// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Primitive traits and types representing basic properties of types. //! //! Rust types can be classified in various useful ways according to //! their intrinsic properties. These classifications are represented //! as traits. #![stable(feature = "rust1", since = "1.0.0")] use cell::UnsafeCell; use cmp; use hash::Hash; use hash::Hasher; /// Types that can be transferred across thread boundaries. /// /// This trait is automatically implemented when the compiler determines it's /// appropriate. /// /// An example of a non-`Send` type is the reference-counting pointer /// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same /// reference-counted value, they might try to update the reference count at the /// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic /// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring /// some overhead) and thus is `Send`. /// /// See [the Nomicon](../../nomicon/send-and-sync.html) for more details. /// /// [`Rc`]: ../../std/rc/struct.Rc.html /// [arc]: ../../std/sync/struct.Arc.html /// [ub]: ../../reference/behavior-considered-undefined.html #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( message="`{Self}` cannot be sent between threads safely", label="`{Self}` cannot be sent between threads safely" )] pub unsafe auto trait Send { // empty. } #[stable(feature = "rust1", since = "1.0.0")] impl !Send for *const T { } #[stable(feature = "rust1", since = "1.0.0")] impl !Send for *mut T { } /// Types with a constant size known at compile time. /// /// All type parameters have an implicit bound of `Sized`. The special syntax /// `?Sized` can be used to remove this bound if it's not appropriate. /// /// ``` /// # #![allow(dead_code)] /// struct Foo(T); /// struct Bar(T); /// /// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32] /// struct BarUse(Bar<[i32]>); // OK /// ``` /// /// The one exception is the implicit `Self` type of a trait. A trait does not /// have an implicit `Sized` bound as this is incompatible with [trait object]s /// where, by definition, the trait needs to work with all possible implementors, /// and thus could be any size. /// /// Although Rust will let you bind `Sized` to a trait, you won't /// be able to use it to form a trait object later: /// /// ``` /// # #![allow(unused_variables)] /// trait Foo { } /// trait Bar: Sized { } /// /// struct Impl; /// impl Foo for Impl { } /// impl Bar for Impl { } /// /// let x: &Foo = &Impl; // OK /// // let y: &Bar = &Impl; // error: the trait `Bar` cannot /// // be made into an object /// ``` /// /// [trait object]: ../../book/first-edition/trait-objects.html #[stable(feature = "rust1", since = "1.0.0")] #[lang = "sized"] #[rustc_on_unimplemented( on(parent_trait="std::path::Path", label="borrow the `Path` instead"), message="the size for values of type `{Self}` cannot be known at compilation time", label="doesn't have a size known at compile-time", note="to learn more, visit ", )] #[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable pub trait Sized { // Empty. } /// Types that can be "unsized" to a dynamically-sized type. /// /// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and /// `Unsize`. /// /// All implementations of `Unsize` are provided automatically by the compiler. /// /// `Unsize` is implemented for: /// /// - `[T; N]` is `Unsize<[T]>` /// - `T` is `Unsize` when `T: Trait` /// - `Foo<..., T, ...>` is `Unsize>` if: /// - `T: Unsize` /// - Foo is a struct /// - Only the last field of `Foo` has a type involving `T` /// - `T` is not part of the type of any other fields /// - `Bar: Unsize>`, if the last field of `Foo` has type `Bar` /// /// `Unsize` is used along with [`ops::CoerceUnsized`][coerceunsized] to allow /// "user-defined" containers such as [`rc::Rc`][rc] to contain dynamically-sized /// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce] /// for more details. /// /// [coerceunsized]: ../ops/trait.CoerceUnsized.html /// [rc]: ../../std/rc/struct.Rc.html /// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md /// [nomicon-coerce]: ../../nomicon/coercions.html #[unstable(feature = "unsize", issue = "27732")] #[lang = "unsize"] pub trait Unsize { // Empty. } /// Types whose values can be duplicated simply by copying bits. /// /// By default, variable bindings have 'move semantics.' In other /// words: /// /// ``` /// #[derive(Debug)] /// struct Foo; /// /// let x = Foo; /// /// let y = x; /// /// // `x` has moved into `y`, and so cannot be used /// /// // println!("{:?}", x); // error: use of moved value /// ``` /// /// However, if a type implements `Copy`, it instead has 'copy semantics': /// /// ``` /// // We can derive a `Copy` implementation. `Clone` is also required, as it's /// // a supertrait of `Copy`. /// #[derive(Debug, Copy, Clone)] /// struct Foo; /// /// let x = Foo; /// /// let y = x; /// /// // `y` is a copy of `x` /// /// println!("{:?}", x); // A-OK! /// ``` /// /// It's important to note that in these two examples, the only difference is whether you /// are allowed to access `x` after the assignment. Under the hood, both a copy and a move /// can result in bits being copied in memory, although this is sometimes optimized away. /// /// ## How can I implement `Copy`? /// /// There are two ways to implement `Copy` on your type. The simplest is to use `derive`: /// /// ``` /// #[derive(Copy, Clone)] /// struct MyStruct; /// ``` /// /// You can also implement `Copy` and `Clone` manually: /// /// ``` /// struct MyStruct; /// /// impl Copy for MyStruct { } /// /// impl Clone for MyStruct { /// fn clone(&self) -> MyStruct { /// *self /// } /// } /// ``` /// /// There is a small difference between the two: the `derive` strategy will also place a `Copy` /// bound on type parameters, which isn't always desired. /// /// ## What's the difference between `Copy` and `Clone`? /// /// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of /// `Copy` is not overloadable; it is always a simple bit-wise copy. /// /// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can /// provide any type-specific behavior necessary to duplicate values safely. For example, /// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string /// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the /// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`] /// but not `Copy`. /// /// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement /// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self` /// (see the example above). /// /// ## When can my type be `Copy`? /// /// A type can implement `Copy` if all of its components implement `Copy`. For example, this /// struct can be `Copy`: /// /// ``` /// # #[allow(dead_code)] /// struct Point { /// x: i32, /// y: i32, /// } /// ``` /// /// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`. /// By contrast, consider /// /// ``` /// # #![allow(dead_code)] /// # struct Point; /// struct PointList { /// points: Vec, /// } /// ``` /// /// The struct `PointList` cannot implement `Copy`, because [`Vec`] is not `Copy`. If we /// attempt to derive a `Copy` implementation, we'll get an error: /// /// ```text /// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy` /// ``` /// /// ## When *can't* my type be `Copy`? /// /// Some types can't be copied safely. For example, copying `&mut T` would create an aliased /// mutable reference. Copying [`String`] would duplicate responsibility for managing the /// [`String`]'s buffer, leading to a double free. /// /// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's /// managing some resource besides its own [`size_of::`] bytes. /// /// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get /// the error [E0204]. /// /// [E0204]: ../../error-index.html#E0204 /// /// ## When *should* my type be `Copy`? /// /// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though, /// that implementing `Copy` is part of the public API of your type. If the type might become /// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to /// avoid a breaking API change. /// /// ## Additional implementors /// /// In addition to the [implementors listed below][impls], /// the following types also implement `Copy`: /// /// * Function item types (i.e. the distinct types defined for each function) /// * Function pointer types (e.g. `fn() -> i32`) /// * Array types, for all sizes, if the item type also implements `Copy` (e.g. `[i32; 123456]`) /// * Tuple types, if each component also implements `Copy` (e.g. `()`, `(i32, bool)`) /// * Closure types, if they capture no value from the environment /// or if all such captured values implement `Copy` themselves. /// Note that variables captured by shared reference always implement `Copy` /// (even if the referent doesn't), /// while variables captured by mutable reference never implement `Copy`. /// /// [`Vec`]: ../../std/vec/struct.Vec.html /// [`String`]: ../../std/string/struct.String.html /// [`Drop`]: ../../std/ops/trait.Drop.html /// [`size_of::`]: ../../std/mem/fn.size_of.html /// [`Clone`]: ../clone/trait.Clone.html /// [`String`]: ../../std/string/struct.String.html /// [`i32`]: ../../std/primitive.i32.html /// [impls]: #implementors #[stable(feature = "rust1", since = "1.0.0")] #[lang = "copy"] pub trait Copy : Clone { // Empty. } /// Types for which it is safe to share references between threads. /// /// This trait is automatically implemented when the compiler determines /// it's appropriate. /// /// The precise definition is: a type `T` is `Sync` if and only if `&T` is /// [`Send`][send]. In other words, if there is no possibility of /// [undefined behavior][ub] (including data races) when passing /// `&T` references between threads. /// /// As one would expect, primitive types like [`u8`][u8] and [`f64`][f64] /// are all `Sync`, and so are simple aggregate types containing them, /// like tuples, structs and enums. More examples of basic `Sync` /// types include "immutable" types like `&T`, and those with simple /// inherited mutability, such as [`Box`][box], [`Vec`][vec] and /// most other collection types. (Generic parameters need to be `Sync` /// for their container to be `Sync`.) /// /// A somewhat surprising consequence of the definition is that `&mut T` /// is `Sync` (if `T` is `Sync`) even though it seems like that might /// provide unsynchronized mutation. The trick is that a mutable /// reference behind a shared reference (that is, `& &mut T`) /// becomes read-only, as if it were a `& &T`. Hence there is no risk /// of a data race. /// /// Types that are not `Sync` are those that have "interior /// mutability" in a non-thread-safe form, such as [`cell::Cell`][cell] /// and [`cell::RefCell`][refcell]. These types allow for mutation of /// their contents even through an immutable, shared reference. For /// example the `set` method on [`Cell`][cell] takes `&self`, so it requires /// only a shared reference [`&Cell`][cell]. The method performs no /// synchronization, thus [`Cell`][cell] cannot be `Sync`. /// /// Another example of a non-`Sync` type is the reference-counting /// pointer [`rc::Rc`][rc]. Given any reference [`&Rc`][rc], you can clone /// a new [`Rc`][rc], modifying the reference counts in a non-atomic way. /// /// For cases when one does need thread-safe interior mutability, /// Rust provides [atomic data types], as well as explicit locking via /// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types /// ensure that any mutation cannot cause data races, hence the types /// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe /// analogue of [`Rc`][rc]. /// /// Any types with interior mutability must also use the /// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which /// can be mutated through a shared reference. Failing to doing this is /// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing /// from `&T` to `&mut T` is invalid. /// /// See [the Nomicon](../../nomicon/send-and-sync.html) for more /// details about `Sync`. /// /// [send]: trait.Send.html /// [u8]: ../../std/primitive.u8.html /// [f64]: ../../std/primitive.f64.html /// [box]: ../../std/boxed/struct.Box.html /// [vec]: ../../std/vec/struct.Vec.html /// [cell]: ../cell/struct.Cell.html /// [refcell]: ../cell/struct.RefCell.html /// [rc]: ../../std/rc/struct.Rc.html /// [arc]: ../../std/sync/struct.Arc.html /// [atomic data types]: ../sync/atomic/index.html /// [mutex]: ../../std/sync/struct.Mutex.html /// [rwlock]: ../../std/sync/struct.RwLock.html /// [unsafecell]: ../cell/struct.UnsafeCell.html /// [ub]: ../../reference/behavior-considered-undefined.html /// [transmute]: ../../std/mem/fn.transmute.html #[stable(feature = "rust1", since = "1.0.0")] #[lang = "sync"] #[rustc_on_unimplemented( message="`{Self}` cannot be shared between threads safely", label="`{Self}` cannot be shared between threads safely" )] pub unsafe auto trait Sync { // FIXME(estebank): once support to add notes in `rustc_on_unimplemented` // lands in beta, and it has been extended to check whether a closure is // anywhere in the requirement chain, extend it as such (#48534): // ``` // on( // closure, // note="`{Self}` cannot be shared safely, consider marking the closure `move`" // ), // ``` // Empty } #[stable(feature = "rust1", since = "1.0.0")] impl !Sync for *const T { } #[stable(feature = "rust1", since = "1.0.0")] impl !Sync for *mut T { } macro_rules! impls{ ($t: ident) => ( #[stable(feature = "rust1", since = "1.0.0")] impl Hash for $t { #[inline] fn hash(&self, _: &mut H) { } } #[stable(feature = "rust1", since = "1.0.0")] impl cmp::PartialEq for $t { fn eq(&self, _other: &$t) -> bool { true } } #[stable(feature = "rust1", since = "1.0.0")] impl cmp::Eq for $t { } #[stable(feature = "rust1", since = "1.0.0")] impl cmp::PartialOrd for $t { fn partial_cmp(&self, _other: &$t) -> Option { Option::Some(cmp::Ordering::Equal) } } #[stable(feature = "rust1", since = "1.0.0")] impl cmp::Ord for $t { fn cmp(&self, _other: &$t) -> cmp::Ordering { cmp::Ordering::Equal } } #[stable(feature = "rust1", since = "1.0.0")] impl Copy for $t { } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for $t { fn clone(&self) -> $t { $t } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for $t { fn default() -> $t { $t } } ) } /// Zero-sized type used to mark things that "act like" they own a `T`. /// /// Adding a `PhantomData` field to your type tells the compiler that your /// type acts as though it stores a value of type `T`, even though it doesn't /// really. This information is used when computing certain safety properties. /// /// For a more in-depth explanation of how to use `PhantomData`, please see /// [the Nomicon](../../nomicon/phantom-data.html). /// /// # A ghastly note 👻👻👻 /// /// Though they both have scary names, `PhantomData` and 'phantom types' are /// related, but not identical. A phantom type parameter is simply a type /// parameter which is never used. In Rust, this often causes the compiler to /// complain, and the solution is to add a "dummy" use by way of `PhantomData`. /// /// # Examples /// /// ## Unused lifetime parameters /// /// Perhaps the most common use case for `PhantomData` is a struct that has an /// unused lifetime parameter, typically as part of some unsafe code. For /// example, here is a struct `Slice` that has two pointers of type `*const T`, /// presumably pointing into an array somewhere: /// /// ```compile_fail,E0392 /// struct Slice<'a, T> { /// start: *const T, /// end: *const T, /// } /// ``` /// /// The intention is that the underlying data is only valid for the /// lifetime `'a`, so `Slice` should not outlive `'a`. However, this /// intent is not expressed in the code, since there are no uses of /// the lifetime `'a` and hence it is not clear what data it applies /// to. We can correct this by telling the compiler to act *as if* the /// `Slice` struct contained a reference `&'a T`: /// /// ``` /// use std::marker::PhantomData; /// /// # #[allow(dead_code)] /// struct Slice<'a, T: 'a> { /// start: *const T, /// end: *const T, /// phantom: PhantomData<&'a T>, /// } /// ``` /// /// This also in turn requires the annotation `T: 'a`, indicating /// that any references in `T` are valid over the lifetime `'a`. /// /// When initializing a `Slice` you simply provide the value /// `PhantomData` for the field `phantom`: /// /// ``` /// # #![allow(dead_code)] /// # use std::marker::PhantomData; /// # struct Slice<'a, T: 'a> { /// # start: *const T, /// # end: *const T, /// # phantom: PhantomData<&'a T>, /// # } /// fn borrow_vec<'a, T>(vec: &'a Vec) -> Slice<'a, T> { /// let ptr = vec.as_ptr(); /// Slice { /// start: ptr, /// end: unsafe { ptr.add(vec.len()) }, /// phantom: PhantomData, /// } /// } /// ``` /// /// ## Unused type parameters /// /// It sometimes happens that you have unused type parameters which /// indicate what type of data a struct is "tied" to, even though that /// data is not actually found in the struct itself. Here is an /// example where this arises with [FFI]. The foreign interface uses /// handles of type `*mut ()` to refer to Rust values of different /// types. We track the Rust type using a phantom type parameter on /// the struct `ExternalResource` which wraps a handle. /// /// [FFI]: ../../book/first-edition/ffi.html /// /// ``` /// # #![allow(dead_code)] /// # trait ResType { } /// # struct ParamType; /// # mod foreign_lib { /// # pub fn new(_: usize) -> *mut () { 42 as *mut () } /// # pub fn do_stuff(_: *mut (), _: usize) {} /// # } /// # fn convert_params(_: ParamType) -> usize { 42 } /// use std::marker::PhantomData; /// use std::mem; /// /// struct ExternalResource { /// resource_handle: *mut (), /// resource_type: PhantomData, /// } /// /// impl ExternalResource { /// fn new() -> ExternalResource { /// let size_of_res = mem::size_of::(); /// ExternalResource { /// resource_handle: foreign_lib::new(size_of_res), /// resource_type: PhantomData, /// } /// } /// /// fn do_stuff(&self, param: ParamType) { /// let foreign_params = convert_params(param); /// foreign_lib::do_stuff(self.resource_handle, foreign_params); /// } /// } /// ``` /// /// ## Ownership and the drop check /// /// Adding a field of type `PhantomData` indicates that your /// type owns data of type `T`. This in turn implies that when your /// type is dropped, it may drop one or more instances of the type /// `T`. This has bearing on the Rust compiler's [drop check] /// analysis. /// /// If your struct does not in fact *own* the data of type `T`, it is /// better to use a reference type, like `PhantomData<&'a T>` /// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so /// as not to indicate ownership. /// /// [drop check]: ../../nomicon/dropck.html #[lang = "phantom_data"] #[structural_match] #[stable(feature = "rust1", since = "1.0.0")] pub struct PhantomData; impls! { PhantomData } mod impls { #[stable(feature = "rust1", since = "1.0.0")] unsafe impl Send for &T {} #[stable(feature = "rust1", since = "1.0.0")] unsafe impl Send for &mut T {} } /// Compiler-internal trait used to determine whether a type contains /// any `UnsafeCell` internally, but not through an indirection. /// This affects, for example, whether a `static` of that type is /// placed in read-only static memory or writable static memory. #[lang = "freeze"] pub(crate) unsafe auto trait Freeze {} impl !Freeze for UnsafeCell {} unsafe impl Freeze for PhantomData {} unsafe impl Freeze for *const T {} unsafe impl Freeze for *mut T {} unsafe impl Freeze for &T {} unsafe impl Freeze for &mut T {} /// Types which can be safely moved after being pinned. /// /// Since Rust itself has no notion of immovable types, and will consider moves to always be safe, /// this trait cannot prevent types from moving by itself. /// /// Instead it can be used to prevent moves through the type system, /// by controlling the behavior of pointers wrapped in the [`Pin`] wrapper, /// which "pin" the type in place by not allowing it to be moved out of them. /// See the [`pin module`] documentation for more information on pinning. /// /// Implementing this trait lifts the restrictions of pinning off a type, /// which then allows it to move out with functions such as [`replace`]. /// /// So this, for example, can only be done on types implementing `Unpin`: /// /// ```rust /// #![feature(pin)] /// use std::mem::replace; /// use std::pin::Pin; /// /// let mut string = "this".to_string(); /// let mut pinned_string = Pin::new(&mut string); /// /// // dereferencing the pointer mutably is only possible because String implements Unpin /// replace(&mut *pinned_string, "other".to_string()); /// ``` /// /// This trait is automatically implemented for almost every type. /// /// [`replace`]: ../../std/mem/fn.replace.html /// [`Pin`]: ../pin/struct.Pin.html /// [`pin module`]: ../../std/pin/index.html #[unstable(feature = "pin", issue = "49150")] pub auto trait Unpin {} /// A type which does not implement `Unpin`. /// /// If a type contains a `Pinned`, it will not implement `Unpin` by default. #[unstable(feature = "pin", issue = "49150")] #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct Pinned; #[unstable(feature = "pin", issue = "49150")] impl !Unpin for Pinned {} #[unstable(feature = "pin", issue = "49150")] impl<'a, T: ?Sized + 'a> Unpin for &'a T {} #[unstable(feature = "pin", issue = "49150")] impl<'a, T: ?Sized + 'a> Unpin for &'a mut T {} /// Implementations of `Copy` for primitive types. /// /// Implementations that cannot be described in Rust /// are implemented in `SelectionContext::copy_clone_conditions()` in librustc. mod copy_impls { use super::Copy; macro_rules! impl_copy { ($($t:ty)*) => { $( #[stable(feature = "rust1", since = "1.0.0")] impl Copy for $t {} )* } } impl_copy! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 bool char } #[unstable(feature = "never_type", issue = "35121")] impl Copy for ! {} #[stable(feature = "rust1", since = "1.0.0")] impl Copy for *const T {} #[stable(feature = "rust1", since = "1.0.0")] impl Copy for *mut T {} // Shared references can be copied, but mutable references *cannot*! #[stable(feature = "rust1", since = "1.0.0")] impl Copy for &T {} }