# Miri [![Build Status](https://travis-ci.com/rust-lang/miri.svg?branch=master)](https://travis-ci.com/rust-lang/miri) [![Windows build status](https://ci.appveyor.com/api/projects/status/github/rust-lang/miri?svg=true)](https://ci.appveyor.com/project/rust-lang-libs/miri) An experimental interpreter for [Rust][rust]'s [mid-level intermediate representation][mir] (MIR). It can run binaries and test suites of cargo projects and detect certain classes of [undefined behavior](https://doc.rust-lang.org/reference/behavior-considered-undefined.html), for example: * Out-of-bounds memory accesses and use-after-free * Invalid use of uninitialized data * Violation of intrinsic preconditions (an [`unreachable_unchecked`] being reached, calling [`copy_nonoverlapping`] with overlapping ranges, ...) * Not sufficiently aligned memory accesses and references * Violation of *some* basic type invariants (a `bool` that is not 0 or 1, for example, or an invalid enum discriminant) * **Experimental**: Violations of the [Stacked Borrows] rules governing aliasing for reference types On top of that, Miri will also tell you about memory leaks: when there is memory still allocated at the end of the execution, and that memory is not reachable from a global `static`, Miri will raise an error. Note however that [leak checking is currently disabled on Windows targets](https://github.com/rust-lang/miri/issues/1302). Miri has already discovered some [real-world bugs](#bugs-found-by-miri). If you found a bug with Miri, we'd appreciate if you tell us and we'll add it to the list! However, be aware that Miri will **not catch all cases of undefined behavior** in your program, and cannot run all programs: * There are still plenty of open questions around the basic invariants for some types and when these invariants even have to hold. Miri tries to avoid false positives here, so if you program runs fine in Miri right now that is by no means a guarantee that it is UB-free when these questions get answered. In particular, Miri does currently not check that integers/floats are initialized or that references point to valid data. * If the program relies on unspecified details of how data is laid out, it will still run fine in Miri -- but might break (including causing UB) on different compiler versions or different platforms. * Program execution is non-deterministic when it depends, for example, on where exactly in memory allocations end up. Miri tests one of many possible executions of your program. If your code is sensitive to allocation base addresses or other non-deterministic data, try running Miri with different values for `-Zmiri-seed` to test different executions. * Miri runs the program as a platform-independent interpreter, so the program has no access to most platform-specific APIs or FFI. A few APIs have been implemented (such as printing to stdout) but most have not: for example, Miri currently does not support SIMD or networking. * Miri currently does not check for data-races and most other concurrency-related issues. [rust]: https://www.rust-lang.org/ [mir]: https://github.com/rust-lang/rfcs/blob/master/text/1211-mir.md [`unreachable_unchecked`]: https://doc.rust-lang.org/stable/std/hint/fn.unreachable_unchecked.html [`copy_nonoverlapping`]: https://doc.rust-lang.org/stable/std/ptr/fn.copy_nonoverlapping.html [Stacked Borrows]: https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md ## Using Miri Install Miri on Rust nightly via `rustup`: ```sh rustup +nightly component add miri ``` If `rustup` says the `miri` component is unavailable, that's because not all nightly releases come with all tools. Check out [this website](https://rust-lang.github.io/rustup-components-history) to determine a nightly version that comes with Miri and install that using `rustup toolchain install nightly-YYYY-MM-DD`. Now you can run your project in Miri: 1. Run `cargo clean` to eliminate any cached dependencies. Miri needs your dependencies to be compiled the right way, that would not happen if they have previously already been compiled. 2. To run all tests in your project through Miri, use `cargo miri test`. 3. If you have a binary project, you can run it through Miri using `cargo miri run`. The first time you run Miri, it will perform some extra setup and install some dependencies. It will ask you for confirmation before installing anything. Miri supports cross-execution: if you want to run the program as if it was a Linux program, you can do `cargo miri run --target x86_64-unknown-linux-gnu`. This is particularly useful if you are using Windows, as the Linux target is much better supported than Windows targets. You can pass arguments to Miri after the first `--`, and pass arguments to the interpreted program or test suite after the second `--`. For example, `cargo miri run -- -Zmiri-disable-validation` runs the program without validation of basic type invariants and without checking the aliasing of references. When compiling code via `cargo miri`, the `miri` config flag is set. You can use this to ignore test cases that fail under Miri because they do things Miri does not support: ```rust #[test] #[cfg_attr(miri, ignore)] fn does_not_work_on_miri() { std::thread::spawn(|| println!("Hello Thread!")) .join() .unwrap(); } ``` There is no way to list all the infinite things Miri cannot do, but the interpreter will explicitly tell you when it finds something unsupported: ``` error: unsupported operation: Miri does not support threading ... = help: this is likely not a bug in the program; it indicates that the program \ performed an operation that the interpreter does not support ``` ### Running Miri on CI To run Miri on CI, make sure that you handle the case where the latest nightly does not ship the Miri component because it currently does not build. For example, you can use the following snippet to always test with the latest nightly that *does* come with Miri: ```sh MIRI_NIGHTLY=nightly-$(curl -s https://rust-lang.github.io/rustup-components-history/x86_64-unknown-linux-gnu/miri) echo "Installing latest nightly with Miri: $MIRI_NIGHTLY" rustup set profile minimal rustup default "$MIRI_NIGHTLY" rustup component add miri cargo miri test ``` ### Common Problems When using the above instructions, you may encounter a number of confusing compiler errors. #### "found possibly newer version of crate `std` which `` depends on" Your build directory may contain artifacts from an earlier build that have/have not been built for Miri. Run `cargo clean` before switching from non-Miri to Miri builds and vice-versa. #### "found crate `std` compiled by an incompatible version of rustc" You may be running `cargo miri` with a different compiler version than the one used to build the custom libstd that Miri uses, and Miri failed to detect that. Try deleting `~/.cache/miri`. #### "no mir for `std::rt::lang_start_internal`" This means the sysroot you are using was not compiled with Miri in mind. This should never happen when you use `cargo miri` because that takes care of setting up the sysroot. If you are using `miri` (the Miri driver) directly, see the [contributors' guide](CONTRIBUTING.md) for how to use `./miri` to best do that. ## Miri `-Z` flags and environment variables [miri-flags]: #miri--z-flags-and-environment-variables Miri adds its own set of `-Z` flags: * `-Zmiri-disable-alignment-check` disables checking pointer alignment. This is useful to avoid [false positives][alignment-false-positives]. However, setting this flag means Miri could miss bugs in your program. * `-Zmiri-disable-stacked-borrows` disables checking the experimental [Stacked Borrows] aliasing rules. This can make Miri run faster, but it also means no aliasing violations will be detected. * `-Zmiri-disable-validation` disables enforcing validity invariants, which are enforced by default. This is mostly useful to focus on other failures (such as out-of-bounds accesses) first. Setting this flag means Miri will miss bugs in your program. However, this can also help to make Miri run faster. * `-Zmiri-disable-isolation` disables host isolation. As a consequence, the program has access to host resources such as environment variables, file systems, and randomness. * `-Zmiri-env-exclude=` keeps the `var` environment variable isolated from the host so that it cannot be accessed by the program. Can be used multiple times to exclude several variables. On Windows, the `TERM` environment variable is excluded by default. * `-Zmiri-ignore-leaks` disables the memory leak checker. * `-Zmiri-seed=` configures the seed of the RNG that Miri uses to resolve non-determinism. This RNG is used to pick base addresses for allocations. When isolation is enabled (the default), this is also used to emulate system entropy. The default seed is 0. **NOTE**: This entropy is not good enough for cryptographic use! Do not generate secret keys in Miri or perform other kinds of cryptographic operations that rely on proper random numbers. * `-Zmiri-track-alloc-id=` shows a backtrace when the given allocation is being allocated or freed. This helps in debugging memory leaks and use after free bugs. * `-Zmiri-track-pointer-tag=` shows a backtrace when the given pointer tag is popped from a borrow stack (which is where the tag becomes invalid and any future use of it will error). This helps you in finding out why UB is happening and where in your code would be a good place to look for it. [alignment-false-positives]: https://github.com/rust-lang/miri/issues/1074 Some native rustc `-Z` flags are also very relevant for Miri: * `-Zmir-opt-level` controls how many MIR optimizations are performed. Miri overrides the default to be `0`; be advised that using any higher level can make Miri miss bugs in your program because they got optimized away. * `-Zalways-encode-mir` makes rustc dump MIR even for completely monomorphic functions. This is needed so that Miri can execute such functions, so Miri sets this flag per default. * `-Zmir-emit-retag` controls whether `Retag` statements are emitted. Miri enables this per default because it is needed for [Stacked Borrows]. Moreover, Miri recognizes some environment variables: * `MIRI_LOG`, `MIRI_BACKTRACE` control logging and backtrace printing during Miri executions, also [see above][testing-miri]. * `MIRI_SYSROOT` (recognized by `cargo miri` and the test suite) indicates the sysroot to use. To do the same thing with `miri` directly, use the `--sysroot` flag. * `MIRI_TEST_TARGET` (recognized by the test suite) indicates which target architecture to test against. `miri` and `cargo miri` accept the `--target` flag for the same purpose. * `MIRI_TEST_FLAGS` (recognized by the test suite) defines extra flags to be passed to Miri. The following environment variables are internal, but used to communicate between different Miri binaries, and as such worth documenting: * `MIRI_BE_RUSTC` when set to any value tells the Miri driver to actually not interpret the code but compile it like rustc would. This is useful to be sure that the compiled `rlib`s are compatible with Miri. ## Contributing and getting help If you want to contribute to Miri, great! Please check out our [contribution guide](CONTRIBUTING.md). For help with running Miri, you can open an issue here on GitHub or contact us (`oli-obk` and `RalfJ`) on the [Rust Zulip]. [Rust Zulip]: https://rust-lang.zulipchat.com ## History This project began as part of an undergraduate research course in 2015 by @solson at the [University of Saskatchewan][usask]. There are [slides] and a [report] available from that project. In 2016, @oli-obk joined to prepare miri for eventually being used as const evaluator in the Rust compiler itself (basically, for `const` and `static` stuff), replacing the old evaluator that worked directly on the AST. In 2017, @RalfJung did an internship with Mozilla and began developing miri towards a tool for detecting undefined behavior, and also using miri as a way to explore the consequences of various possible definitions for undefined behavior in Rust. @oli-obk's move of the miri engine into the compiler finally came to completion in early 2018. Meanwhile, later that year, @RalfJung did a second internship, developing miri further with support for checking basic type invariants and verifying that references are used according to their aliasing restrictions. [usask]: https://www.usask.ca/ [slides]: https://solson.me/miri-slides.pdf [report]: https://solson.me/miri-report.pdf ## Bugs found by Miri Miri has already found a number of bugs in the Rust standard library and beyond, which we collect here. Definite bugs found: * [`Debug for vec_deque::Iter` accessing uninitialized memory](https://github.com/rust-lang/rust/issues/53566) * [`Vec::into_iter` doing an unaligned ZST read](https://github.com/rust-lang/rust/pull/53804) * [`From<&[T]> for Rc` creating a not sufficiently aligned reference](https://github.com/rust-lang/rust/issues/54908) * [`BTreeMap` creating a shared reference pointing to a too small allocation](https://github.com/rust-lang/rust/issues/54957) * [`Vec::append` creating a dangling reference](https://github.com/rust-lang/rust/pull/61082) * [Futures turning a shared reference into a mutable one](https://github.com/rust-lang/rust/pull/56319) * [`str` turning a shared reference into a mutable one](https://github.com/rust-lang/rust/pull/58200) * [`rand` performing unaligned reads](https://github.com/rust-random/rand/issues/779) * [The Unix allocator calling `posix_memalign` in an invalid way](https://github.com/rust-lang/rust/issues/62251) * [`getrandom` calling the `getrandom` syscall in an invalid way](https://github.com/rust-random/getrandom/pull/73) * [`Vec`](https://github.com/rust-lang/rust/issues/69770) and [`BTreeMap`](https://github.com/rust-lang/rust/issues/69769) leaking memory under some (panicky) conditions * [`beef` leaking memory](https://github.com/maciejhirsz/beef/issues/12) * [`EbrCell` using uninitialized memory incorrectly](https://github.com/Firstyear/concread/commit/b15be53b6ec076acb295a5c0483cdb4bf9be838f#diff-6282b2fc8e98bd089a1f0c86f648157cR229) * [TiKV performing an unaligned pointer access](https://github.com/tikv/tikv/issues/7613) * [`servo_arc` creating a dangling shared reference](https://github.com/servo/servo/issues/26357) * [TiKV constructing out-of-bounds pointers (and overlapping mutable references)](https://github.com/tikv/tikv/pull/7751) Violations of [Stacked Borrows] found that are likely bugs (but Stacked Borrows is currently just an experiment): * [`VecDeque` creating overlapping mutable references](https://github.com/rust-lang/rust/pull/56161) * [`BTreeMap` creating mutable references that overlap with shared references](https://github.com/rust-lang/rust/pull/58431) * [`LinkedList` creating overlapping mutable references](https://github.com/rust-lang/rust/pull/60072) * [`Vec::push` invalidating existing references into the vector](https://github.com/rust-lang/rust/issues/60847) * [`align_to_mut` violating uniqueness of mutable references](https://github.com/rust-lang/rust/issues/68549) * [`sized-chunks` creating aliasing mutable references](https://github.com/bodil/sized-chunks/issues/8) * [`String::push_str` invalidating existing references into the string](https://github.com/rust-lang/rust/issues/70301) * [`ryu` using raw pointers outside their valid memory area](https://github.com/dtolnay/ryu/issues/24) * [ink! creating overlapping mutable references](https://github.com/rust-lang/miri/issues/1364) * [TiKV creating overlapping mutable reference and raw pointer](https://github.com/tikv/tikv/pull/7709) ## License Licensed under either of * Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0) * MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT) at your option. ### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be dual licensed as above, without any additional terms or conditions.