//! A map type import chained::hashmap; import io::writer_util; import to_str::to_str; export hashmap, hashfn, eqfn, set, map, chained, hashmap, str_hash; export box_str_hash; export bytes_hash, int_hash, uint_hash, set_add; export hash_from_vec, hash_from_strs, hash_from_bytes; export hash_from_ints, hash_from_uints; export vec_from_set; /** * A function that returns a hash of a value * * The hash should concentrate entropy in the lower bits. */ type hashfn = fn@(K) -> uint; type eqfn = fn@(K, K) -> bool; /// A convenience type to treat a hashmap as a set type set = hashmap; type hashmap = chained::t; trait map { /// Return the number of elements in the map fn size() -> uint; /** * Add a value to the map. * * If the map already contains a value for the specified key then the * original value is replaced. * * Returns true if the key did not already exist in the map */ fn insert(+K, +V) -> bool; /// Returns true if the map contains a value for the specified key fn contains_key(K) -> bool; /** * Get the value for the specified key. Fails if the key does not exist in * the map. */ fn get(K) -> V; /// Like get, but as an operator. fn [](K) -> V; /** * Get the value for the specified key. If the key does not exist in * the map then returns none. */ fn find(K) -> option; /** * Remove and return a value from the map. If the key does not exist * in the map then returns none. */ fn remove(K) -> option; /// Clear the map, removing all key/value pairs. fn clear(); /// Iterate over all the key/value pairs in the map fn each(fn(K, V) -> bool); /// Iterate over all the keys in the map fn each_key(fn(K) -> bool); /// Iterate over all the values in the map fn each_value(fn(V) -> bool); } mod util { type rational = {num: int, den: int}; // : int::positive(*.den); pure fn rational_leq(x: rational, y: rational) -> bool { // NB: Uses the fact that rationals have positive denominators WLOG: x.num * y.den <= y.num * x.den } } // FIXME (#2344): package this up and export it as a datatype usable for // external code that doesn't want to pay the cost of a box. mod chained { export t, mk, hashmap; const initial_capacity: uint = 32u; // 2^5 type entry = { hash: uint, key: K, mut value: V, mut next: chain }; enum chain { present(@entry), absent } type hashmap__ = { mut count: uint, mut chains: ~[mut chain], hasher: hashfn, eqer: eqfn }; type t = @hashmap_; enum hashmap_ { hashmap_(@hashmap__) } type t = hashmap_; enum search_result { not_found, found_first(uint, @entry), found_after(@entry, @entry) } impl private_methods for hashmap_ { fn search_rem(k: K, h: uint, idx: uint, e_root: @entry) -> search_result { let mut e0 = e_root; let mut comp = 1u; // for logging loop { alt copy e0.next { absent { debug!{"search_tbl: absent, comp %u, hash %u, idx %u", comp, h, idx}; return not_found; } present(e1) { comp += 1u; if e1.hash == h && self.eqer(e1.key, k) { debug!{"search_tbl: present, comp %u, \ hash %u, idx %u", comp, h, idx}; return found_after(e0, e1); } else { e0 = e1; } } } }; } fn search_tbl(k: K, h: uint) -> search_result { let idx = h % vec::len(self.chains); alt copy self.chains[idx] { absent { debug!{"search_tbl: absent, comp %u, hash %u, idx %u", 0u, h, idx}; return not_found; } present(e) { if e.hash == h && self.eqer(e.key, k) { debug!{"search_tbl: present, comp %u, hash %u, idx %u", 1u, h, idx}; return found_first(idx, e); } else { return self.search_rem(k, h, idx, e); } } } } fn rehash() { let n_old_chains = vec::len(self.chains); let n_new_chains: uint = uint::next_power_of_two(n_old_chains+1u); let new_chains = chains(n_new_chains); for self.each_entry |entry| { let idx = entry.hash % n_new_chains; entry.next = new_chains[idx]; new_chains[idx] = present(entry); } self.chains = new_chains; } fn each_entry(blk: fn(@entry) -> bool) { let mut i = 0u, n = vec::len(self.chains); while i < n { let mut chain = self.chains[i]; loop { chain = alt chain { absent { break; } present(entry) { let next = entry.next; if !blk(entry) { return; } next } } } i += 1u; } } } impl hashmap of map for t { fn size() -> uint { self.count } fn contains_key(k: K) -> bool { let hash = self.hasher(k); alt self.search_tbl(k, hash) { not_found {false} found_first(*) | found_after(*) {true} } } fn insert(+k: K, +v: V) -> bool { let hash = self.hasher(k); alt self.search_tbl(k, hash) { not_found { self.count += 1u; let idx = hash % vec::len(self.chains); let old_chain = self.chains[idx]; self.chains[idx] = present(@{ hash: hash, key: k, mut value: v, mut next: old_chain}); // consider rehashing if more 3/4 full let nchains = vec::len(self.chains); let load = {num: (self.count + 1u) as int, den: nchains as int}; if !util::rational_leq(load, {num:3, den:4}) { self.rehash(); } return true; } found_first(_, entry) { entry.value = v; return false; } found_after(_, entry) { entry.value = v; return false } } } fn find(k: K) -> option { alt self.search_tbl(k, self.hasher(k)) { not_found {none} found_first(_, entry) {some(entry.value)} found_after(_, entry) {some(entry.value)} } } fn get(k: K) -> V { alt self.find(k) { some(v) => {v} none => {fail fmt!{"Key not found in table: %?", k}} } } fn [](k: K) -> V { self.get(k) } fn remove(k: K) -> option { alt self.search_tbl(k, self.hasher(k)) { not_found {none} found_first(idx, entry) { self.count -= 1u; self.chains[idx] = entry.next; some(entry.value) } found_after(eprev, entry) { self.count -= 1u; eprev.next = entry.next; some(entry.value) } } } fn clear() { self.count = 0u; self.chains = chains(initial_capacity); } fn each(blk: fn(K,V) -> bool) { for self.each_entry |entry| { if !blk(entry.key, copy entry.value) { break; } } } fn each_key(blk: fn(K) -> bool) { self.each(|k, _v| blk(k)) } fn each_value(blk: fn(V) -> bool) { self.each(|_k, v| blk(v)) } } impl hashmap of to_str for hashmap_ { fn to_writer(wr: io::writer) { if self.count == 0u { wr.write_str("{}"); return; } wr.write_str("{ "); let mut first = true; for self.each_entry |entry| { if !first { wr.write_str(", "); } first = false; wr.write_str(entry.key.to_str()); wr.write_str(": "); wr.write_str((copy entry.value).to_str()); }; wr.write_str(" }"); } fn to_str() -> ~str { do io::with_str_writer |wr| { self.to_writer(wr) } } } impl hashmap of ops::index for t { pure fn index(k: K) -> V { unchecked { self.get(k) } } } fn chains(nchains: uint) -> ~[mut chain] { return vec::to_mut(vec::from_elem(nchains, absent)); } fn mk(hasher: hashfn, eqer: eqfn) -> t { let slf: t = hashmap_(@{mut count: 0u, mut chains: chains(initial_capacity), hasher: hasher, eqer: eqer}); slf } } /* Function: hashmap Construct a hashmap. Parameters: hasher - The hash function for key type K eqer - The equality function for key type K */ fn hashmap(hasher: hashfn, eqer: eqfn) -> hashmap { chained::mk(hasher, eqer) } /// Construct a hashmap for string keys fn str_hash() -> hashmap<~str, V> { return hashmap(str::hash, str::eq); } /// Construct a hashmap for boxed string keys fn box_str_hash() -> hashmap<@~str, V> { return hashmap(|x: @~str| str::hash(*x), |x,y| str::eq(*x,*y)); } /// Construct a hashmap for byte string keys fn bytes_hash() -> hashmap<~[u8], V> { return hashmap(vec::u8::hash, vec::u8::eq); } /// Construct a hashmap for int keys fn int_hash() -> hashmap { return hashmap(int::hash, int::eq); } /// Construct a hashmap for uint keys fn uint_hash() -> hashmap { return hashmap(uint::hash, uint::eq); } /// Convenience function for adding keys to a hashmap with nil type keys fn set_add(set: set, key: K) -> bool { return set.insert(key, ()); } /// Convert a set into a vector. fn vec_from_set(s: set) -> ~[T] { let mut v = ~[]; do s.each_key() |k| { vec::push(v, k); true }; v } /// Construct a hashmap from a vector fn hash_from_vec(hasher: hashfn, eqer: eqfn, items: ~[(K, V)]) -> hashmap { let map = hashmap(hasher, eqer); do vec::iter(items) |item| { let (key, value) = item; map.insert(key, value); } map } /// Construct a hashmap from a vector with string keys fn hash_from_strs(items: ~[(~str, V)]) -> hashmap<~str, V> { hash_from_vec(str::hash, str::eq, items) } /// Construct a hashmap from a vector with byte keys fn hash_from_bytes(items: ~[(~[u8], V)]) -> hashmap<~[u8], V> { hash_from_vec(vec::u8::hash, vec::u8::eq, items) } /// Construct a hashmap from a vector with int keys fn hash_from_ints(items: ~[(int, V)]) -> hashmap { hash_from_vec(int::hash, int::eq, items) } /// Construct a hashmap from a vector with uint keys fn hash_from_uints(items: ~[(uint, V)]) -> hashmap { hash_from_vec(uint::hash, uint::eq, items) } #[cfg(test)] mod tests { #[test] fn test_simple() { debug!{"*** starting test_simple"}; fn eq_uint(&&x: uint, &&y: uint) -> bool { return x == y; } fn uint_id(&&x: uint) -> uint { x } let hasher_uint: map::hashfn = uint_id; let eqer_uint: map::eqfn = eq_uint; let hasher_str: map::hashfn<~str> = str::hash; let eqer_str: map::eqfn<~str> = str::eq; debug!{"uint -> uint"}; let hm_uu: map::hashmap = map::hashmap::(hasher_uint, eqer_uint); assert (hm_uu.insert(10u, 12u)); assert (hm_uu.insert(11u, 13u)); assert (hm_uu.insert(12u, 14u)); assert (hm_uu.get(11u) == 13u); assert (hm_uu.get(12u) == 14u); assert (hm_uu.get(10u) == 12u); assert (!hm_uu.insert(12u, 14u)); assert (hm_uu.get(12u) == 14u); assert (!hm_uu.insert(12u, 12u)); assert (hm_uu.get(12u) == 12u); let ten: ~str = ~"ten"; let eleven: ~str = ~"eleven"; let twelve: ~str = ~"twelve"; debug!{"str -> uint"}; let hm_su: map::hashmap<~str, uint> = map::hashmap::<~str, uint>(hasher_str, eqer_str); assert (hm_su.insert(~"ten", 12u)); assert (hm_su.insert(eleven, 13u)); assert (hm_su.insert(~"twelve", 14u)); assert (hm_su.get(eleven) == 13u); assert (hm_su.get(~"eleven") == 13u); assert (hm_su.get(~"twelve") == 14u); assert (hm_su.get(~"ten") == 12u); assert (!hm_su.insert(~"twelve", 14u)); assert (hm_su.get(~"twelve") == 14u); assert (!hm_su.insert(~"twelve", 12u)); assert (hm_su.get(~"twelve") == 12u); debug!{"uint -> str"}; let hm_us: map::hashmap = map::hashmap::(hasher_uint, eqer_uint); assert (hm_us.insert(10u, ~"twelve")); assert (hm_us.insert(11u, ~"thirteen")); assert (hm_us.insert(12u, ~"fourteen")); assert (str::eq(hm_us.get(11u), ~"thirteen")); assert (str::eq(hm_us.get(12u), ~"fourteen")); assert (str::eq(hm_us.get(10u), ~"twelve")); assert (!hm_us.insert(12u, ~"fourteen")); assert (str::eq(hm_us.get(12u), ~"fourteen")); assert (!hm_us.insert(12u, ~"twelve")); assert (str::eq(hm_us.get(12u), ~"twelve")); debug!{"str -> str"}; let hm_ss: map::hashmap<~str, ~str> = map::hashmap::<~str, ~str>(hasher_str, eqer_str); assert (hm_ss.insert(ten, ~"twelve")); assert (hm_ss.insert(eleven, ~"thirteen")); assert (hm_ss.insert(twelve, ~"fourteen")); assert (str::eq(hm_ss.get(~"eleven"), ~"thirteen")); assert (str::eq(hm_ss.get(~"twelve"), ~"fourteen")); assert (str::eq(hm_ss.get(~"ten"), ~"twelve")); assert (!hm_ss.insert(~"twelve", ~"fourteen")); assert (str::eq(hm_ss.get(~"twelve"), ~"fourteen")); assert (!hm_ss.insert(~"twelve", ~"twelve")); assert (str::eq(hm_ss.get(~"twelve"), ~"twelve")); debug!{"*** finished test_simple"}; } /** * Force map growth */ #[test] fn test_growth() { debug!{"*** starting test_growth"}; let num_to_insert: uint = 64u; fn eq_uint(&&x: uint, &&y: uint) -> bool { return x == y; } fn uint_id(&&x: uint) -> uint { x } debug!{"uint -> uint"}; let hasher_uint: map::hashfn = uint_id; let eqer_uint: map::eqfn = eq_uint; let hm_uu: map::hashmap = map::hashmap::(hasher_uint, eqer_uint); let mut i: uint = 0u; while i < num_to_insert { assert (hm_uu.insert(i, i * i)); debug!{"inserting %u -> %u", i, i*i}; i += 1u; } debug!{"-----"}; i = 0u; while i < num_to_insert { debug!{"get(%u) = %u", i, hm_uu.get(i)}; assert (hm_uu.get(i) == i * i); i += 1u; } assert (hm_uu.insert(num_to_insert, 17u)); assert (hm_uu.get(num_to_insert) == 17u); debug!{"-----"}; i = 0u; while i < num_to_insert { debug!{"get(%u) = %u", i, hm_uu.get(i)}; assert (hm_uu.get(i) == i * i); i += 1u; } debug!{"str -> str"}; let hasher_str: map::hashfn<~str> = str::hash; let eqer_str: map::eqfn<~str> = str::eq; let hm_ss: map::hashmap<~str, ~str> = map::hashmap::<~str, ~str>(hasher_str, eqer_str); i = 0u; while i < num_to_insert { assert hm_ss.insert(uint::to_str(i, 2u), uint::to_str(i * i, 2u)); debug!{"inserting \"%s\" -> \"%s\"", uint::to_str(i, 2u), uint::to_str(i*i, 2u)}; i += 1u; } debug!{"-----"}; i = 0u; while i < num_to_insert { debug!{"get(\"%s\") = \"%s\"", uint::to_str(i, 2u), hm_ss.get(uint::to_str(i, 2u))}; assert (str::eq(hm_ss.get(uint::to_str(i, 2u)), uint::to_str(i * i, 2u))); i += 1u; } assert (hm_ss.insert(uint::to_str(num_to_insert, 2u), uint::to_str(17u, 2u))); assert (str::eq(hm_ss.get(uint::to_str(num_to_insert, 2u)), uint::to_str(17u, 2u))); debug!{"-----"}; i = 0u; while i < num_to_insert { debug!{"get(\"%s\") = \"%s\"", uint::to_str(i, 2u), hm_ss.get(uint::to_str(i, 2u))}; assert (str::eq(hm_ss.get(uint::to_str(i, 2u)), uint::to_str(i * i, 2u))); i += 1u; } debug!{"*** finished test_growth"}; } #[test] fn test_removal() { debug!{"*** starting test_removal"}; let num_to_insert: uint = 64u; fn eq(&&x: uint, &&y: uint) -> bool { return x == y; } fn hash(&&u: uint) -> uint { // This hash function intentionally causes collisions between // consecutive integer pairs. return u / 2u * 2u; } assert (hash(0u) == hash(1u)); assert (hash(2u) == hash(3u)); assert (hash(0u) != hash(2u)); let hasher: map::hashfn = hash; let eqer: map::eqfn = eq; let hm: map::hashmap = map::hashmap::(hasher, eqer); let mut i: uint = 0u; while i < num_to_insert { assert (hm.insert(i, i * i)); debug!{"inserting %u -> %u", i, i*i}; i += 1u; } assert (hm.size() == num_to_insert); debug!{"-----"}; debug!{"removing evens"}; i = 0u; while i < num_to_insert { let v = hm.remove(i); alt v { option::some(u) { assert (u == i * i); } option::none { fail; } } i += 2u; } assert (hm.size() == num_to_insert / 2u); debug!{"-----"}; i = 1u; while i < num_to_insert { debug!{"get(%u) = %u", i, hm.get(i)}; assert (hm.get(i) == i * i); i += 2u; } debug!{"-----"}; i = 1u; while i < num_to_insert { debug!{"get(%u) = %u", i, hm.get(i)}; assert (hm.get(i) == i * i); i += 2u; } debug!{"-----"}; i = 0u; while i < num_to_insert { assert (hm.insert(i, i * i)); debug!{"inserting %u -> %u", i, i*i}; i += 2u; } assert (hm.size() == num_to_insert); debug!{"-----"}; i = 0u; while i < num_to_insert { debug!{"get(%u) = %u", i, hm.get(i)}; assert (hm.get(i) == i * i); i += 1u; } debug!{"-----"}; assert (hm.size() == num_to_insert); i = 0u; while i < num_to_insert { debug!{"get(%u) = %u", i, hm.get(i)}; assert (hm.get(i) == i * i); i += 1u; } debug!{"*** finished test_removal"}; } #[test] fn test_contains_key() { let key = ~"k"; let map = map::hashmap::<~str, ~str>(str::hash, str::eq); assert (!map.contains_key(key)); map.insert(key, ~"val"); assert (map.contains_key(key)); } #[test] fn test_find() { let key = ~"k"; let map = map::hashmap::<~str, ~str>(str::hash, str::eq); assert (option::is_none(map.find(key))); map.insert(key, ~"val"); assert (option::get(map.find(key)) == ~"val"); } #[test] fn test_clear() { let key = ~"k"; let map = map::hashmap::<~str, ~str>(str::hash, str::eq); map.insert(key, ~"val"); assert (map.size() == 1); assert (map.contains_key(key)); map.clear(); assert (map.size() == 0); assert (!map.contains_key(key)); } #[test] fn test_hash_from_vec() { let map = map::hash_from_strs(~[ (~"a", 1), (~"b", 2), (~"c", 3) ]); assert map.size() == 3u; assert map.get(~"a") == 1; assert map.get(~"b") == 2; assert map.get(~"c") == 3; } }