use crate::borrow_check::borrow_set::{BorrowSet, BorrowData}; use crate::borrow_check::place_ext::PlaceExt; use rustc::mir::{self, Location, Place, PlaceBase, Body}; use rustc::ty::TyCtxt; use rustc::ty::RegionVid; use rustc_data_structures::bit_set::{BitSet, BitSetOperator}; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::indexed_vec::{Idx, IndexVec}; use crate::dataflow::{BitDenotation, BlockSets, InitialFlow}; use crate::borrow_check::nll::region_infer::RegionInferenceContext; use crate::borrow_check::nll::ToRegionVid; use crate::borrow_check::places_conflict; use std::rc::Rc; newtype_index! { pub struct BorrowIndex { DEBUG_FORMAT = "bw{}" } } /// `Borrows` stores the data used in the analyses that track the flow /// of borrows. /// /// It uniquely identifies every borrow (`Rvalue::Ref`) by a /// `BorrowIndex`, and maps each such index to a `BorrowData` /// describing the borrow. These indexes are used for representing the /// borrows in compact bitvectors. pub struct Borrows<'a, 'tcx: 'a> { tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, borrow_set: Rc>, borrows_out_of_scope_at_location: FxHashMap>, /// NLL region inference context with which NLL queries should be resolved _nonlexical_regioncx: Rc>, } struct StackEntry { bb: mir::BasicBlock, lo: usize, hi: usize, first_part_only: bool } fn precompute_borrows_out_of_scope<'tcx>( body: &Body<'tcx>, regioncx: &Rc>, borrows_out_of_scope_at_location: &mut FxHashMap>, borrow_index: BorrowIndex, borrow_region: RegionVid, location: Location, ) { // We visit one BB at a time. The complication is that we may start in the // middle of the first BB visited (the one containing `location`), in which // case we may have to later on process the first part of that BB if there // is a path back to its start. // For visited BBs, we record the index of the first statement processed. // (In fully processed BBs this index is 0.) Note also that we add BBs to // `visited` once they are added to `stack`, before they are actually // processed, because this avoids the need to look them up again on // completion. let mut visited = FxHashMap::default(); visited.insert(location.block, location.statement_index); let mut stack = vec![]; stack.push(StackEntry { bb: location.block, lo: location.statement_index, hi: body[location.block].statements.len(), first_part_only: false, }); while let Some(StackEntry { bb, lo, hi, first_part_only }) = stack.pop() { let mut finished_early = first_part_only; for i in lo ..= hi { let location = Location { block: bb, statement_index: i }; // If region does not contain a point at the location, then add to list and skip // successor locations. if !regioncx.region_contains(borrow_region, location) { debug!("borrow {:?} gets killed at {:?}", borrow_index, location); borrows_out_of_scope_at_location .entry(location) .or_default() .push(borrow_index); finished_early = true; break; } } if !finished_early { // Add successor BBs to the work list, if necessary. let bb_data = &body[bb]; assert!(hi == bb_data.statements.len()); for &succ_bb in bb_data.terminator.as_ref().unwrap().successors() { visited.entry(succ_bb) .and_modify(|lo| { // `succ_bb` has been seen before. If it wasn't // fully processed, add its first part to `stack` // for processing. if *lo > 0 { stack.push(StackEntry { bb: succ_bb, lo: 0, hi: *lo - 1, first_part_only: true, }); } // And update this entry with 0, to represent the // whole BB being processed. *lo = 0; }) .or_insert_with(|| { // succ_bb hasn't been seen before. Add it to // `stack` for processing. stack.push(StackEntry { bb: succ_bb, lo: 0, hi: body[succ_bb].statements.len(), first_part_only: false, }); // Insert 0 for this BB, to represent the whole BB // being processed. 0 }); } } } } impl<'a, 'tcx> Borrows<'a, 'tcx> { crate fn new( tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, nonlexical_regioncx: Rc>, borrow_set: &Rc>, ) -> Self { let mut borrows_out_of_scope_at_location = FxHashMap::default(); for (borrow_index, borrow_data) in borrow_set.borrows.iter_enumerated() { let borrow_region = borrow_data.region.to_region_vid(); let location = borrow_set.borrows[borrow_index].reserve_location; precompute_borrows_out_of_scope(body, &nonlexical_regioncx, &mut borrows_out_of_scope_at_location, borrow_index, borrow_region, location); } Borrows { tcx: tcx, body: body, borrow_set: borrow_set.clone(), borrows_out_of_scope_at_location, _nonlexical_regioncx: nonlexical_regioncx, } } crate fn borrows(&self) -> &IndexVec> { &self.borrow_set.borrows } pub fn location(&self, idx: BorrowIndex) -> &Location { &self.borrow_set.borrows[idx].reserve_location } /// Add all borrows to the kill set, if those borrows are out of scope at `location`. /// That means they went out of a nonlexical scope fn kill_loans_out_of_scope_at_location(&self, sets: &mut BlockSets<'_, BorrowIndex>, location: Location) { // NOTE: The state associated with a given `location` // reflects the dataflow on entry to the statement. // Iterate over each of the borrows that we've precomputed // to have went out of scope at this location and kill them. // // We are careful always to call this function *before* we // set up the gen-bits for the statement or // termanator. That way, if the effect of the statement or // terminator *does* introduce a new loan of the same // region, then setting that gen-bit will override any // potential kill introduced here. if let Some(indices) = self.borrows_out_of_scope_at_location.get(&location) { sets.kill_all(indices); } } /// Kill any borrows that conflict with `place`. fn kill_borrows_on_place( &self, sets: &mut BlockSets<'_, BorrowIndex>, place: &Place<'tcx> ) { debug!("kill_borrows_on_place: place={:?}", place); // Handle the `Place::Local(..)` case first and exit early. if let Place::Base(PlaceBase::Local(local)) = place { if let Some(borrow_indices) = self.borrow_set.local_map.get(&local) { debug!("kill_borrows_on_place: borrow_indices={:?}", borrow_indices); sets.kill_all(borrow_indices); return; } } // Otherwise, look at all borrows that are live and if they conflict with the assignment // into our place then we can kill them. let mut borrows = sets.on_entry.clone(); let _ = borrows.union(sets.gen_set); for borrow_index in borrows.iter() { let borrow_data = &self.borrows()[borrow_index]; debug!( "kill_borrows_on_place: borrow_index={:?} borrow_data={:?}", borrow_index, borrow_data, ); // By passing `PlaceConflictBias::NoOverlap`, we conservatively assume that any given // pair of array indices are unequal, so that when `places_conflict` returns true, we // will be assured that two places being compared definitely denotes the same sets of // locations. if places_conflict::places_conflict( self.tcx, self.body, &borrow_data.borrowed_place, place, places_conflict::PlaceConflictBias::NoOverlap, ) { debug!( "kill_borrows_on_place: (kill) borrow_index={:?} borrow_data={:?}", borrow_index, borrow_data, ); sets.kill(borrow_index); } } } } impl<'a, 'tcx> BitDenotation<'tcx> for Borrows<'a, 'tcx> { type Idx = BorrowIndex; fn name() -> &'static str { "borrows" } fn bits_per_block(&self) -> usize { self.borrow_set.borrows.len() * 2 } fn start_block_effect(&self, _entry_set: &mut BitSet) { // no borrows of code region_scopes have been taken prior to // function execution, so this method has no effect on // `_sets`. } fn before_statement_effect(&self, sets: &mut BlockSets<'_, BorrowIndex>, location: Location) { debug!("Borrows::before_statement_effect sets: {:?} location: {:?}", sets, location); self.kill_loans_out_of_scope_at_location(sets, location); } fn statement_effect(&self, sets: &mut BlockSets<'_, BorrowIndex>, location: Location) { debug!("Borrows::statement_effect: sets={:?} location={:?}", sets, location); let block = &self.body.basic_blocks().get(location.block).unwrap_or_else(|| { panic!("could not find block at location {:?}", location); }); let stmt = block.statements.get(location.statement_index).unwrap_or_else(|| { panic!("could not find statement at location {:?}"); }); debug!("Borrows::statement_effect: stmt={:?}", stmt); match stmt.kind { mir::StatementKind::Assign(ref lhs, ref rhs) => { // Make sure there are no remaining borrows for variables // that are assigned over. self.kill_borrows_on_place(sets, lhs); if let mir::Rvalue::Ref(_, _, ref place) = **rhs { if place.ignore_borrow( self.tcx, self.body, &self.borrow_set.locals_state_at_exit, ) { return; } let index = self.borrow_set.location_map.get(&location).unwrap_or_else(|| { panic!("could not find BorrowIndex for location {:?}", location); }); sets.gen(*index); } } mir::StatementKind::StorageDead(local) => { // Make sure there are no remaining borrows for locals that // are gone out of scope. self.kill_borrows_on_place(sets, &Place::Base(PlaceBase::Local(local))); } mir::StatementKind::InlineAsm(ref asm) => { for (output, kind) in asm.outputs.iter().zip(&asm.asm.outputs) { if !kind.is_indirect && !kind.is_rw { self.kill_borrows_on_place(sets, output); } } } mir::StatementKind::FakeRead(..) | mir::StatementKind::SetDiscriminant { .. } | mir::StatementKind::StorageLive(..) | mir::StatementKind::Retag { .. } | mir::StatementKind::AscribeUserType(..) | mir::StatementKind::Nop => {} } } fn before_terminator_effect(&self, sets: &mut BlockSets<'_, BorrowIndex>, location: Location) { debug!("Borrows::before_terminator_effect sets: {:?} location: {:?}", sets, location); self.kill_loans_out_of_scope_at_location(sets, location); } fn terminator_effect(&self, _: &mut BlockSets<'_, BorrowIndex>, _: Location) {} fn propagate_call_return( &self, _in_out: &mut BitSet, _call_bb: mir::BasicBlock, _dest_bb: mir::BasicBlock, _dest_place: &mir::Place<'tcx>, ) { } } impl<'a, 'tcx> BitSetOperator for Borrows<'a, 'tcx> { #[inline] fn join(&self, inout_set: &mut BitSet, in_set: &BitSet) -> bool { inout_set.union(in_set) // "maybe" means we union effects of both preds } } impl<'a, 'tcx> InitialFlow for Borrows<'a, 'tcx> { #[inline] fn bottom_value() -> bool { false // bottom = nothing is reserved or activated yet } }