use rustc::infer; use rustc::middle::const_val; use rustc::hir::def_id::DefId; use rustc::mir::mir_map::MirMap; use rustc::mir::repr as mir; use rustc::traits::{self, ProjectionMode}; use rustc::ty::fold::TypeFoldable; use rustc::ty::layout::{self, Layout, Size}; use rustc::ty::subst::{self, Subst, Substs}; use rustc::ty::{self, TyCtxt}; use rustc::util::nodemap::DefIdMap; use std::cell::RefCell; use std::ops::{Deref, DerefMut}; use std::rc::Rc; use std::{iter, mem}; use syntax::ast; use syntax::attr; use syntax::codemap::{self, DUMMY_SP}; use error::{EvalError, EvalResult}; use memory::{Memory, Pointer}; use primval::{self, PrimVal}; const TRACE_EXECUTION: bool = false; struct GlobalEvalContext<'a, 'tcx: 'a> { /// The results of the type checker, from rustc. tcx: &'a TyCtxt<'tcx>, /// A mapping from NodeIds to Mir, from rustc. Only contains MIR for crate-local items. mir_map: &'a MirMap<'tcx>, /// A local cache from DefIds to Mir for non-crate-local items. mir_cache: RefCell>>>, /// The virtual memory system. memory: Memory, /// Another stack containing the type substitutions for the current function invocation. It /// exists separately from `stack` because it must contain the `Substs` for a function while /// *creating* the `Frame` for that same function. substs_stack: Vec<&'tcx Substs<'tcx>>, // TODO(tsion): Merge with `substs_stack`. Also try restructuring `Frame` to accomodate. /// A stack of the things necessary to print good strack traces: /// * Function DefIds and Substs to print proper substituted function names. /// * Spans pointing to specific function calls in the source. name_stack: Vec<(DefId, &'tcx Substs<'tcx>, codemap::Span)>, } struct FnEvalContext<'a, 'b: 'a + 'mir, 'mir, 'tcx: 'b> { gecx: &'a mut GlobalEvalContext<'b, 'tcx>, /// The virtual call stack. stack: Vec>, } impl<'a, 'b, 'mir, 'tcx> Deref for FnEvalContext<'a, 'b, 'mir, 'tcx> { type Target = GlobalEvalContext<'b, 'tcx>; fn deref(&self) -> &Self::Target { self.gecx } } impl<'a, 'b, 'mir, 'tcx> DerefMut for FnEvalContext<'a, 'b, 'mir, 'tcx> { fn deref_mut(&mut self) -> &mut Self::Target { self.gecx } } /// A stack frame. struct Frame<'a, 'tcx: 'a> { /// The MIR for the function called on this frame. mir: CachedMir<'a, 'tcx>, /// The block this frame will execute when a function call returns back to this frame. next_block: mir::BasicBlock, /// A pointer for writing the return value of the current call if it's not a diverging call. return_ptr: Option, /// The list of locals for the current function, stored in order as /// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset` /// and the temporaries at `self.temp_offset`. locals: Vec, /// The offset of the first variable in `self.locals`. var_offset: usize, /// The offset of the first temporary in `self.locals`. temp_offset: usize, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] struct Lvalue { ptr: Pointer, extra: LvalueExtra, } #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum LvalueExtra { None, Length(u64), // TODO(tsion): Vtable(memory::AllocId), DowncastVariant(usize), } #[derive(Clone)] enum CachedMir<'mir, 'tcx: 'mir> { Ref(&'mir mir::Mir<'tcx>), Owned(Rc>) } /// Represents the action to be taken in the main loop as a result of executing a terminator. enum TerminatorTarget { /// Make a local jump to the given block. Block(mir::BasicBlock), /// Start executing from the new current frame. (For function calls.) Call, /// Stop executing the current frame and resume the previous frame. Return, } impl<'a, 'tcx> GlobalEvalContext<'a, 'tcx> { fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self { GlobalEvalContext { tcx: tcx, mir_map: mir_map, mir_cache: RefCell::new(DefIdMap()), memory: Memory::new(), substs_stack: Vec::new(), name_stack: Vec::new(), } } } impl<'a, 'b, 'mir, 'tcx> FnEvalContext<'a, 'b, 'mir, 'tcx> { fn new(gecx: &'a mut GlobalEvalContext<'b, 'tcx>) -> Self { FnEvalContext { gecx: gecx, stack: Vec::new(), } } fn maybe_report(&self, span: codemap::Span, r: EvalResult) -> EvalResult { if let Err(ref e) = r { let mut err = self.tcx.sess.struct_span_err(span, &e.to_string()); for &(def_id, substs, span) in self.name_stack.iter().rev() { // FIXME(tsion): Find a way to do this without this Display impl hack. use rustc::util::ppaux; use std::fmt; struct Instance<'tcx>(DefId, &'tcx Substs<'tcx>); impl<'tcx> fmt::Display for Instance<'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { ppaux::parameterized(f, self.1, self.0, ppaux::Ns::Value, &[], |tcx| tcx.lookup_item_type(self.0).generics) } } err.span_note(span, &format!("inside call to {}", Instance(def_id, substs))); } err.emit(); } r } fn log(&self, extra_indent: usize, f: F) where F: FnOnce() { let indent = self.stack.len() + extra_indent; if !TRACE_EXECUTION { return; } for _ in 0..indent { print!(" "); } f(); println!(""); } fn run(&mut self) -> EvalResult<()> { 'outer: while !self.stack.is_empty() { let mut current_block = self.frame().next_block; loop { self.log(0, || print!("// {:?}", current_block)); let current_mir = self.mir().clone(); // Cloning a reference. let block_data = current_mir.basic_block_data(current_block); for stmt in &block_data.statements { self.log(0, || print!("{:?}", stmt)); let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind; let result = self.eval_assignment(lvalue, rvalue); try!(self.maybe_report(stmt.span, result)); } let terminator = block_data.terminator(); self.log(0, || print!("{:?}", terminator.kind)); let result = self.eval_terminator(terminator); match try!(self.maybe_report(terminator.span, result)) { TerminatorTarget::Block(block) => current_block = block, TerminatorTarget::Return => { self.pop_stack_frame(); self.name_stack.pop(); continue 'outer; } TerminatorTarget::Call => continue 'outer, } } } Ok(()) } fn call_nested(&mut self, mir: &mir::Mir<'tcx>) -> EvalResult> { let mut nested_fecx = FnEvalContext::new(self.gecx); let return_ptr = match mir.return_ty { ty::FnConverging(ty) => { let size = nested_fecx.type_size(ty); Some(nested_fecx.memory.allocate(size)) } ty::FnDiverging => None, }; let substs = nested_fecx.substs(); nested_fecx.push_stack_frame(CachedMir::Ref(mir), substs, return_ptr); try!(nested_fecx.run()); Ok(return_ptr) } fn push_stack_frame(&mut self, mir: CachedMir<'mir, 'tcx>, substs: &'tcx Substs<'tcx>, return_ptr: Option) { self.substs_stack.push(substs); let arg_tys = mir.arg_decls.iter().map(|a| a.ty); let var_tys = mir.var_decls.iter().map(|v| v.ty); let temp_tys = mir.temp_decls.iter().map(|t| t.ty); let locals: Vec = arg_tys.chain(var_tys).chain(temp_tys).map(|ty| { let size = self.type_size(ty); self.memory.allocate(size) }).collect(); let num_args = mir.arg_decls.len(); let num_vars = mir.var_decls.len(); self.stack.push(Frame { mir: mir.clone(), next_block: mir::START_BLOCK, return_ptr: return_ptr, locals: locals, var_offset: num_args, temp_offset: num_args + num_vars, }); } fn pop_stack_frame(&mut self) { let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none"); // TODO(tsion): Deallocate local variables. self.substs_stack.pop(); } fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> EvalResult { use rustc::mir::repr::TerminatorKind::*; let target = match terminator.kind { Return => TerminatorTarget::Return, Goto { target } => TerminatorTarget::Block(target), If { ref cond, targets: (then_target, else_target) } => { let cond_ptr = try!(self.eval_operand(cond)); let cond_val = try!(self.memory.read_bool(cond_ptr)); TerminatorTarget::Block(if cond_val { then_target } else { else_target }) } SwitchInt { ref discr, ref values, ref targets, .. } => { let discr_ptr = try!(self.eval_lvalue(discr)).to_ptr(); let discr_size = self .type_layout(self.lvalue_ty(discr)) .size(&self.tcx.data_layout) .bytes() as usize; let discr_val = try!(self.memory.read_uint(discr_ptr, discr_size)); // Branch to the `otherwise` case by default, if no match is found. let mut target_block = targets[targets.len() - 1]; for (index, val_const) in values.iter().enumerate() { let ptr = try!(self.const_to_ptr(val_const)); let val = try!(self.memory.read_uint(ptr, discr_size)); if discr_val == val { target_block = targets[index]; break; } } TerminatorTarget::Block(target_block) } Switch { ref discr, ref targets, adt_def } => { let adt_ptr = try!(self.eval_lvalue(discr)).to_ptr(); let adt_layout = self.type_layout(self.lvalue_ty(discr)); match *adt_layout { Layout::General { discr, .. } | Layout::CEnum { discr, .. } => { let discr_size = discr.size().bytes(); let discr_val = try!(self.memory.read_uint(adt_ptr, discr_size as usize)); let matching = adt_def.variants.iter() .position(|v| discr_val == v.disr_val.to_u64_unchecked()); match matching { Some(i) => TerminatorTarget::Block(targets[i]), None => return Err(EvalError::InvalidDiscriminant), } } Layout::RawNullablePointer { nndiscr, .. } => { let is_null = match self.memory.read_usize(adt_ptr) { Ok(0) => true, Ok(_) | Err(EvalError::ReadPointerAsBytes) => false, Err(e) => return Err(e), }; assert!(nndiscr == 0 || nndiscr == 1); let target = if is_null { 1 - nndiscr } else { nndiscr }; TerminatorTarget::Block(targets[target as usize]) } _ => panic!("attempted to switch on non-aggregate type"), } } Call { ref func, ref args, ref destination, .. } => { let mut return_ptr = None; if let Some((ref lv, target)) = *destination { self.frame_mut().next_block = target; return_ptr = Some(try!(self.eval_lvalue(lv)).to_ptr()); } let func_ty = self.operand_ty(func); match func_ty.sty { ty::TyFnDef(def_id, substs, fn_ty) => { use syntax::abi::Abi; match fn_ty.abi { Abi::RustIntrinsic => { let name = self.tcx.item_name(def_id).as_str(); match fn_ty.sig.0.output { ty::FnConverging(ty) => { let size = self.type_size(ty); try!(self.call_intrinsic(&name, substs, args, return_ptr.unwrap(), size)) } ty::FnDiverging => unimplemented!(), } } Abi::C => try!(self.call_c_abi(def_id, args, return_ptr.unwrap())), Abi::Rust | Abi::RustCall => { // TODO(tsion): Adjust the first argument when calling a Fn or // FnMut closure via FnOnce::call_once. // Only trait methods can have a Self parameter. let (resolved_def_id, resolved_substs) = if substs.self_ty().is_some() { self.trait_method(def_id, substs) } else { (def_id, substs) }; let mut arg_srcs = Vec::new(); for arg in args { let src = try!(self.eval_operand(arg)); let src_ty = self.operand_ty(arg); arg_srcs.push((src, src_ty)); } if fn_ty.abi == Abi::RustCall && !args.is_empty() { arg_srcs.pop(); let last_arg = args.last().unwrap(); let last = try!(self.eval_operand(last_arg)); let last_ty = self.operand_ty(last_arg); let last_layout = self.type_layout(last_ty); match (&last_ty.sty, last_layout) { (&ty::TyTuple(ref fields), &Layout::Univariant { ref variant, .. }) => { let offsets = iter::once(0) .chain(variant.offset_after_field.iter() .map(|s| s.bytes())); for (offset, ty) in offsets.zip(fields) { let src = last.offset(offset as isize); arg_srcs.push((src, ty)); } } ty => panic!("expected tuple as last argument in function with 'rust-call' ABI, got {:?}", ty), } } let mir = self.load_mir(resolved_def_id); self.name_stack.push((def_id, substs, terminator.span)); self.push_stack_frame(mir, resolved_substs, return_ptr); for (i, (src, src_ty)) in arg_srcs.into_iter().enumerate() { let dest = self.frame().locals[i]; try!(self.move_(src, dest, src_ty)); } TerminatorTarget::Call } abi => panic!("can't handle function with {:?} ABI", abi), } } _ => panic!("can't handle callee of type {:?}", func_ty), } } Drop { ref value, target, .. } => { let ptr = try!(self.eval_lvalue(value)).to_ptr(); let ty = self.lvalue_ty(value); try!(self.drop(ptr, ty)); TerminatorTarget::Block(target) } Resume => unimplemented!(), }; Ok(target) } fn drop(&mut self, ptr: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<()> { if !self.type_needs_drop(ty) { self.log(1, || print!("no need to drop {:?}", ty)); return Ok(()); } self.log(1, || print!("need to drop {:?}", ty)); // TODO(tsion): Call user-defined Drop::drop impls. match ty.sty { ty::TyBox(contents_ty) => { match self.memory.read_ptr(ptr) { Ok(contents_ptr) => { try!(self.drop(contents_ptr, contents_ty)); self.log(1, || print!("deallocating box")); try!(self.memory.deallocate(contents_ptr)); } Err(EvalError::ReadBytesAsPointer) => { let size = self.memory.pointer_size; let possible_drop_fill = try!(self.memory.read_bytes(ptr, size)); if possible_drop_fill.iter().all(|&b| b == mem::POST_DROP_U8) { return Ok(()); } else { return Err(EvalError::ReadBytesAsPointer); } } Err(e) => return Err(e), } } // TODO(tsion): Implement drop for other relevant types (e.g. aggregates). _ => {} } // Filling drop. // FIXME(tsion): Trait objects (with no static size) probably get filled, too. let size = self.type_size(ty); try!(self.memory.drop_fill(ptr, size)); Ok(()) } fn call_intrinsic( &mut self, name: &str, substs: &'tcx Substs<'tcx>, args: &[mir::Operand<'tcx>], dest: Pointer, dest_size: usize ) -> EvalResult { let args_res: EvalResult> = args.iter() .map(|arg| self.eval_operand(arg)) .collect(); let args = try!(args_res); match name { "assume" => {} "copy_nonoverlapping" => { let elem_ty = *substs.types.get(subst::FnSpace, 0); let elem_size = self.type_size(elem_ty); let src = try!(self.memory.read_ptr(args[0])); let dest = try!(self.memory.read_ptr(args[1])); let count = try!(self.memory.read_isize(args[2])); try!(self.memory.copy(src, dest, count as usize * elem_size)); } "forget" => { let arg_ty = *substs.types.get(subst::FnSpace, 0); let arg_size = self.type_size(arg_ty); try!(self.memory.drop_fill(args[0], arg_size)); } "init" => try!(self.memory.write_repeat(dest, 0, dest_size)), "min_align_of" => { try!(self.memory.write_int(dest, 1, dest_size)); } "move_val_init" => { let ty = *substs.types.get(subst::FnSpace, 0); let ptr = try!(self.memory.read_ptr(args[0])); try!(self.move_(args[1], ptr, ty)); } // FIXME(tsion): Handle different integer types correctly. "add_with_overflow" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty); let left = try!(self.memory.read_int(args[0], size)); let right = try!(self.memory.read_int(args[1], size)); let (n, overflowed) = unsafe { ::std::intrinsics::add_with_overflow::(left, right) }; try!(self.memory.write_int(dest, n, size)); try!(self.memory.write_bool(dest.offset(size as isize), overflowed)); } // FIXME(tsion): Handle different integer types correctly. "mul_with_overflow" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty); let left = try!(self.memory.read_int(args[0], size)); let right = try!(self.memory.read_int(args[1], size)); let (n, overflowed) = unsafe { ::std::intrinsics::mul_with_overflow::(left, right) }; try!(self.memory.write_int(dest, n, size)); try!(self.memory.write_bool(dest.offset(size as isize), overflowed)); } "offset" => { let pointee_ty = *substs.types.get(subst::FnSpace, 0); let pointee_size = self.type_size(pointee_ty) as isize; let ptr_arg = args[0]; let offset = try!(self.memory.read_isize(args[1])); match self.memory.read_ptr(ptr_arg) { Ok(ptr) => { let result_ptr = ptr.offset(offset as isize * pointee_size); try!(self.memory.write_ptr(dest, result_ptr)); } Err(EvalError::ReadBytesAsPointer) => { let addr = try!(self.memory.read_isize(ptr_arg)); let result_addr = addr + offset * pointee_size as i64; try!(self.memory.write_isize(dest, result_addr)); } Err(e) => return Err(e), } } // FIXME(tsion): Handle different integer types correctly. Use primvals? "overflowing_sub" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty); let left = try!(self.memory.read_int(args[0], size)); let right = try!(self.memory.read_int(args[1], size)); let n = left.wrapping_sub(right); try!(self.memory.write_int(dest, n, size)); } "size_of" => { let ty = *substs.types.get(subst::FnSpace, 0); let size = self.type_size(ty) as u64; try!(self.memory.write_uint(dest, size, dest_size)); } "transmute" => { let ty = *substs.types.get(subst::FnSpace, 0); try!(self.move_(args[0], dest, ty)); } "uninit" => try!(self.memory.mark_definedness(dest, dest_size, false)), name => panic!("can't handle intrinsic: {}", name), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(TerminatorTarget::Call) } fn call_c_abi( &mut self, def_id: DefId, args: &[mir::Operand<'tcx>], dest: Pointer ) -> EvalResult { let name = self.tcx.item_name(def_id); let attrs = self.tcx.get_attrs(def_id); let link_name = match attr::first_attr_value_str_by_name(&attrs, "link_name") { Some(ln) => ln.clone(), None => name.as_str(), }; let args_res: EvalResult> = args.iter() .map(|arg| self.eval_operand(arg)) .collect(); let args = try!(args_res); match &link_name[..] { "__rust_allocate" => { let size = try!(self.memory.read_usize(args[0])); let ptr = self.memory.allocate(size as usize); try!(self.memory.write_ptr(dest, ptr)); } "__rust_reallocate" => { let ptr = try!(self.memory.read_ptr(args[0])); let size = try!(self.memory.read_usize(args[2])); try!(self.memory.reallocate(ptr, size as usize)); try!(self.memory.write_ptr(dest, ptr)); } _ => panic!("can't call C ABI function: {}", link_name), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. Ok(TerminatorTarget::Call) } fn assign_fields>( &mut self, dest: Pointer, offsets: I, operands: &[mir::Operand<'tcx>], ) -> EvalResult<()> { for (offset, operand) in offsets.into_iter().zip(operands) { let src = try!(self.eval_operand(operand)); let src_ty = self.operand_ty(operand); let field_dest = dest.offset(offset as isize); try!(self.move_(src, field_dest, src_ty)); } Ok(()) } fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>) -> EvalResult<()> { let dest = try!(self.eval_lvalue(lvalue)).to_ptr(); let dest_ty = self.lvalue_ty(lvalue); let dest_layout = self.type_layout(dest_ty); use rustc::mir::repr::Rvalue::*; match *rvalue { Use(ref operand) => { let src = try!(self.eval_operand(operand)); try!(self.move_(src, dest, dest_ty)); } BinaryOp(bin_op, ref left, ref right) => { let left_ptr = try!(self.eval_operand(left)); let left_ty = self.operand_ty(left); let left_val = try!(self.read_primval(left_ptr, left_ty)); let right_ptr = try!(self.eval_operand(right)); let right_ty = self.operand_ty(right); let right_val = try!(self.read_primval(right_ptr, right_ty)); let val = try!(primval::binary_op(bin_op, left_val, right_val)); try!(self.memory.write_primval(dest, val)); } UnaryOp(un_op, ref operand) => { let ptr = try!(self.eval_operand(operand)); let ty = self.operand_ty(operand); let val = try!(self.read_primval(ptr, ty)); try!(self.memory.write_primval(dest, primval::unary_op(un_op, val))); } Aggregate(ref kind, ref operands) => { use rustc::ty::layout::Layout::*; match *dest_layout { Univariant { ref variant, .. } => { let offsets = iter::once(0) .chain(variant.offset_after_field.iter().map(|s| s.bytes())); try!(self.assign_fields(dest, offsets, operands)); } Array { .. } => { let elem_size = match dest_ty.sty { ty::TyArray(elem_ty, _) => self.type_size(elem_ty) as u64, _ => panic!("tried to assign {:?} to non-array type {:?}", kind, dest_ty), }; let offsets = (0..).map(|i| i * elem_size); try!(self.assign_fields(dest, offsets, operands)); } General { discr, ref variants, .. } => { if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind { let discr_val = adt_def.variants[variant].disr_val.to_u64_unchecked(); let discr_size = discr.size().bytes() as usize; try!(self.memory.write_uint(dest, discr_val, discr_size)); let offsets = variants[variant].offset_after_field.iter() .map(|s| s.bytes()); try!(self.assign_fields(dest, offsets, operands)); } else { panic!("tried to assign {:?} to Layout::General", kind); } } RawNullablePointer { nndiscr, .. } => { if let mir::AggregateKind::Adt(_, variant, _) = *kind { if nndiscr == variant as u64 { assert_eq!(operands.len(), 1); let operand = &operands[0]; let src = try!(self.eval_operand(operand)); let src_ty = self.operand_ty(operand); try!(self.move_(src, dest, src_ty)); } else { assert_eq!(operands.len(), 0); try!(self.memory.write_isize(dest, 0)); } } else { panic!("tried to assign {:?} to Layout::RawNullablePointer", kind); } } CEnum { discr, signed, .. } => { assert_eq!(operands.len(), 0); if let mir::AggregateKind::Adt(adt_def, variant, _) = *kind { let val = adt_def.variants[variant].disr_val.to_u64_unchecked(); let size = discr.size().bytes() as usize; if signed { try!(self.memory.write_int(dest, val as i64, size)); } else { try!(self.memory.write_uint(dest, val, size)); } } else { panic!("tried to assign {:?} to Layout::CEnum", kind); } } _ => panic!("can't handle destination layout {:?} when assigning {:?}", dest_layout, kind), } } Repeat(ref operand, _) => { let (elem_size, length) = match dest_ty.sty { ty::TyArray(elem_ty, n) => (self.type_size(elem_ty), n), _ => panic!("tried to assign array-repeat to non-array type {:?}", dest_ty), }; let src = try!(self.eval_operand(operand)); for i in 0..length { let elem_dest = dest.offset((i * elem_size) as isize); try!(self.memory.copy(src, elem_dest, elem_size)); } } Len(ref lvalue) => { let src = try!(self.eval_lvalue(lvalue)); let ty = self.lvalue_ty(lvalue); let len = match ty.sty { ty::TyArray(_, n) => n as u64, ty::TySlice(_) => if let LvalueExtra::Length(n) = src.extra { n } else { panic!("Rvalue::Len of a slice given non-slice pointer: {:?}", src); }, _ => panic!("Rvalue::Len expected array or slice, got {:?}", ty), }; try!(self.memory.write_usize(dest, len)); } Ref(_, _, ref lvalue) => { let lv = try!(self.eval_lvalue(lvalue)); try!(self.memory.write_ptr(dest, lv.ptr)); match lv.extra { LvalueExtra::None => {}, LvalueExtra::Length(len) => { let len_ptr = dest.offset(self.memory.pointer_size as isize); try!(self.memory.write_usize(len_ptr, len)); } LvalueExtra::DowncastVariant(..) => panic!("attempted to take a reference to an enum downcast lvalue"), } } Box(ty) => { let size = self.type_size(ty); let ptr = self.memory.allocate(size); try!(self.memory.write_ptr(dest, ptr)); } Cast(kind, ref operand, dest_ty) => { let src = try!(self.eval_operand(operand)); let src_ty = self.operand_ty(operand); use rustc::mir::repr::CastKind::*; match kind { Unsize => { try!(self.move_(src, dest, src_ty)); let src_pointee_ty = pointee_type(src_ty).unwrap(); let dest_pointee_ty = pointee_type(dest_ty).unwrap(); match (&src_pointee_ty.sty, &dest_pointee_ty.sty) { (&ty::TyArray(_, length), &ty::TySlice(_)) => { let len_ptr = dest.offset(self.memory.pointer_size as isize); try!(self.memory.write_usize(len_ptr, length as u64)); } _ => panic!("can't handle cast: {:?}", rvalue), } } Misc => { // FIXME(tsion): Wrong for almost everything. let size = dest_layout.size(&self.tcx.data_layout).bytes() as usize; try!(self.memory.copy(src, dest, size)); } _ => panic!("can't handle cast: {:?}", rvalue), } } Slice { .. } => unimplemented!(), InlineAsm { .. } => unimplemented!(), } Ok(()) } fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult { use rustc::mir::repr::Operand::*; match *op { Consume(ref lvalue) => Ok(try!(self.eval_lvalue(lvalue)).to_ptr()), Constant(mir::Constant { ref literal, .. }) => { use rustc::mir::repr::Literal::*; match *literal { Value { ref value } => Ok(try!(self.const_to_ptr(value))), Item { .. } => unimplemented!(), Promoted { index } => { let current_mir = self.mir(); let mir = ¤t_mir.promoted[index]; self.call_nested(mir).map(Option::unwrap) } } } } } fn eval_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult { use rustc::mir::repr::Lvalue::*; let ptr = match *lvalue { ReturnPointer => self.frame().return_ptr .expect("ReturnPointer used in a function with no return value"), Arg(i) => self.frame().locals[i as usize], Var(i) => self.frame().locals[self.frame().var_offset + i as usize], Temp(i) => self.frame().locals[self.frame().temp_offset + i as usize], Static(_def_id) => unimplemented!(), Projection(ref proj) => { let base = try!(self.eval_lvalue(&proj.base)); let base_ty = self.lvalue_ty(&proj.base); let base_layout = self.type_layout(base_ty); use rustc::mir::repr::ProjectionElem::*; match proj.elem { Field(field, _) => { let variant = match *base_layout { Layout::Univariant { ref variant, .. } => variant, Layout::General { ref variants, .. } => { if let LvalueExtra::DowncastVariant(variant_idx) = base.extra { &variants[variant_idx] } else { panic!("field access on enum had no variant index"); } } Layout::RawNullablePointer { .. } => { assert_eq!(field.index(), 0); return Ok(base); } _ => panic!("field access on non-product type: {:?}", base_layout), }; let offset = variant.field_offset(field.index()).bytes(); base.ptr.offset(offset as isize) }, Downcast(_, variant) => match *base_layout { Layout::General { discr, .. } => { return Ok(Lvalue { ptr: base.ptr.offset(discr.size().bytes() as isize), extra: LvalueExtra::DowncastVariant(variant), }); } Layout::RawNullablePointer { .. } => return Ok(base), _ => panic!("variant downcast on non-aggregate type: {:?}", base_layout), }, Deref => { let pointee_ty = pointee_type(base_ty).expect("Deref of non-pointer"); let ptr = try!(self.memory.read_ptr(base.ptr)); let extra = match pointee_ty.sty { ty::TySlice(_) | ty::TyStr => { let len_ptr = base.ptr.offset(self.memory.pointer_size as isize); let len = try!(self.memory.read_usize(len_ptr)); LvalueExtra::Length(len) } ty::TyTrait(_) => unimplemented!(), _ => LvalueExtra::None, }; return Ok(Lvalue { ptr: ptr, extra: extra }); } Index(ref operand) => { let elem_size = match base_ty.sty { ty::TyArray(elem_ty, _) | ty::TySlice(elem_ty) => self.type_size(elem_ty), _ => panic!("indexing expected an array or slice, got {:?}", base_ty), }; let n_ptr = try!(self.eval_operand(operand)); let n = try!(self.memory.read_usize(n_ptr)); base.ptr.offset(n as isize * elem_size as isize) } ConstantIndex { .. } => unimplemented!(), } } }; Ok(Lvalue { ptr: ptr, extra: LvalueExtra::None }) } // TODO(tsion): Try making const_to_primval instead. fn const_to_ptr(&mut self, const_val: &const_val::ConstVal) -> EvalResult { use rustc::middle::const_val::ConstVal::*; match *const_val { Float(_f) => unimplemented!(), Integral(int) => { // TODO(tsion): Check int constant type. let ptr = self.memory.allocate(8); try!(self.memory.write_uint(ptr, int.to_u64_unchecked(), 8)); Ok(ptr) } Str(ref s) => { let psize = self.memory.pointer_size; let static_ptr = self.memory.allocate(s.len()); let ptr = self.memory.allocate(psize * 2); try!(self.memory.write_bytes(static_ptr, s.as_bytes())); try!(self.memory.write_ptr(ptr, static_ptr)); try!(self.memory.write_usize(ptr.offset(psize as isize), s.len() as u64)); Ok(ptr) } ByteStr(ref bs) => { let psize = self.memory.pointer_size; let static_ptr = self.memory.allocate(bs.len()); let ptr = self.memory.allocate(psize); try!(self.memory.write_bytes(static_ptr, bs)); try!(self.memory.write_ptr(ptr, static_ptr)); Ok(ptr) } Bool(b) => { let ptr = self.memory.allocate(1); try!(self.memory.write_bool(ptr, b)); Ok(ptr) } Char(_c) => unimplemented!(), Struct(_node_id) => unimplemented!(), Tuple(_node_id) => unimplemented!(), Function(_def_id) => unimplemented!(), Array(_, _) => unimplemented!(), Repeat(_, _) => unimplemented!(), Dummy => unimplemented!(), } } fn lvalue_ty(&self, lvalue: &mir::Lvalue<'tcx>) -> ty::Ty<'tcx> { self.monomorphize(self.mir().lvalue_ty(self.tcx, lvalue).to_ty(self.tcx)) } fn operand_ty(&self, operand: &mir::Operand<'tcx>) -> ty::Ty<'tcx> { self.monomorphize(self.mir().operand_ty(self.tcx, operand)) } fn monomorphize(&self, ty: ty::Ty<'tcx>) -> ty::Ty<'tcx> { let substituted = ty.subst(self.tcx, self.substs()); infer::normalize_associated_type(self.tcx, &substituted) } fn type_needs_drop(&self, ty: ty::Ty<'tcx>) -> bool { self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment()) } fn move_(&mut self, src: Pointer, dest: Pointer, ty: ty::Ty<'tcx>) -> EvalResult<()> { let size = self.type_size(ty); try!(self.memory.copy(src, dest, size)); if self.type_needs_drop(ty) { try!(self.memory.drop_fill(src, size)); } Ok(()) } fn type_is_sized(&self, ty: ty::Ty<'tcx>) -> bool { ty.is_sized(&self.tcx.empty_parameter_environment(), DUMMY_SP) } fn type_size(&self, ty: ty::Ty<'tcx>) -> usize { self.type_layout(ty).size(&self.tcx.data_layout).bytes() as usize } fn type_layout(&self, ty: ty::Ty<'tcx>) -> &'tcx Layout { // TODO(tsion): Is this inefficient? Needs investigation. let ty = self.monomorphize(ty); let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables, ProjectionMode::Any); // TODO(tsion): Report this error properly. ty.layout(&infcx).unwrap() } pub fn read_primval(&mut self, ptr: Pointer, ty: ty::Ty<'tcx>) -> EvalResult { use syntax::ast::{IntTy, UintTy}; let val = match ty.sty { ty::TyBool => PrimVal::Bool(try!(self.memory.read_bool(ptr))), ty::TyInt(IntTy::I8) => PrimVal::I8(try!(self.memory.read_int(ptr, 1)) as i8), ty::TyInt(IntTy::I16) => PrimVal::I16(try!(self.memory.read_int(ptr, 2)) as i16), ty::TyInt(IntTy::I32) => PrimVal::I32(try!(self.memory.read_int(ptr, 4)) as i32), ty::TyInt(IntTy::I64) => PrimVal::I64(try!(self.memory.read_int(ptr, 8)) as i64), ty::TyUint(UintTy::U8) => PrimVal::U8(try!(self.memory.read_uint(ptr, 1)) as u8), ty::TyUint(UintTy::U16) => PrimVal::U16(try!(self.memory.read_uint(ptr, 2)) as u16), ty::TyUint(UintTy::U32) => PrimVal::U32(try!(self.memory.read_uint(ptr, 4)) as u32), ty::TyUint(UintTy::U64) => PrimVal::U64(try!(self.memory.read_uint(ptr, 8)) as u64), // TODO(tsion): Pick the PrimVal dynamically. ty::TyInt(IntTy::Is) => PrimVal::I64(try!(self.memory.read_isize(ptr))), ty::TyUint(UintTy::Us) => PrimVal::U64(try!(self.memory.read_usize(ptr))), ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) => { if self.type_is_sized(ty) { match self.memory.read_ptr(ptr) { Ok(p) => PrimVal::AbstractPtr(p), Err(EvalError::ReadBytesAsPointer) => { let n = try!(self.memory.read_usize(ptr)); PrimVal::IntegerPtr(n) } Err(e) => return Err(e), } } else { panic!("unimplemented: primitive read of fat pointer type: {:?}", ty); } } _ => panic!("primitive read of non-primitive type: {:?}", ty), }; Ok(val) } fn frame(&self) -> &Frame<'mir, 'tcx> { self.stack.last().expect("no call frames exist") } fn frame_mut(&mut self) -> &mut Frame<'mir, 'tcx> { self.stack.last_mut().expect("no call frames exist") } fn mir(&self) -> CachedMir<'mir, 'tcx> { self.frame().mir.clone() } fn substs(&self) -> &'tcx Substs<'tcx> { self.substs_stack.last().cloned().unwrap_or_else(|| self.tcx.mk_substs(Substs::empty())) } fn load_mir(&self, def_id: DefId) -> CachedMir<'mir, 'tcx> { match self.tcx.map.as_local_node_id(def_id) { Some(node_id) => CachedMir::Ref(self.mir_map.map.get(&node_id).unwrap()), None => { let mut mir_cache = self.mir_cache.borrow_mut(); if let Some(mir) = mir_cache.get(&def_id) { return CachedMir::Owned(mir.clone()); } let cs = &self.tcx.sess.cstore; let mir = cs.maybe_get_item_mir(self.tcx, def_id).unwrap_or_else(|| { panic!("no mir for {:?}", def_id); }); let cached = Rc::new(mir); mir_cache.insert(def_id, cached.clone()); CachedMir::Owned(cached) } } } fn fulfill_obligation(&self, trait_ref: ty::PolyTraitRef<'tcx>) -> traits::Vtable<'tcx, ()> { // Do the initial selection for the obligation. This yields the shallow result we are // looking for -- that is, what specific impl. let infcx = infer::normalizing_infer_ctxt(self.tcx, &self.tcx.tables, ProjectionMode::Any); let mut selcx = traits::SelectionContext::new(&infcx); let obligation = traits::Obligation::new( traits::ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID), trait_ref.to_poly_trait_predicate(), ); let selection = selcx.select(&obligation).unwrap().unwrap(); // Currently, we use a fulfillment context to completely resolve all nested obligations. // This is because they can inform the inference of the impl's type parameters. let mut fulfill_cx = traits::FulfillmentContext::new(); let vtable = selection.map(|predicate| { fulfill_cx.register_predicate_obligation(&infcx, predicate); }); infer::drain_fulfillment_cx_or_panic( DUMMY_SP, &infcx, &mut fulfill_cx, &vtable ) } /// Trait method, which has to be resolved to an impl method. pub fn trait_method(&self, def_id: DefId, substs: &'tcx Substs<'tcx>) -> (DefId, &'tcx Substs<'tcx>) { let method_item = self.tcx.impl_or_trait_item(def_id); let trait_id = method_item.container().id(); let trait_ref = ty::Binder(substs.to_trait_ref(self.tcx, trait_id)); match self.fulfill_obligation(trait_ref) { traits::VtableImpl(vtable_impl) => { let impl_did = vtable_impl.impl_def_id; let mname = self.tcx.item_name(def_id); // Create a concatenated set of substitutions which includes those from the impl // and those from the method: let impl_substs = vtable_impl.substs.with_method_from(substs); let substs = self.tcx.mk_substs(impl_substs); let mth = get_impl_method(self.tcx, impl_did, substs, mname); (mth.method.def_id, mth.substs) } traits::VtableClosure(vtable_closure) => (vtable_closure.closure_def_id, vtable_closure.substs.func_substs), traits::VtableFnPointer(_fn_ty) => { let _trait_closure_kind = self.tcx.lang_items.fn_trait_kind(trait_id).unwrap(); unimplemented!() // let llfn = trans_fn_pointer_shim(ccx, trait_closure_kind, fn_ty); // let method_ty = def_ty(tcx, def_id, substs); // let fn_ptr_ty = match method_ty.sty { // ty::TyFnDef(_, _, fty) => tcx.mk_ty(ty::TyFnPtr(fty)), // _ => unreachable!("expected fn item type, found {}", // method_ty) // }; // Callee::ptr(immediate_rvalue(llfn, fn_ptr_ty)) } traits::VtableObject(ref _data) => { unimplemented!() // Callee { // data: Virtual(traits::get_vtable_index_of_object_method( // tcx, data, def_id)), // ty: def_ty(tcx, def_id, substs) // } } vtable => unreachable!("resolved vtable bad vtable {:?} in trans", vtable), } } } fn pointee_type(ptr_ty: ty::Ty) -> Option { match ptr_ty.sty { ty::TyRef(_, ty::TypeAndMut { ty, .. }) | ty::TyRawPtr(ty::TypeAndMut { ty, .. }) | ty::TyBox(ty) => { Some(ty) } _ => None, } } impl Lvalue { fn to_ptr(self) -> Pointer { assert_eq!(self.extra, LvalueExtra::None); self.ptr } } impl<'mir, 'tcx: 'mir> Deref for CachedMir<'mir, 'tcx> { type Target = mir::Mir<'tcx>; fn deref(&self) -> &mir::Mir<'tcx> { match *self { CachedMir::Ref(r) => r, CachedMir::Owned(ref rc) => &rc, } } } #[derive(Debug)] pub struct ImplMethod<'tcx> { pub method: Rc>, pub substs: &'tcx Substs<'tcx>, pub is_provided: bool, } /// Locates the applicable definition of a method, given its name. pub fn get_impl_method<'tcx>( tcx: &TyCtxt<'tcx>, impl_def_id: DefId, substs: &'tcx Substs<'tcx>, name: ast::Name, ) -> ImplMethod<'tcx> { assert!(!substs.types.needs_infer()); let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap(); let trait_def = tcx.lookup_trait_def(trait_def_id); let infcx = infer::normalizing_infer_ctxt(tcx, &tcx.tables, ProjectionMode::Any); match trait_def.ancestors(impl_def_id).fn_defs(tcx, name).next() { Some(node_item) => { ImplMethod { method: node_item.item, substs: traits::translate_substs(&infcx, impl_def_id, substs, node_item.node), is_provided: node_item.node.is_from_trait(), } } None => { bug!("method {:?} not found in {:?}", name, impl_def_id); } } } pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) { for (&id, mir) in &mir_map.map { for attr in tcx.map.attrs(id) { use syntax::attr::AttrMetaMethods; if attr.check_name("miri_run") { let item = tcx.map.expect_item(id); println!("Interpreting: {}", item.name); let mut gecx = GlobalEvalContext::new(tcx, mir_map); let mut fecx = FnEvalContext::new(&mut gecx); match fecx.call_nested(mir) { Ok(Some(return_ptr)) => fecx.memory.dump(return_ptr.alloc_id), Ok(None) => println!("(diverging function returned)"), Err(_e) => { // TODO(tsion): Detect whether the error was already reported or not. // tcx.sess.err(&e.to_string()); } } println!(""); } } } } // TODO(tsion): Upstream these methods into rustc::ty::layout. trait IntegerExt { fn size(self) -> Size; } impl IntegerExt for layout::Integer { fn size(self) -> Size { use rustc::ty::layout::Integer::*; match self { I1 | I8 => Size::from_bits(8), I16 => Size::from_bits(16), I32 => Size::from_bits(32), I64 => Size::from_bits(64), } } } trait StructExt { fn field_offset(&self, index: usize) -> Size; } impl StructExt for layout::Struct { fn field_offset(&self, index: usize) -> Size { if index == 0 { Size::from_bytes(0) } else { self.offset_after_field[index - 1] } } }