// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::def; use middle::subst::{VecPerParamSpace,Subst}; use middle::subst; use middle::ty::{BoundRegion, BrAnon, BrNamed}; use middle::ty::{ReEarlyBound, BrFresh, ctxt}; use middle::ty::{ReFree, ReScope, ReInfer, ReStatic, Region, ReEmpty}; use middle::ty::{ReSkolemized, ReVar}; use middle::ty::{mt, t, ParamTy}; use middle::ty::{ty_bool, ty_char, ty_bot, ty_struct, ty_enum}; use middle::ty::{ty_err, ty_str, ty_vec, ty_float, ty_bare_fn, ty_closure}; use middle::ty::{ty_nil, ty_param, ty_ptr, ty_rptr, ty_tup, ty_open}; use middle::ty::{ty_unboxed_closure}; use middle::ty::{ty_uniq, ty_trait, ty_int, ty_uint, ty_infer}; use middle::ty; use middle::typeck; use middle::typeck::check::regionmanip; use std::rc::Rc; use syntax::abi; use syntax::ast_map; use syntax::codemap::{Span, Pos}; use syntax::parse::token; use syntax::print::pprust; use syntax::{ast, ast_util}; use syntax::owned_slice::OwnedSlice; /// Produces a string suitable for debugging output. pub trait Repr { fn repr(&self, tcx: &ctxt) -> String; } /// Produces a string suitable for showing to the user. pub trait UserString { fn user_string(&self, tcx: &ctxt) -> String; } pub fn note_and_explain_region(cx: &ctxt, prefix: &str, region: ty::Region, suffix: &str) { match explain_region_and_span(cx, region) { (ref str, Some(span)) => { cx.sess.span_note( span, format!("{}{}{}", prefix, *str, suffix).as_slice()); } (ref str, None) => { cx.sess.note( format!("{}{}{}", prefix, *str, suffix).as_slice()); } } } fn item_scope_tag(item: &ast::Item) -> &'static str { /*! * When a free region is associated with `item`, how should we describe * the item in the error message. */ match item.node { ast::ItemImpl(..) => "impl", ast::ItemStruct(..) => "struct", ast::ItemEnum(..) => "enum", ast::ItemTrait(..) => "trait", ast::ItemFn(..) => "function body", _ => "item" } } pub fn explain_region_and_span(cx: &ctxt, region: ty::Region) -> (String, Option) { return match region { ReScope(node_id) => { match cx.map.find(node_id) { Some(ast_map::NodeBlock(ref blk)) => { explain_span(cx, "block", blk.span) } Some(ast_map::NodeExpr(expr)) => { match expr.node { ast::ExprCall(..) => explain_span(cx, "call", expr.span), ast::ExprMethodCall(..) => { explain_span(cx, "method call", expr.span) }, ast::ExprMatch(_, _, ast::MatchIfLetDesugar) => explain_span(cx, "if let", expr.span), ast::ExprMatch(_, _, ast::MatchWhileLetDesugar) => { explain_span(cx, "while let", expr.span) }, ast::ExprMatch(..) => explain_span(cx, "match", expr.span), _ => explain_span(cx, "expression", expr.span) } } Some(ast_map::NodeStmt(stmt)) => { explain_span(cx, "statement", stmt.span) } Some(ast_map::NodeItem(it)) => { let tag = item_scope_tag(&*it); explain_span(cx, tag, it.span) } Some(_) | None => { // this really should not happen (format!("unknown scope: {}. Please report a bug.", node_id), None) } } } ReFree(ref fr) => { let prefix = match fr.bound_region { BrAnon(idx) => { format!("the anonymous lifetime #{} defined on", idx + 1) } BrFresh(_) => "an anonymous lifetime defined on".to_string(), _ => { format!("the lifetime {} as defined on", bound_region_ptr_to_string(cx, fr.bound_region)) } }; match cx.map.find(fr.scope_id) { Some(ast_map::NodeBlock(ref blk)) => { let (msg, opt_span) = explain_span(cx, "block", blk.span); (format!("{} {}", prefix, msg), opt_span) } Some(ast_map::NodeItem(it)) => { let tag = item_scope_tag(&*it); let (msg, opt_span) = explain_span(cx, tag, it.span); (format!("{} {}", prefix, msg), opt_span) } Some(_) | None => { // this really should not happen (format!("{} node {}", prefix, fr.scope_id), None) } } } ReStatic => { ("the static lifetime".to_string(), None) } ReEmpty => { ("the empty lifetime".to_string(), None) } ReEarlyBound(_, _, _, name) => { (format!("{}", token::get_name(name)), None) } // I believe these cases should not occur (except when debugging, // perhaps) ty::ReInfer(_) | ty::ReLateBound(..) => { (format!("lifetime {:?}", region), None) } }; fn explain_span(cx: &ctxt, heading: &str, span: Span) -> (String, Option) { let lo = cx.sess.codemap().lookup_char_pos_adj(span.lo); (format!("the {} at {}:{}", heading, lo.line, lo.col.to_uint()), Some(span)) } } pub fn bound_region_ptr_to_string(cx: &ctxt, br: BoundRegion) -> String { bound_region_to_string(cx, "", false, br) } pub fn bound_region_to_string(cx: &ctxt, prefix: &str, space: bool, br: BoundRegion) -> String { let space_str = if space { " " } else { "" }; if cx.sess.verbose() { return format!("{}{}{}", prefix, br.repr(cx), space_str) } match br { BrNamed(_, name) => { format!("{}{}{}", prefix, token::get_name(name), space_str) } BrAnon(_) => prefix.to_string(), BrFresh(_) => prefix.to_string(), } } // In general, if you are giving a region error message, // you should use `explain_region()` or, better yet, // `note_and_explain_region()` pub fn region_ptr_to_string(cx: &ctxt, region: Region) -> String { region_to_string(cx, "&", true, region) } pub fn region_to_string(cx: &ctxt, prefix: &str, space: bool, region: Region) -> String { let space_str = if space { " " } else { "" }; if cx.sess.verbose() { return format!("{}{}{}", prefix, region.repr(cx), space_str) } // These printouts are concise. They do not contain all the information // the user might want to diagnose an error, but there is basically no way // to fit that into a short string. Hence the recommendation to use // `explain_region()` or `note_and_explain_region()`. match region { ty::ReScope(_) => prefix.to_string(), ty::ReEarlyBound(_, _, _, name) => { token::get_name(name).get().to_string() } ty::ReLateBound(_, br) => bound_region_to_string(cx, prefix, space, br), ty::ReFree(ref fr) => bound_region_to_string(cx, prefix, space, fr.bound_region), ty::ReInfer(ReSkolemized(_, br)) => { bound_region_to_string(cx, prefix, space, br) } ty::ReInfer(ReVar(_)) => prefix.to_string(), ty::ReStatic => format!("{}'static{}", prefix, space_str), ty::ReEmpty => format!("{}'{}", prefix, space_str), } } pub fn mutability_to_string(m: ast::Mutability) -> String { match m { ast::MutMutable => "mut ".to_string(), ast::MutImmutable => "".to_string(), } } pub fn mt_to_string(cx: &ctxt, m: &mt) -> String { format!("{}{}", mutability_to_string(m.mutbl), ty_to_string(cx, m.ty)) } pub fn trait_store_to_string(cx: &ctxt, s: ty::TraitStore) -> String { match s { ty::UniqTraitStore => "Box ".to_string(), ty::RegionTraitStore(r, m) => { format!("{}{}", region_ptr_to_string(cx, r), mutability_to_string(m)) } } } pub fn vec_map_to_string(ts: &[T], f: |t: &T| -> String) -> String { let tstrs = ts.iter().map(f).collect::>(); format!("[{}]", tstrs.connect(", ")) } pub fn fn_sig_to_string(cx: &ctxt, typ: &ty::FnSig) -> String { format!("fn{}{} -> {}", typ.binder_id, typ.inputs.repr(cx), typ.output.repr(cx)) } pub fn trait_ref_to_string(cx: &ctxt, trait_ref: &ty::TraitRef) -> String { trait_ref.user_string(cx).to_string() } pub fn ty_to_string(cx: &ctxt, typ: t) -> String { fn fn_input_to_string(cx: &ctxt, input: ty::t) -> String { ty_to_string(cx, input).to_string() } fn bare_fn_to_string(cx: &ctxt, fn_style: ast::FnStyle, abi: abi::Abi, ident: Option, sig: &ty::FnSig) -> String { let mut s = String::new(); match fn_style { ast::NormalFn => {} _ => { s.push_str(fn_style.to_string().as_slice()); s.push_char(' '); } }; if abi != abi::Rust { s.push_str(format!("extern {} ", abi.to_string()).as_slice()); }; s.push_str("fn"); match ident { Some(i) => { s.push_char(' '); s.push_str(token::get_ident(i).get()); } _ => { } } push_sig_to_string(cx, &mut s, '(', ')', sig, ""); s } fn closure_to_string(cx: &ctxt, cty: &ty::ClosureTy) -> String { let mut s = String::new(); match cty.store { ty::UniqTraitStore => {} ty::RegionTraitStore(region, _) => { s.push_str(region_to_string(cx, "", true, region).as_slice()); } } match cty.fn_style { ast::NormalFn => {} _ => { s.push_str(cty.fn_style.to_string().as_slice()); s.push_char(' '); } }; let bounds_str = cty.bounds.user_string(cx); match cty.store { ty::UniqTraitStore => { assert_eq!(cty.onceness, ast::Once); s.push_str("proc"); push_sig_to_string(cx, &mut s, '(', ')', &cty.sig, bounds_str.as_slice()); } ty::RegionTraitStore(..) => { match cty.onceness { ast::Many => {} ast::Once => s.push_str("once ") } push_sig_to_string(cx, &mut s, '|', '|', &cty.sig, bounds_str.as_slice()); } } s.into_owned() } fn push_sig_to_string(cx: &ctxt, s: &mut String, bra: char, ket: char, sig: &ty::FnSig, bounds: &str) { s.push_char(bra); let strs: Vec = sig.inputs.iter().map(|a| fn_input_to_string(cx, *a)).collect(); s.push_str(strs.connect(", ").as_slice()); if sig.variadic { s.push_str(", ..."); } s.push_char(ket); if !bounds.is_empty() { s.push_str(":"); s.push_str(bounds); } if ty::get(sig.output).sty != ty_nil { s.push_str(" -> "); if ty::type_is_bot(sig.output) { s.push_char('!'); } else { s.push_str(ty_to_string(cx, sig.output).as_slice()); } } } // if there is an id, print that instead of the structural type: /*for def_id in ty::type_def_id(typ).iter() { // note that this typedef cannot have type parameters return ty::item_path_str(cx, *def_id); }*/ // pretty print the structural type representation: return match ty::get(typ).sty { ty_nil => "()".to_string(), ty_bot => "!".to_string(), ty_bool => "bool".to_string(), ty_char => "char".to_string(), ty_int(t) => ast_util::int_ty_to_string(t, None).to_string(), ty_uint(t) => ast_util::uint_ty_to_string(t, None).to_string(), ty_float(t) => ast_util::float_ty_to_string(t).to_string(), ty_uniq(typ) => format!("Box<{}>", ty_to_string(cx, typ)), ty_ptr(ref tm) => { format!("*{} {}", match tm.mutbl { ast::MutMutable => "mut", ast::MutImmutable => "const", }, ty_to_string(cx, tm.ty)) } ty_rptr(r, ref tm) => { let mut buf = region_ptr_to_string(cx, r); buf.push_str(mt_to_string(cx, tm).as_slice()); buf } ty_open(typ) => format!("opened<{}>", ty_to_string(cx, typ)), ty_tup(ref elems) => { let strs: Vec = elems.iter().map(|elem| ty_to_string(cx, *elem)).collect(); format!("({})", strs.connect(",")) } ty_closure(ref f) => { closure_to_string(cx, &**f) } ty_bare_fn(ref f) => { bare_fn_to_string(cx, f.fn_style, f.abi, None, &f.sig) } ty_infer(infer_ty) => infer_ty.to_string(), ty_err => "[type error]".to_string(), ty_param(ref param_ty) => { param_ty.repr(cx) } ty_enum(did, ref substs) | ty_struct(did, ref substs) => { let base = ty::item_path_str(cx, did); let generics = ty::lookup_item_type(cx, did).generics; parameterized(cx, base.as_slice(), substs, &generics) } ty_trait(box ty::TyTrait { def_id: did, ref substs, ref bounds }) => { let base = ty::item_path_str(cx, did); let trait_def = ty::lookup_trait_def(cx, did); let ty = parameterized(cx, base.as_slice(), substs, &trait_def.generics); let bound_str = bounds.user_string(cx); let bound_sep = if bound_str.is_empty() { "" } else { "+" }; format!("{}{}{}", ty, bound_sep, bound_str) } ty_str => "str".to_string(), ty_unboxed_closure(..) => "closure".to_string(), ty_vec(t, sz) => { match sz { Some(n) => { format!("[{}, ..{}]", ty_to_string(cx, t), n) } None => format!("[{}]", ty_to_string(cx, t)), } } } } pub fn explicit_self_category_to_str(category: &ty::ExplicitSelfCategory) -> &'static str { match *category { ty::StaticExplicitSelfCategory => "static", ty::ByValueExplicitSelfCategory => "self", ty::ByReferenceExplicitSelfCategory(_, ast::MutMutable) => { "&mut self" } ty::ByReferenceExplicitSelfCategory(_, ast::MutImmutable) => "&self", ty::ByBoxExplicitSelfCategory => "Box", } } pub fn parameterized(cx: &ctxt, base: &str, substs: &subst::Substs, generics: &ty::Generics) -> String { let mut strs = Vec::new(); match substs.regions { subst::ErasedRegions => { } subst::NonerasedRegions(ref regions) => { for &r in regions.iter() { let s = region_to_string(cx, "", false, r); if !s.is_empty() { strs.push(s) } else { // This happens when the value of the region // parameter is not easily serialized. This may be // because the user omitted it in the first place, // or because it refers to some block in the code, // etc. I'm not sure how best to serialize this. strs.push(format!("'_")); } } } } let tps = substs.types.get_slice(subst::TypeSpace); let ty_params = generics.types.get_slice(subst::TypeSpace); let has_defaults = ty_params.last().map_or(false, |def| def.default.is_some()); let num_defaults = if has_defaults && !cx.sess.verbose() { ty_params.iter().zip(tps.iter()).rev().take_while(|&(def, &actual)| { match def.default { Some(default) => default.subst(cx, substs) == actual, None => false } }).count() } else { 0 }; for t in tps[..tps.len() - num_defaults].iter() { strs.push(ty_to_string(cx, *t)) } if cx.sess.verbose() { for t in substs.types.get_slice(subst::SelfSpace).iter() { strs.push(format!("self {}", t.repr(cx))); } // generally there shouldn't be any substs in the fn param // space, but in verbose mode, print them out. for t in substs.types.get_slice(subst::FnSpace).iter() { strs.push(format!("fn {}", t.repr(cx))); } } if strs.len() > 0u { format!("{}<{}>", base, strs.connect(",")) } else { format!("{}", base) } } pub fn ty_to_short_str(cx: &ctxt, typ: t) -> String { let mut s = typ.repr(cx).to_string(); if s.len() >= 32u { s = s.as_slice().slice(0u, 32u).to_string(); } return s; } impl Repr for Option { fn repr(&self, tcx: &ctxt) -> String { match self { &None => "None".to_string(), &Some(ref t) => t.repr(tcx), } } } impl Repr for Result { fn repr(&self, tcx: &ctxt) -> String { match self { &Ok(ref t) => t.repr(tcx), &Err(ref u) => format!("Err({})", u.repr(tcx)) } } } impl Repr for () { fn repr(&self, _tcx: &ctxt) -> String { "()".to_string() } } impl<'a,T:Repr> Repr for &'a T { fn repr(&self, tcx: &ctxt) -> String { (&**self).repr(tcx) } } impl Repr for Rc { fn repr(&self, tcx: &ctxt) -> String { (&**self).repr(tcx) } } impl Repr for Box { fn repr(&self, tcx: &ctxt) -> String { (&**self).repr(tcx) } } fn repr_vec(tcx: &ctxt, v: &[T]) -> String { vec_map_to_string(v, |t| t.repr(tcx)) } impl<'a, T:Repr> Repr for &'a [T] { fn repr(&self, tcx: &ctxt) -> String { repr_vec(tcx, *self) } } impl Repr for OwnedSlice { fn repr(&self, tcx: &ctxt) -> String { repr_vec(tcx, self.as_slice()) } } // This is necessary to handle types like Option<~[T]>, for which // autoderef cannot convert the &[T] handler impl Repr for Vec { fn repr(&self, tcx: &ctxt) -> String { repr_vec(tcx, self.as_slice()) } } impl UserString for Vec { fn user_string(&self, tcx: &ctxt) -> String { let strs: Vec = self.iter().map(|t| t.user_string(tcx)).collect(); strs.connect(", ") } } impl Repr for def::Def { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ty::TypeParameterDef { fn repr(&self, tcx: &ctxt) -> String { format!("TypeParameterDef({}, {}, {}/{})", self.def_id, self.bounds.repr(tcx), self.space, self.index) } } impl Repr for ty::RegionParameterDef { fn repr(&self, tcx: &ctxt) -> String { format!("RegionParameterDef(name={}, def_id={}, bounds={})", token::get_name(self.name), self.def_id.repr(tcx), self.bounds.repr(tcx)) } } impl Repr for ty::t { fn repr(&self, tcx: &ctxt) -> String { ty_to_string(tcx, *self) } } impl Repr for ty::mt { fn repr(&self, tcx: &ctxt) -> String { mt_to_string(tcx, self) } } impl Repr for subst::Substs { fn repr(&self, tcx: &ctxt) -> String { format!("Substs[types={}, regions={}]", self.types.repr(tcx), self.regions.repr(tcx)) } } impl Repr for subst::VecPerParamSpace { fn repr(&self, tcx: &ctxt) -> String { format!("[{};{};{}]", self.get_slice(subst::TypeSpace).repr(tcx), self.get_slice(subst::SelfSpace).repr(tcx), self.get_slice(subst::FnSpace).repr(tcx)) } } impl Repr for ty::ItemSubsts { fn repr(&self, tcx: &ctxt) -> String { format!("ItemSubsts({})", self.substs.repr(tcx)) } } impl Repr for subst::RegionSubsts { fn repr(&self, tcx: &ctxt) -> String { match *self { subst::ErasedRegions => "erased".to_string(), subst::NonerasedRegions(ref regions) => regions.repr(tcx) } } } impl Repr for ty::BuiltinBounds { fn repr(&self, _tcx: &ctxt) -> String { let mut res = Vec::new(); for b in self.iter() { res.push(match b { ty::BoundSend => "Send".to_owned(), ty::BoundSized => "Sized".to_owned(), ty::BoundCopy => "Copy".to_owned(), ty::BoundSync => "Sync".to_owned(), }); } res.connect("+") } } impl Repr for ty::ExistentialBounds { fn repr(&self, tcx: &ctxt) -> String { self.user_string(tcx) } } impl Repr for ty::ParamBounds { fn repr(&self, tcx: &ctxt) -> String { let mut res = Vec::new(); res.push(self.builtin_bounds.repr(tcx)); for t in self.trait_bounds.iter() { res.push(t.repr(tcx)); } res.connect("+") } } impl Repr for ty::TraitRef { fn repr(&self, tcx: &ctxt) -> String { let base = ty::item_path_str(tcx, self.def_id); let trait_def = ty::lookup_trait_def(tcx, self.def_id); format!("<{} as {}>", self.substs.self_ty().repr(tcx), parameterized(tcx, base.as_slice(), &self.substs, &trait_def.generics)) } } impl Repr for ty::TraitDef { fn repr(&self, tcx: &ctxt) -> String { format!("TraitDef(generics={}, bounds={}, trait_ref={})", self.generics.repr(tcx), self.bounds.repr(tcx), self.trait_ref.repr(tcx)) } } impl Repr for ast::Expr { fn repr(&self, _tcx: &ctxt) -> String { format!("expr({}: {})", self.id, pprust::expr_to_string(self)) } } impl Repr for ast::Path { fn repr(&self, _tcx: &ctxt) -> String { format!("path({})", pprust::path_to_string(self)) } } impl UserString for ast::Path { fn user_string(&self, _tcx: &ctxt) -> String { pprust::path_to_string(self) } } impl Repr for ast::Item { fn repr(&self, tcx: &ctxt) -> String { format!("item({})", tcx.map.node_to_string(self.id)) } } impl Repr for ast::Lifetime { fn repr(&self, _tcx: &ctxt) -> String { format!("lifetime({}: {})", self.id, pprust::lifetime_to_string(self)) } } impl Repr for ast::Stmt { fn repr(&self, _tcx: &ctxt) -> String { format!("stmt({}: {})", ast_util::stmt_id(self), pprust::stmt_to_string(self)) } } impl Repr for ast::Pat { fn repr(&self, _tcx: &ctxt) -> String { format!("pat({}: {})", self.id, pprust::pat_to_string(self)) } } impl Repr for ty::BoundRegion { fn repr(&self, tcx: &ctxt) -> String { match *self { ty::BrAnon(id) => format!("BrAnon({})", id), ty::BrNamed(id, name) => { format!("BrNamed({}, {})", id.repr(tcx), token::get_name(name)) } ty::BrFresh(id) => format!("BrFresh({})", id), } } } impl Repr for ty::Region { fn repr(&self, tcx: &ctxt) -> String { match *self { ty::ReEarlyBound(id, space, index, name) => { format!("ReEarlyBound({}, {}, {}, {})", id, space, index, token::get_name(name)) } ty::ReLateBound(binder_id, ref bound_region) => { format!("ReLateBound({}, {})", binder_id, bound_region.repr(tcx)) } ty::ReFree(ref fr) => fr.repr(tcx), ty::ReScope(id) => { format!("ReScope({})", id) } ty::ReStatic => { "ReStatic".to_string() } ty::ReInfer(ReVar(ref vid)) => { format!("ReInfer({})", vid.index) } ty::ReInfer(ReSkolemized(id, ref bound_region)) => { format!("re_skolemized({}, {})", id, bound_region.repr(tcx)) } ty::ReEmpty => { "ReEmpty".to_string() } } } } impl UserString for ty::Region { fn user_string(&self, tcx: &ctxt) -> String { region_to_string(tcx, "", false, *self) } } impl Repr for ty::FreeRegion { fn repr(&self, tcx: &ctxt) -> String { format!("ReFree({}, {})", self.scope_id, self.bound_region.repr(tcx)) } } impl Repr for ast::DefId { fn repr(&self, tcx: &ctxt) -> String { // Unfortunately, there seems to be no way to attempt to print // a path for a def-id, so I'll just make a best effort for now // and otherwise fallback to just printing the crate/node pair if self.krate == ast::LOCAL_CRATE { match tcx.map.find(self.node) { Some(ast_map::NodeItem(..)) | Some(ast_map::NodeForeignItem(..)) | Some(ast_map::NodeImplItem(..)) | Some(ast_map::NodeTraitItem(..)) | Some(ast_map::NodeVariant(..)) | Some(ast_map::NodeStructCtor(..)) => { return format!( "{:?}:{}", *self, ty::item_path_str(tcx, *self)) } _ => {} } } return format!("{:?}", *self) } } impl Repr for ty::Polytype { fn repr(&self, tcx: &ctxt) -> String { format!("Polytype {{generics: {}, ty: {}}}", self.generics.repr(tcx), self.ty.repr(tcx)) } } impl Repr for ty::Generics { fn repr(&self, tcx: &ctxt) -> String { format!("Generics(types: {}, regions: {})", self.types.repr(tcx), self.regions.repr(tcx)) } } impl Repr for ty::ItemVariances { fn repr(&self, tcx: &ctxt) -> String { format!("ItemVariances(types={}, \ regions={})", self.types.repr(tcx), self.regions.repr(tcx)) } } impl Repr for ty::Variance { fn repr(&self, _: &ctxt) -> String { // The first `.to_string()` returns a &'static str (it is not an implementation // of the ToString trait). Because of that, we need to call `.to_string()` again // if we want to have a `String`. let result: &'static str = (*self).to_string(); result.to_string() } } impl Repr for ty::Method { fn repr(&self, tcx: &ctxt) -> String { format!("method(ident: {}, generics: {}, fty: {}, \ explicit_self: {}, vis: {}, def_id: {})", self.ident.repr(tcx), self.generics.repr(tcx), self.fty.repr(tcx), self.explicit_self.repr(tcx), self.vis.repr(tcx), self.def_id.repr(tcx)) } } impl Repr for ast::Name { fn repr(&self, _tcx: &ctxt) -> String { token::get_name(*self).get().to_string() } } impl UserString for ast::Name { fn user_string(&self, _tcx: &ctxt) -> String { token::get_name(*self).get().to_string() } } impl Repr for ast::Ident { fn repr(&self, _tcx: &ctxt) -> String { token::get_ident(*self).get().to_string() } } impl Repr for ast::ExplicitSelf_ { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ast::Visibility { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ty::BareFnTy { fn repr(&self, tcx: &ctxt) -> String { format!("BareFnTy {{fn_style: {:?}, abi: {}, sig: {}}}", self.fn_style, self.abi.to_string(), self.sig.repr(tcx)) } } impl Repr for ty::FnSig { fn repr(&self, tcx: &ctxt) -> String { fn_sig_to_string(tcx, self) } } impl Repr for typeck::MethodCallee { fn repr(&self, tcx: &ctxt) -> String { format!("MethodCallee {{origin: {}, ty: {}, {}}}", self.origin.repr(tcx), self.ty.repr(tcx), self.substs.repr(tcx)) } } impl Repr for typeck::MethodOrigin { fn repr(&self, tcx: &ctxt) -> String { match self { &typeck::MethodStatic(def_id) => { format!("MethodStatic({})", def_id.repr(tcx)) } &typeck::MethodStaticUnboxedClosure(def_id) => { format!("MethodStaticUnboxedClosure({})", def_id.repr(tcx)) } &typeck::MethodTypeParam(ref p) => { p.repr(tcx) } &typeck::MethodTraitObject(ref p) => { p.repr(tcx) } } } } impl Repr for typeck::MethodParam { fn repr(&self, tcx: &ctxt) -> String { format!("MethodParam({},{})", self.trait_ref.repr(tcx), self.method_num) } } impl Repr for typeck::MethodObject { fn repr(&self, tcx: &ctxt) -> String { format!("MethodObject({},{:?},{:?})", self.trait_ref.repr(tcx), self.method_num, self.real_index) } } impl Repr for ty::TraitStore { fn repr(&self, tcx: &ctxt) -> String { trait_store_to_string(tcx, *self) } } impl Repr for ty::BuiltinBound { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl UserString for ty::BuiltinBound { fn user_string(&self, _tcx: &ctxt) -> String { match *self { ty::BoundSend => "Send".to_owned(), ty::BoundSized => "Sized".to_owned(), ty::BoundCopy => "Copy".to_owned(), ty::BoundSync => "Sync".to_owned(), } } } impl Repr for Span { fn repr(&self, tcx: &ctxt) -> String { tcx.sess.codemap().span_to_string(*self).to_string() } } impl UserString for Rc { fn user_string(&self, tcx: &ctxt) -> String { let this: &A = &**self; this.user_string(tcx) } } impl UserString for ty::ParamBounds { fn user_string(&self, tcx: &ctxt) -> String { let mut result = Vec::new(); let s = self.builtin_bounds.user_string(tcx); if !s.is_empty() { result.push(s); } for n in self.trait_bounds.iter() { result.push(n.user_string(tcx)); } result.connect("+") } } impl UserString for ty::ExistentialBounds { fn user_string(&self, tcx: &ctxt) -> String { if self.builtin_bounds.contains_elem(ty::BoundSend) && self.region_bound == ty::ReStatic { // Region bound is implied by builtin bounds: return self.builtin_bounds.repr(tcx); } let mut res = Vec::new(); let region_str = self.region_bound.user_string(tcx); if !region_str.is_empty() { res.push(region_str); } for bound in self.builtin_bounds.iter() { res.push(bound.user_string(tcx)); } res.connect("+") } } impl UserString for ty::BuiltinBounds { fn user_string(&self, tcx: &ctxt) -> String { self.iter() .map(|bb| bb.user_string(tcx)) .collect::>() .connect("+") .to_string() } } impl UserString for ty::TraitRef { fn user_string(&self, tcx: &ctxt) -> String { let base = ty::item_path_str(tcx, self.def_id); let trait_def = ty::lookup_trait_def(tcx, self.def_id); parameterized(tcx, base.as_slice(), &self.substs, &trait_def.generics) } } impl UserString for ty::t { fn user_string(&self, tcx: &ctxt) -> String { ty_to_string(tcx, *self) } } impl UserString for ast::Ident { fn user_string(&self, _tcx: &ctxt) -> String { token::get_name(self.name).get().to_string() } } impl Repr for abi::Abi { fn repr(&self, _tcx: &ctxt) -> String { self.to_string() } } impl UserString for abi::Abi { fn user_string(&self, _tcx: &ctxt) -> String { self.to_string() } } impl Repr for ty::UpvarId { fn repr(&self, tcx: &ctxt) -> String { format!("UpvarId({};`{}`;{})", self.var_id, ty::local_var_name_str(tcx, self.var_id), self.closure_expr_id) } } impl Repr for ast::Mutability { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ty::BorrowKind { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ty::UpvarBorrow { fn repr(&self, tcx: &ctxt) -> String { format!("UpvarBorrow({}, {})", self.kind.repr(tcx), self.region.repr(tcx)) } } impl Repr for ty::IntVid { fn repr(&self, _tcx: &ctxt) -> String { format!("{}", self) } } impl Repr for ty::FloatVid { fn repr(&self, _tcx: &ctxt) -> String { format!("{}", self) } } impl Repr for ty::RegionVid { fn repr(&self, _tcx: &ctxt) -> String { format!("{}", self) } } impl Repr for ty::TyVid { fn repr(&self, _tcx: &ctxt) -> String { format!("{}", self) } } impl Repr for ty::IntVarValue { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ast::IntTy { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ast::UintTy { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ast::FloatTy { fn repr(&self, _tcx: &ctxt) -> String { format!("{:?}", *self) } } impl Repr for ty::ExplicitSelfCategory { fn repr(&self, _: &ctxt) -> String { explicit_self_category_to_str(self).to_string() } } impl Repr for regionmanip::WfConstraint { fn repr(&self, tcx: &ctxt) -> String { match *self { regionmanip::RegionSubRegionConstraint(_, r_a, r_b) => { format!("RegionSubRegionConstraint({}, {})", r_a.repr(tcx), r_b.repr(tcx)) } regionmanip::RegionSubParamConstraint(_, r, p) => { format!("RegionSubParamConstraint({}, {})", r.repr(tcx), p.repr(tcx)) } } } } impl UserString for ParamTy { fn user_string(&self, tcx: &ctxt) -> String { let id = self.idx; let did = self.def_id; let ident = match tcx.ty_param_defs.borrow().find(&did.node) { Some(def) => token::get_ident(def.ident).get().to_string(), // This can only happen when a type mismatch error happens and // the actual type has more type parameters than the expected one. None => format!("", id), }; ident } } impl Repr for ParamTy { fn repr(&self, tcx: &ctxt) -> String { self.user_string(tcx) } } impl Repr for (A,B) { fn repr(&self, tcx: &ctxt) -> String { let &(ref a, ref b) = self; format!("({},{})", a.repr(tcx), b.repr(tcx)) } }