// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, BasicBlockRef, ValueRef, OperandBundleDef}; use rustc::ty; use rustc::mir::repr as mir; use abi::{Abi, FnType, ArgType}; use adt; use base; use build; use callee::{Callee, CalleeData, Fn, Intrinsic, NamedTupleConstructor, Virtual}; use common::{self, type_is_fat_ptr, Block, BlockAndBuilder, C_undef}; use debuginfo::DebugLoc; use Disr; use machine::{llalign_of_min, llbitsize_of_real}; use meth; use type_of; use glue; use type_::Type; use super::{MirContext, TempRef, drop}; use super::lvalue::{LvalueRef, load_fat_ptr}; use super::operand::OperandRef; use super::operand::OperandValue::{self, FatPtr, Immediate, Ref}; impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> { pub fn trans_block(&mut self, bb: mir::BasicBlock) { debug!("trans_block({:?})", bb); let mut bcx = self.bcx(bb); let mir = self.mir.clone(); let data = mir.basic_block_data(bb); // MSVC SEH bits let (cleanup_pad, cleanup_bundle) = if let Some((cp, cb)) = self.make_cleanup_pad(bb) { (Some(cp), Some(cb)) } else { (None, None) }; let funclet_br = |bcx: BlockAndBuilder, llbb: BasicBlockRef| if let Some(cp) = cleanup_pad { bcx.cleanup_ret(cp, Some(llbb)); } else { bcx.br(llbb); }; for statement in &data.statements { bcx = self.trans_statement(bcx, statement); } let terminator = data.terminator(); debug!("trans_block: terminator: {:?}", terminator); let debug_loc = DebugLoc::ScopeAt(self.scopes[terminator.scope.index()], terminator.span); debug_loc.apply_to_bcx(&bcx); debug_loc.apply(bcx.fcx()); match terminator.kind { mir::TerminatorKind::Resume => { if let Some(cleanup_pad) = cleanup_pad { bcx.cleanup_ret(cleanup_pad, None); } else { let ps = self.get_personality_slot(&bcx); let lp = bcx.load(ps); bcx.with_block(|bcx| { base::call_lifetime_end(bcx, ps); base::trans_unwind_resume(bcx, lp); }); } } mir::TerminatorKind::Goto { target } => { funclet_br(bcx, self.llblock(target)); } mir::TerminatorKind::If { ref cond, targets: (true_bb, false_bb) } => { let cond = self.trans_operand(&bcx, cond); let lltrue = self.llblock(true_bb); let llfalse = self.llblock(false_bb); bcx.cond_br(cond.immediate(), lltrue, llfalse); } mir::TerminatorKind::Switch { ref discr, ref adt_def, ref targets } => { let discr_lvalue = self.trans_lvalue(&bcx, discr); let ty = discr_lvalue.ty.to_ty(bcx.tcx()); let repr = adt::represent_type(bcx.ccx(), ty); let discr = bcx.with_block(|bcx| adt::trans_get_discr(bcx, &repr, discr_lvalue.llval, None, true) ); // The else branch of the Switch can't be hit, so branch to an unreachable // instruction so LLVM knows that let unreachable_blk = self.unreachable_block(); let switch = bcx.switch(discr, unreachable_blk.llbb, targets.len()); assert_eq!(adt_def.variants.len(), targets.len()); for (adt_variant, target) in adt_def.variants.iter().zip(targets) { let llval = bcx.with_block(|bcx| adt::trans_case(bcx, &repr, Disr::from(adt_variant.disr_val)) ); let llbb = self.llblock(*target); build::AddCase(switch, llval, llbb) } } mir::TerminatorKind::SwitchInt { ref discr, switch_ty, ref values, ref targets } => { let (otherwise, targets) = targets.split_last().unwrap(); let discr = bcx.load(self.trans_lvalue(&bcx, discr).llval); let discr = bcx.with_block(|bcx| base::to_immediate(bcx, discr, switch_ty)); let switch = bcx.switch(discr, self.llblock(*otherwise), values.len()); for (value, target) in values.iter().zip(targets) { let llval = self.trans_constval(&bcx, value, switch_ty).immediate(); let llbb = self.llblock(*target); build::AddCase(switch, llval, llbb) } } mir::TerminatorKind::Return => { bcx.with_block(|bcx| { self.fcx.build_return_block(bcx, debug_loc); }) } mir::TerminatorKind::Drop { ref value, target, unwind } => { let lvalue = self.trans_lvalue(&bcx, value); let ty = lvalue.ty.to_ty(bcx.tcx()); // Double check for necessity to drop if !glue::type_needs_drop(bcx.tcx(), ty) { funclet_br(bcx, self.llblock(target)); return; } let drop_fn = glue::get_drop_glue(bcx.ccx(), ty); let drop_ty = glue::get_drop_glue_type(bcx.ccx(), ty); let llvalue = if drop_ty != ty { bcx.pointercast(lvalue.llval, type_of::type_of(bcx.ccx(), drop_ty).ptr_to()) } else { lvalue.llval }; if let Some(unwind) = unwind { let uwbcx = self.bcx(unwind); let unwind = self.make_landing_pad(uwbcx); bcx.invoke(drop_fn, &[llvalue], self.llblock(target), unwind.llbb(), cleanup_bundle.as_ref()); self.bcx(target).at_start(|bcx| { debug_loc.apply_to_bcx(bcx); drop::drop_fill(bcx, lvalue.llval, ty) }); } else { bcx.call(drop_fn, &[llvalue], cleanup_bundle.as_ref()); drop::drop_fill(&bcx, lvalue.llval, ty); funclet_br(bcx, self.llblock(target)); } } mir::TerminatorKind::Call { ref func, ref args, ref destination, ref cleanup } => { // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar. let callee = self.trans_operand(&bcx, func); let (mut callee, abi, sig) = match callee.ty.sty { ty::TyFnDef(def_id, substs, f) => { (Callee::def(bcx.ccx(), def_id, substs), f.abi, &f.sig) } ty::TyFnPtr(f) => { (Callee { data: Fn(callee.immediate()), ty: callee.ty }, f.abi, &f.sig) } _ => bug!("{} is not callable", callee.ty) }; let sig = bcx.tcx().erase_late_bound_regions(sig); // Handle intrinsics old trans wants Expr's for, ourselves. let intrinsic = match (&callee.ty.sty, &callee.data) { (&ty::TyFnDef(def_id, _, _), &Intrinsic) => { Some(bcx.tcx().item_name(def_id).as_str()) } _ => None }; let intrinsic = intrinsic.as_ref().map(|s| &s[..]); if intrinsic == Some("move_val_init") { let &(_, target) = destination.as_ref().unwrap(); // The first argument is a thin destination pointer. let llptr = self.trans_operand(&bcx, &args[0]).immediate(); let val = self.trans_operand(&bcx, &args[1]); self.store_operand(&bcx, llptr, val); self.set_operand_dropped(&bcx, &args[1]); funclet_br(bcx, self.llblock(target)); return; } if intrinsic == Some("transmute") { let &(ref dest, target) = destination.as_ref().unwrap(); self.with_lvalue_ref(&bcx, dest, |this, dest| { this.trans_transmute(&bcx, &args[0], dest); }); self.set_operand_dropped(&bcx, &args[0]); funclet_br(bcx, self.llblock(target)); return; } let extra_args = &args[sig.inputs.len()..]; let extra_args = extra_args.iter().map(|op_arg| { self.mir.operand_ty(bcx.tcx(), op_arg) }).collect::>(); let fn_ty = callee.direct_fn_type(bcx.ccx(), &extra_args); // The arguments we'll be passing. Plus one to account for outptr, if used. let arg_count = fn_ty.args.len() + fn_ty.ret.is_indirect() as usize; let mut llargs = Vec::with_capacity(arg_count); // Prepare the return value destination let ret_dest = if let Some((ref dest, _)) = *destination { let is_intrinsic = if let Intrinsic = callee.data { true } else { false }; self.make_return_dest(&bcx, dest, &fn_ty.ret, &mut llargs, is_intrinsic) } else { ReturnDest::Nothing }; // Split the rust-call tupled arguments off. let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() { let (tup, args) = args.split_last().unwrap(); (args, Some(tup)) } else { (&args[..], None) }; let mut idx = 0; for arg in first_args { let val = self.trans_operand(&bcx, arg).val; self.trans_argument(&bcx, val, &mut llargs, &fn_ty, &mut idx, &mut callee.data); } if let Some(tup) = untuple { self.trans_arguments_untupled(&bcx, tup, &mut llargs, &fn_ty, &mut idx, &mut callee.data) } let fn_ptr = match callee.data { NamedTupleConstructor(_) => { // FIXME translate this like mir::Rvalue::Aggregate. callee.reify(bcx.ccx()).val } Intrinsic => { use callee::ArgVals; use expr::{Ignore, SaveIn}; use intrinsic::trans_intrinsic_call; let (dest, llargs) = match ret_dest { _ if fn_ty.ret.is_indirect() => { (SaveIn(llargs[0]), &llargs[1..]) } ReturnDest::Nothing => (Ignore, &llargs[..]), ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) => (SaveIn(dst), &llargs[..]), ReturnDest::DirectOperand(_) => bug!("Cannot use direct operand with an intrinsic call") }; bcx.with_block(|bcx| { trans_intrinsic_call(bcx, callee.ty, &fn_ty, ArgVals(llargs), dest, debug_loc); }); if let ReturnDest::IndirectOperand(dst, _) = ret_dest { // Make a fake operand for store_return let op = OperandRef { val: OperandValue::Ref(dst), ty: sig.output.unwrap() }; self.store_return(&bcx, ret_dest, fn_ty.ret, op); } if let Some((_, target)) = *destination { for op in args { self.set_operand_dropped(&bcx, op); } funclet_br(bcx, self.llblock(target)); } else { // trans_intrinsic_call already used Unreachable. // bcx.unreachable(); } return; } Fn(f) => f, Virtual(_) => bug!("Virtual fn ptr not extracted") }; // Many different ways to call a function handled here if let Some(cleanup) = cleanup.map(|bb| self.bcx(bb)) { let ret_bcx = if let Some((_, target)) = *destination { self.blocks[target.index()] } else { self.unreachable_block() }; let landingpad = self.make_landing_pad(cleanup); let invokeret = bcx.invoke(fn_ptr, &llargs, ret_bcx.llbb, landingpad.llbb(), cleanup_bundle.as_ref()); fn_ty.apply_attrs_callsite(invokeret); landingpad.at_start(|bcx| { debug_loc.apply_to_bcx(bcx); for op in args { self.set_operand_dropped(bcx, op); } }); if destination.is_some() { let ret_bcx = ret_bcx.build(); ret_bcx.at_start(|ret_bcx| { debug_loc.apply_to_bcx(ret_bcx); let op = OperandRef { val: OperandValue::Immediate(invokeret), ty: sig.output.unwrap() }; self.store_return(&ret_bcx, ret_dest, fn_ty.ret, op); for op in args { self.set_operand_dropped(&ret_bcx, op); } }); } } else { let llret = bcx.call(fn_ptr, &llargs, cleanup_bundle.as_ref()); fn_ty.apply_attrs_callsite(llret); if let Some((_, target)) = *destination { let op = OperandRef { val: OperandValue::Immediate(llret), ty: sig.output.unwrap() }; self.store_return(&bcx, ret_dest, fn_ty.ret, op); for op in args { self.set_operand_dropped(&bcx, op); } funclet_br(bcx, self.llblock(target)); } else { // no need to drop args, because the call never returns bcx.unreachable(); } } } } } fn trans_argument(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>, val: OperandValue, llargs: &mut Vec, fn_ty: &FnType, next_idx: &mut usize, callee: &mut CalleeData) { // Treat the values in a fat pointer separately. if let FatPtr(ptr, meta) = val { if *next_idx == 0 { if let Virtual(idx) = *callee { let llfn = bcx.with_block(|bcx| { meth::get_virtual_method(bcx, meta, idx) }); let llty = fn_ty.llvm_type(bcx.ccx()).ptr_to(); *callee = Fn(bcx.pointercast(llfn, llty)); } } self.trans_argument(bcx, Immediate(ptr), llargs, fn_ty, next_idx, callee); self.trans_argument(bcx, Immediate(meta), llargs, fn_ty, next_idx, callee); return; } let arg = &fn_ty.args[*next_idx]; *next_idx += 1; // Fill padding with undef value, where applicable. if let Some(ty) = arg.pad { llargs.push(C_undef(ty)); } if arg.is_ignore() { return; } // Force by-ref if we have to load through a cast pointer. let (mut llval, by_ref) = match val { Immediate(llval) if arg.is_indirect() || arg.cast.is_some() => { let llscratch = build::AllocaFcx(bcx.fcx(), arg.original_ty, "arg"); bcx.store(llval, llscratch); (llscratch, true) } Immediate(llval) => (llval, false), Ref(llval) => (llval, true), FatPtr(_, _) => bug!("fat pointers handled above") }; if by_ref && !arg.is_indirect() { // Have to load the argument, maybe while casting it. if arg.original_ty == Type::i1(bcx.ccx()) { // We store bools as i8 so we need to truncate to i1. llval = bcx.load_range_assert(llval, 0, 2, llvm::False); llval = bcx.trunc(llval, arg.original_ty); } else if let Some(ty) = arg.cast { llval = bcx.load(bcx.pointercast(llval, ty.ptr_to())); let llalign = llalign_of_min(bcx.ccx(), arg.ty); unsafe { llvm::LLVMSetAlignment(llval, llalign); } } else { llval = bcx.load(llval); } } llargs.push(llval); } fn trans_arguments_untupled(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>, operand: &mir::Operand<'tcx>, llargs: &mut Vec, fn_ty: &FnType, next_idx: &mut usize, callee: &mut CalleeData) { let tuple = self.trans_operand(bcx, operand); let arg_types = match tuple.ty.sty { ty::TyTuple(ref tys) => tys, _ => span_bug!(self.mir.span, "bad final argument to \"rust-call\" fn {:?}", tuple.ty) }; // Handle both by-ref and immediate tuples. match tuple.val { Ref(llval) => { let base_repr = adt::represent_type(bcx.ccx(), tuple.ty); let base = adt::MaybeSizedValue::sized(llval); for (n, &ty) in arg_types.iter().enumerate() { let ptr = adt::trans_field_ptr_builder(bcx, &base_repr, base, Disr(0), n); let val = if common::type_is_fat_ptr(bcx.tcx(), ty) { let (lldata, llextra) = load_fat_ptr(bcx, ptr); FatPtr(lldata, llextra) } else { // trans_argument will load this if it needs to Ref(ptr) }; self.trans_argument(bcx, val, llargs, fn_ty, next_idx, callee); } } Immediate(llval) => { for (n, &ty) in arg_types.iter().enumerate() { let mut elem = bcx.extract_value(llval, n); // Truncate bools to i1, if needed if ty.is_bool() && common::val_ty(elem) != Type::i1(bcx.ccx()) { elem = bcx.trunc(elem, Type::i1(bcx.ccx())); } // If the tuple is immediate, the elements are as well let val = Immediate(elem); self.trans_argument(bcx, val, llargs, fn_ty, next_idx, callee); } } FatPtr(_, _) => bug!("tuple is a fat pointer?!") } } fn get_personality_slot(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>) -> ValueRef { let ccx = bcx.ccx(); if let Some(slot) = self.llpersonalityslot { slot } else { let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false); bcx.with_block(|bcx| { let slot = base::alloca(bcx, llretty, "personalityslot"); self.llpersonalityslot = Some(slot); base::call_lifetime_start(bcx, slot); slot }) } } /// Create a landingpad wrapper around the given Block. /// /// No-op in MSVC SEH scheme. fn make_landing_pad(&mut self, cleanup: BlockAndBuilder<'bcx, 'tcx>) -> BlockAndBuilder<'bcx, 'tcx> { if base::wants_msvc_seh(cleanup.sess()) { return cleanup; } let bcx = self.fcx.new_block("cleanup", None).build(); let ccx = bcx.ccx(); let llpersonality = self.fcx.eh_personality(); let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false); let llretval = bcx.landing_pad(llretty, llpersonality, 1, self.fcx.llfn); bcx.set_cleanup(llretval); let slot = self.get_personality_slot(&bcx); bcx.store(llretval, slot); bcx.br(cleanup.llbb()); bcx } /// Create prologue cleanuppad instruction under MSVC SEH handling scheme. /// /// Also handles setting some state for the original trans and creating an operand bundle for /// function calls. fn make_cleanup_pad(&mut self, bb: mir::BasicBlock) -> Option<(ValueRef, OperandBundleDef)> { let bcx = self.bcx(bb); let data = self.mir.basic_block_data(bb); let use_funclets = base::wants_msvc_seh(bcx.sess()) && data.is_cleanup; let cleanup_pad = if use_funclets { bcx.set_personality_fn(self.fcx.eh_personality()); bcx.at_start(|bcx| { DebugLoc::None.apply_to_bcx(bcx); Some(bcx.cleanup_pad(None, &[])) }) } else { None }; // Set the landingpad global-state for old translator, so it knows about the SEH used. bcx.set_lpad(if let Some(cleanup_pad) = cleanup_pad { Some(common::LandingPad::msvc(cleanup_pad)) } else if data.is_cleanup { Some(common::LandingPad::gnu()) } else { None }); cleanup_pad.map(|f| (f, OperandBundleDef::new("funclet", &[f]))) } fn unreachable_block(&mut self) -> Block<'bcx, 'tcx> { self.unreachable_block.unwrap_or_else(|| { let bl = self.fcx.new_block("unreachable", None); bl.build().unreachable(); self.unreachable_block = Some(bl); bl }) } fn bcx(&self, bb: mir::BasicBlock) -> BlockAndBuilder<'bcx, 'tcx> { self.blocks[bb.index()].build() } pub fn llblock(&self, bb: mir::BasicBlock) -> BasicBlockRef { self.blocks[bb.index()].llbb } fn make_return_dest(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>, dest: &mir::Lvalue<'tcx>, fn_ret_ty: &ArgType, llargs: &mut Vec, is_intrinsic: bool) -> ReturnDest { // If the return is ignored, we can just return a do-nothing ReturnDest if fn_ret_ty.is_ignore() { return ReturnDest::Nothing; } let dest = match *dest { mir::Lvalue::Temp(idx) => { let lvalue_ty = self.mir.lvalue_ty(bcx.tcx(), dest); let lvalue_ty = bcx.monomorphize(&lvalue_ty); let ret_ty = lvalue_ty.to_ty(bcx.tcx()); match self.temps[idx as usize] { TempRef::Lvalue(dest) => dest, TempRef::Operand(None) => { // Handle temporary lvalues, specifically Operand ones, as // they don't have allocas return if fn_ret_ty.is_indirect() { // Odd, but possible, case, we have an operand temporary, // but the calling convention has an indirect return. let tmp = bcx.with_block(|bcx| { base::alloc_ty(bcx, ret_ty, "tmp_ret") }); llargs.push(tmp); ReturnDest::IndirectOperand(tmp, idx) } else if is_intrinsic { // Currently, intrinsics always need a location to store // the result. so we create a temporary alloca for the // result let tmp = bcx.with_block(|bcx| { base::alloc_ty(bcx, ret_ty, "tmp_ret") }); ReturnDest::IndirectOperand(tmp, idx) } else { ReturnDest::DirectOperand(idx) }; } TempRef::Operand(Some(_)) => { bug!("lvalue temp already assigned to"); } } } _ => self.trans_lvalue(bcx, dest) }; if fn_ret_ty.is_indirect() { llargs.push(dest.llval); ReturnDest::Nothing } else { ReturnDest::Store(dest.llval) } } fn trans_transmute(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>, src: &mir::Operand<'tcx>, dst: LvalueRef<'tcx>) { let mut val = self.trans_operand(bcx, src); if let ty::TyFnDef(def_id, substs, _) = val.ty.sty { let llouttype = type_of::type_of(bcx.ccx(), dst.ty.to_ty(bcx.tcx())); let out_type_size = llbitsize_of_real(bcx.ccx(), llouttype); if out_type_size != 0 { // FIXME #19925 Remove this hack after a release cycle. let f = Callee::def(bcx.ccx(), def_id, substs); let datum = f.reify(bcx.ccx()); val = OperandRef { val: OperandValue::Immediate(datum.val), ty: datum.ty }; } } let llty = type_of::type_of(bcx.ccx(), val.ty); let cast_ptr = bcx.pointercast(dst.llval, llty.ptr_to()); self.store_operand(bcx, cast_ptr, val); } // Stores the return value of a function call into it's final location. fn store_return(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>, dest: ReturnDest, ret_ty: ArgType, op: OperandRef<'tcx>) { use self::ReturnDest::*; match dest { Nothing => (), Store(dst) => ret_ty.store(bcx, op.immediate(), dst), IndirectOperand(tmp, idx) => { let op = self.trans_load(bcx, tmp, op.ty); self.temps[idx as usize] = TempRef::Operand(Some(op)); } DirectOperand(idx) => { let op = if type_is_fat_ptr(bcx.tcx(), op.ty) { let llval = op.immediate(); let ptr = bcx.extract_value(llval, 0); let meta = bcx.extract_value(llval, 1); OperandRef { val: OperandValue::FatPtr(ptr, meta), ty: op.ty } } else { op }; self.temps[idx as usize] = TempRef::Operand(Some(op)); } } } } enum ReturnDest { // Do nothing, the return value is indirect or ignored Nothing, // Store the return value to the pointer Store(ValueRef), // Stores an indirect return value to an operand temporary lvalue IndirectOperand(ValueRef, u32), // Stores a direct return value to an operand temporary lvalue DirectOperand(u32) }