//! checks for attributes use rustc::lint::*; use rustc_front::hir::*; use reexport::*; use syntax::codemap::Span; use syntax::attr::*; use syntax::ast::{Attribute, MetaList, MetaWord}; use utils::{in_macro, match_path, span_lint}; /// **What it does:** This lint warns on items annotated with `#[inline(always)]`, unless the annotated function is empty or simply panics. /// /// **Why is this bad?** While there are valid uses of this annotation (and once you know when to use it, by all means `allow` this lint), it's a common newbie-mistake to pepper one's code with it. /// /// As a rule of thumb, before slapping `#[inline(always)]` on a function, measure if that additional function call really affects your runtime profile sufficiently to make up for the increase in compile time. /// /// **Known problems:** False positives, big time. This lint is meant to be deactivated by everyone doing serious performance work. This means having done the measurement. /// /// **Example:** /// ``` /// #[inline(always)] /// fn not_quite_hot_code(..) { ... } /// ``` declare_lint! { pub INLINE_ALWAYS, Warn, "`#[inline(always)]` is a bad idea in most cases" } #[derive(Copy,Clone)] pub struct AttrPass; impl LintPass for AttrPass { fn get_lints(&self) -> LintArray { lint_array!(INLINE_ALWAYS) } } impl LateLintPass for AttrPass { fn check_item(&mut self, cx: &LateContext, item: &Item) { if is_relevant_item(item) { check_attrs(cx, item.span, &item.name, &item.attrs) } } fn check_impl_item(&mut self, cx: &LateContext, item: &ImplItem) { if is_relevant_impl(item) { check_attrs(cx, item.span, &item.name, &item.attrs) } } fn check_trait_item(&mut self, cx: &LateContext, item: &TraitItem) { if is_relevant_trait(item) { check_attrs(cx, item.span, &item.name, &item.attrs) } } } fn is_relevant_item(item: &Item) -> bool { if let ItemFn(_, _, _, _, _, ref block) = item.node { is_relevant_block(block) } else { false } } fn is_relevant_impl(item: &ImplItem) -> bool { match item.node { ImplItemKind::Method(_, ref block) => is_relevant_block(block), _ => false } } fn is_relevant_trait(item: &TraitItem) -> bool { match item.node { MethodTraitItem(_, None) => true, MethodTraitItem(_, Some(ref block)) => is_relevant_block(block), _ => false } } fn is_relevant_block(block: &Block) -> bool { for stmt in &block.stmts { match stmt.node { StmtDecl(_, _) => return true, StmtExpr(ref expr, _) | StmtSemi(ref expr, _) => { return is_relevant_expr(expr); } } } block.expr.as_ref().map_or(false, |e| is_relevant_expr(e)) } fn is_relevant_expr(expr: &Expr) -> bool { match expr.node { ExprBlock(ref block) => is_relevant_block(block), ExprRet(Some(ref e)) => is_relevant_expr(e), ExprRet(None) | ExprBreak(_) => false, ExprCall(ref path_expr, _) => { if let ExprPath(_, ref path) = path_expr.node { !match_path(path, &["std", "rt", "begin_unwind"]) } else { true } } _ => true } } fn check_attrs(cx: &LateContext, span: Span, name: &Name, attrs: &[Attribute]) { if in_macro(cx, span) { return; } for attr in attrs { if let MetaList(ref inline, ref values) = attr.node.value.node { if values.len() != 1 || inline != &"inline" { continue; } if let MetaWord(ref always) = values[0].node { if always != &"always" { continue; } span_lint(cx, INLINE_ALWAYS, attr.span, &format!( "you have declared `#[inline(always)]` on `{}`. This \ is usually a bad idea", name)); } } } }