use if_chain::if_chain; use matches::matches; use rustc::hir::intravisit::FnKind; use rustc::hir::*; use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; use rustc::ty; use rustc::{declare_tool_lint, lint_array}; use rustc_errors::Applicability; use syntax::ast::LitKind; use syntax::source_map::{ExpnFormat, Span}; use crate::consts::{constant, Constant}; use crate::utils::sugg::Sugg; use crate::utils::{ get_item_name, get_parent_expr, implements_trait, in_constant, in_macro, is_integer_literal, iter_input_pats, last_path_segment, match_qpath, match_trait_method, paths, snippet, span_lint, span_lint_and_then, walk_ptrs_ty, SpanlessEq, }; declare_clippy_lint! { /// **What it does:** Checks for function arguments and let bindings denoted as /// `ref`. /// /// **Why is this bad?** The `ref` declaration makes the function take an owned /// value, but turns the argument into a reference (which means that the value /// is destroyed when exiting the function). This adds not much value: either /// take a reference type, or take an owned value and create references in the /// body. /// /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The /// type of `x` is more obvious with the former. /// /// **Known problems:** If the argument is dereferenced within the function, /// removing the `ref` will lead to errors. This can be fixed by removing the /// dereferences, e.g., changing `*x` to `x` within the function. /// /// **Example:** /// ```rust /// fn foo(ref x: u8) -> bool { /// .. /// } /// ``` pub TOPLEVEL_REF_ARG, style, "an entire binding declared as `ref`, in a function argument or a `let` statement" } declare_clippy_lint! { /// **What it does:** Checks for comparisons to NaN. /// /// **Why is this bad?** NaN does not compare meaningfully to anything – not /// even itself – so those comparisons are simply wrong. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// x == NAN /// ``` pub CMP_NAN, correctness, "comparisons to NAN, which will always return false, probably not intended" } declare_clippy_lint! { /// **What it does:** Checks for (in-)equality comparisons on floating-point /// values (apart from zero), except in functions called `*eq*` (which probably /// implement equality for a type involving floats). /// /// **Why is this bad?** Floating point calculations are usually imprecise, so /// asking if two values are *exactly* equal is asking for trouble. For a good /// guide on what to do, see [the floating point /// guide](http://www.floating-point-gui.de/errors/comparison). /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// y == 1.23f64 /// y != x // where both are floats /// ``` pub FLOAT_CMP, correctness, "using `==` or `!=` on float values instead of comparing difference with an epsilon" } declare_clippy_lint! { /// **What it does:** Checks for conversions to owned values just for the sake /// of a comparison. /// /// **Why is this bad?** The comparison can operate on a reference, so creating /// an owned value effectively throws it away directly afterwards, which is /// needlessly consuming code and heap space. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// x.to_owned() == y /// ``` pub CMP_OWNED, perf, "creating owned instances for comparing with others, e.g., `x == \"foo\".to_string()`" } declare_clippy_lint! { /// **What it does:** Checks for getting the remainder of a division by one. /// /// **Why is this bad?** The result can only ever be zero. No one will write /// such code deliberately, unless trying to win an Underhanded Rust /// Contest. Even for that contest, it's probably a bad idea. Use something more /// underhanded. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// x % 1 /// ``` pub MODULO_ONE, correctness, "taking a number modulo 1, which always returns 0" } declare_clippy_lint! { /// **What it does:** Checks for patterns in the form `name @ _`. /// /// **Why is this bad?** It's almost always more readable to just use direct /// bindings. /// /// **Known problems:** None. /// /// **Example:** /// ```ignore /// match v { /// Some(x) => (), /// y @ _ => (), // easier written as `y`, /// } /// ``` pub REDUNDANT_PATTERN, style, "using `name @ _` in a pattern" } declare_clippy_lint! { /// **What it does:** Checks for the use of bindings with a single leading /// underscore. /// /// **Why is this bad?** A single leading underscore is usually used to indicate /// that a binding will not be used. Using such a binding breaks this /// expectation. /// /// **Known problems:** The lint does not work properly with desugaring and /// macro, it has been allowed in the mean time. /// /// **Example:** /// ```rust /// let _x = 0; /// let y = _x + 1; // Here we are using `_x`, even though it has a leading /// // underscore. We should rename `_x` to `x` /// ``` pub USED_UNDERSCORE_BINDING, pedantic, "using a binding which is prefixed with an underscore" } declare_clippy_lint! { /// **What it does:** Checks for the use of short circuit boolean conditions as /// a /// statement. /// /// **Why is this bad?** Using a short circuit boolean condition as a statement /// may hide the fact that the second part is executed or not depending on the /// outcome of the first part. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// f() && g(); // We should write `if f() { g(); }`. /// ``` pub SHORT_CIRCUIT_STATEMENT, complexity, "using a short circuit boolean condition as a statement" } declare_clippy_lint! { /// **What it does:** Catch casts from `0` to some pointer type /// /// **Why is this bad?** This generally means `null` and is better expressed as /// {`std`, `core`}`::ptr::`{`null`, `null_mut`}. /// /// **Known problems:** None. /// /// **Example:** /// /// ```ignore /// 0 as *const u32 /// ``` pub ZERO_PTR, style, "using 0 as *{const, mut} T" } declare_clippy_lint! { /// **What it does:** Checks for (in-)equality comparisons on floating-point /// value and constant, except in functions called `*eq*` (which probably /// implement equality for a type involving floats). /// /// **Why is this bad?** Floating point calculations are usually imprecise, so /// asking if two values are *exactly* equal is asking for trouble. For a good /// guide on what to do, see [the floating point /// guide](http://www.floating-point-gui.de/errors/comparison). /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// const ONE = 1.00f64; /// x == ONE // where both are floats /// ``` pub FLOAT_CMP_CONST, restriction, "using `==` or `!=` on float constants instead of comparing difference with an epsilon" } #[derive(Copy, Clone)] pub struct Pass; impl LintPass for Pass { fn get_lints(&self) -> LintArray { lint_array!( TOPLEVEL_REF_ARG, CMP_NAN, FLOAT_CMP, CMP_OWNED, MODULO_ONE, REDUNDANT_PATTERN, USED_UNDERSCORE_BINDING, SHORT_CIRCUIT_STATEMENT, ZERO_PTR, FLOAT_CMP_CONST ) } fn name(&self) -> &'static str { "MiscLints" } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass { fn check_fn( &mut self, cx: &LateContext<'a, 'tcx>, k: FnKind<'tcx>, decl: &'tcx FnDecl, body: &'tcx Body, _: Span, _: HirId, ) { if let FnKind::Closure(_) = k { // Does not apply to closures return; } for arg in iter_input_pats(decl, body) { match arg.pat.node { PatKind::Binding(BindingAnnotation::Ref, ..) | PatKind::Binding(BindingAnnotation::RefMut, ..) => { span_lint( cx, TOPLEVEL_REF_ARG, arg.pat.span, "`ref` directly on a function argument is ignored. Consider using a reference type \ instead.", ); }, _ => {}, } } } fn check_stmt(&mut self, cx: &LateContext<'a, 'tcx>, s: &'tcx Stmt) { if_chain! { if let StmtKind::Local(ref l) = s.node; if let PatKind::Binding(an, .., i, None) = l.pat.node; if let Some(ref init) = l.init; then { if an == BindingAnnotation::Ref || an == BindingAnnotation::RefMut { let init = Sugg::hir(cx, init, ".."); let (mutopt,initref) = if an == BindingAnnotation::RefMut { ("mut ", init.mut_addr()) } else { ("", init.addr()) }; let tyopt = if let Some(ref ty) = l.ty { format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, "_")) } else { String::new() }; span_lint_and_then(cx, TOPLEVEL_REF_ARG, l.pat.span, "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead", |db| { db.span_suggestion( s.span, "try", format!( "let {name}{tyopt} = {initref};", name=snippet(cx, i.span, "_"), tyopt=tyopt, initref=initref, ), Applicability::MachineApplicable, // snippet ); } ); } } }; if_chain! { if let StmtKind::Semi(ref expr) = s.node; if let ExprKind::Binary(ref binop, ref a, ref b) = expr.node; if binop.node == BinOpKind::And || binop.node == BinOpKind::Or; if let Some(sugg) = Sugg::hir_opt(cx, a); then { span_lint_and_then(cx, SHORT_CIRCUIT_STATEMENT, s.span, "boolean short circuit operator in statement may be clearer using an explicit test", |db| { let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg }; db.span_suggestion( s.span, "replace it with", format!( "if {} {{ {}; }}", sugg, &snippet(cx, b.span, ".."), ), Applicability::MachineApplicable, // snippet ); }); } }; } fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { match expr.node { ExprKind::Cast(ref e, ref ty) => { check_cast(cx, expr.span, e, ty); return; }, ExprKind::Binary(ref cmp, ref left, ref right) => { let op = cmp.node; if op.is_comparison() { if let ExprKind::Path(QPath::Resolved(_, ref path)) = left.node { check_nan(cx, path, expr); } if let ExprKind::Path(QPath::Resolved(_, ref path)) = right.node { check_nan(cx, path, expr); } check_to_owned(cx, left, right); check_to_owned(cx, right, left); } if (op == BinOpKind::Eq || op == BinOpKind::Ne) && (is_float(cx, left) || is_float(cx, right)) { if is_allowed(cx, left) || is_allowed(cx, right) { return; } if let Some(name) = get_item_name(cx, expr) { let name = name.as_str(); if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") || name.ends_with("_eq") { return; } } let (lint, msg) = if is_named_constant(cx, left) || is_named_constant(cx, right) { (FLOAT_CMP_CONST, "strict comparison of f32 or f64 constant") } else { (FLOAT_CMP, "strict comparison of f32 or f64") }; span_lint_and_then(cx, lint, expr.span, msg, |db| { let lhs = Sugg::hir(cx, left, ".."); let rhs = Sugg::hir(cx, right, ".."); db.span_suggestion( expr.span, "consider comparing them within some error", format!("({}).abs() < error", lhs - rhs), Applicability::MachineApplicable, // snippet ); db.span_note(expr.span, "std::f32::EPSILON and std::f64::EPSILON are available."); }); } else if op == BinOpKind::Rem && is_integer_literal(right, 1) { span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0"); } }, _ => {}, } if in_attributes_expansion(expr) { // Don't lint things expanded by #[derive(...)], etc return; } let binding = match expr.node { ExprKind::Path(ref qpath) => { let binding = last_path_segment(qpath).ident.as_str(); if binding.starts_with('_') && !binding.starts_with("__") && binding != "_result" && // FIXME: #944 is_used(cx, expr) && // don't lint if the declaration is in a macro non_macro_local(cx, &cx.tables.qpath_def(qpath, expr.hir_id)) { Some(binding) } else { None } }, ExprKind::Field(_, ident) => { let name = ident.as_str(); if name.starts_with('_') && !name.starts_with("__") { Some(name) } else { None } }, _ => None, }; if let Some(binding) = binding { span_lint( cx, USED_UNDERSCORE_BINDING, expr.span, &format!( "used binding `{}` which is prefixed with an underscore. A leading \ underscore signals that a binding will not be used.", binding ), ); } } fn check_pat(&mut self, cx: &LateContext<'a, 'tcx>, pat: &'tcx Pat) { if let PatKind::Binding(.., ident, Some(ref right)) = pat.node { if let PatKind::Wild = right.node { span_lint( cx, REDUNDANT_PATTERN, pat.span, &format!( "the `{} @ _` pattern can be written as just `{}`", ident.name, ident.name ), ); } } } } fn check_nan(cx: &LateContext<'_, '_>, path: &Path, expr: &Expr) { if !in_constant(cx, expr.hir_id) { if let Some(seg) = path.segments.last() { if seg.ident.name == "NAN" { span_lint( cx, CMP_NAN, expr.span, "doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead", ); } } } } fn is_named_constant<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) -> bool { if let Some((_, res)) = constant(cx, cx.tables, expr) { res } else { false } } fn is_allowed<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) -> bool { match constant(cx, cx.tables, expr) { Some((Constant::F32(f), _)) => f == 0.0 || f.is_infinite(), Some((Constant::F64(f), _)) => f == 0.0 || f.is_infinite(), _ => false, } } fn is_float(cx: &LateContext<'_, '_>, expr: &Expr) -> bool { matches!(walk_ptrs_ty(cx.tables.expr_ty(expr)).sty, ty::Float(_)) } fn check_to_owned(cx: &LateContext<'_, '_>, expr: &Expr, other: &Expr) { let (arg_ty, snip) = match expr.node { ExprKind::MethodCall(.., ref args) if args.len() == 1 => { if match_trait_method(cx, expr, &paths::TO_STRING) || match_trait_method(cx, expr, &paths::TO_OWNED) { (cx.tables.expr_ty_adjusted(&args[0]), snippet(cx, args[0].span, "..")) } else { return; } }, ExprKind::Call(ref path, ref v) if v.len() == 1 => { if let ExprKind::Path(ref path) = path.node { if match_qpath(path, &["String", "from_str"]) || match_qpath(path, &["String", "from"]) { (cx.tables.expr_ty_adjusted(&v[0]), snippet(cx, v[0].span, "..")) } else { return; } } else { return; } }, _ => return, }; let other_ty = cx.tables.expr_ty_adjusted(other); let partial_eq_trait_id = match cx.tcx.lang_items().eq_trait() { Some(id) => id, None => return, }; let deref_arg_impl_partial_eq_other = arg_ty.builtin_deref(true).map_or(false, |tam| { implements_trait(cx, tam.ty, partial_eq_trait_id, &[other_ty.into()]) }); let arg_impl_partial_eq_deref_other = other_ty.builtin_deref(true).map_or(false, |tam| { implements_trait(cx, arg_ty, partial_eq_trait_id, &[tam.ty.into()]) }); let arg_impl_partial_eq_other = implements_trait(cx, arg_ty, partial_eq_trait_id, &[other_ty.into()]); if !deref_arg_impl_partial_eq_other && !arg_impl_partial_eq_deref_other && !arg_impl_partial_eq_other { return; } let other_gets_derefed = match other.node { ExprKind::Unary(UnDeref, _) => true, _ => false, }; let lint_span = if other_gets_derefed { expr.span.to(other.span) } else { expr.span }; span_lint_and_then( cx, CMP_OWNED, lint_span, "this creates an owned instance just for comparison", |db| { // This also catches `PartialEq` implementations that call `to_owned`. if other_gets_derefed { db.span_label(lint_span, "try implementing the comparison without allocating"); return; } let try_hint = if deref_arg_impl_partial_eq_other { // suggest deref on the left format!("*{}", snip) } else { // suggest dropping the to_owned on the left snip.to_string() }; db.span_suggestion( lint_span, "try", try_hint, Applicability::MachineApplicable, // snippet ); }, ); } /// Heuristic to see if an expression is used. Should be compatible with /// `unused_variables`'s idea /// of what it means for an expression to be "used". fn is_used(cx: &LateContext<'_, '_>, expr: &Expr) -> bool { if let Some(parent) = get_parent_expr(cx, expr) { match parent.node { ExprKind::Assign(_, ref rhs) | ExprKind::AssignOp(_, _, ref rhs) => SpanlessEq::new(cx).eq_expr(rhs, expr), _ => is_used(cx, parent), } } else { true } } /// Tests whether an expression is in a macro expansion (e.g., something /// generated by `#[derive(...)]` or the like). fn in_attributes_expansion(expr: &Expr) -> bool { expr.span .ctxt() .outer() .expn_info() .map_or(false, |info| matches!(info.format, ExpnFormat::MacroAttribute(_))) } /// Tests whether `def` is a variable defined outside a macro. fn non_macro_local(cx: &LateContext<'_, '_>, def: &def::Def) -> bool { match *def { def::Def::Local(id) | def::Def::Upvar(id, _, _) => !in_macro(cx.tcx.hir().span(id)), _ => false, } } fn check_cast(cx: &LateContext<'_, '_>, span: Span, e: &Expr, ty: &Ty) { if_chain! { if let TyKind::Ptr(MutTy { mutbl, .. }) = ty.node; if let ExprKind::Lit(ref lit) = e.node; if let LitKind::Int(value, ..) = lit.node; if value == 0; if !in_constant(cx, e.hir_id); then { let msg = match mutbl { Mutability::MutMutable => "`0 as *mut _` detected. Consider using `ptr::null_mut()`", Mutability::MutImmutable => "`0 as *const _` detected. Consider using `ptr::null()`", }; span_lint(cx, ZERO_PTR, span, msg); } } }