_wrap_fn"); build_wrap_fn_(ccx, tys, llshimfn, llwrapfn, ccx.upcalls.call_shim_on_rust_stack, true, build_args, build_ret); fn build_args(bcx: block, tys: &ShimTypes, llwrapfn: ValueRef, llargbundle: ValueRef) { let _icx = push_ctxt("foreign::foreign::wrap::build_args"); tys.fn_ty.build_wrap_args(bcx, tys.llsig.llret_ty, llwrapfn, llargbundle); } fn build_ret(bcx: block, tys: &ShimTypes, llargbundle: ValueRef) { let _icx = push_ctxt("foreign::foreign::wrap::build_ret"); tys.fn_ty.build_wrap_ret(bcx, tys.llsig.llarg_tys, llargbundle); build_return(bcx); } } let tys = shim_types(ccx, id); // The internal Rust ABI function - runs on the Rust stack // XXX: Bad copy. let llrustfn = build_rust_fn(ccx, copy path, decl, body, id); // The internal shim function - runs on the Rust stack let llshimfn = build_shim_fn(ccx, path, llrustfn, &tys); // The foreign C function - runs on the C stack build_wrap_fn(ccx, llshimfn, llwrapfn, &tys) } pub fn register_foreign_fn(ccx: @mut CrateContext, sp: span, path: ast_map::path, node_id: ast::node_id, attrs: &[ast::attribute]) -> ValueRef { let _icx = push_ctxt("foreign::register_foreign_fn"); let t = ty::node_id_to_type(ccx.tcx, node_id); let tys = shim_types(ccx, node_id); do tys.fn_ty.decl_fn |fnty| { register_fn_fuller(ccx, sp, /*bad*/copy path, node_id, attrs, t, lib::llvm::CCallConv, fnty) } }