use rustc::ty::{self, Ty}; use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX}; use rustc::mir; use syntax::attr; use syntax::abi::Abi; use syntax::codemap::Span; use std::mem; use rustc_miri::interpret::*; use super::{TlsKey, EvalContext}; use tls::MemoryExt; use super::memory::MemoryKind; pub trait EvalContextExt<'tcx> { fn call_c_abi( &mut self, def_id: DefId, args: &[ValTy<'tcx>], dest: Lvalue, dest_ty: Ty<'tcx>, dest_block: mir::BasicBlock, ) -> EvalResult<'tcx>; fn resolve_path(&self, path: &[&str]) -> EvalResult<'tcx, ty::Instance<'tcx>>; fn call_missing_fn( &mut self, instance: ty::Instance<'tcx>, destination: Option<(Lvalue, mir::BasicBlock)>, args: &[ValTy<'tcx>], sig: ty::FnSig<'tcx>, path: String, ) -> EvalResult<'tcx>; fn eval_fn_call( &mut self, instance: ty::Instance<'tcx>, destination: Option<(Lvalue, mir::BasicBlock)>, args: &[ValTy<'tcx>], span: Span, sig: ty::FnSig<'tcx>, ) -> EvalResult<'tcx, bool>; } impl<'a, 'tcx> EvalContextExt<'tcx> for EvalContext<'a, 'tcx, super::Evaluator> { fn eval_fn_call( &mut self, instance: ty::Instance<'tcx>, destination: Option<(Lvalue, mir::BasicBlock)>, args: &[ValTy<'tcx>], span: Span, sig: ty::FnSig<'tcx>, ) -> EvalResult<'tcx, bool> { trace!("eval_fn_call: {:#?}, {:#?}", instance, destination); let mir = match self.load_mir(instance.def) { Ok(mir) => mir, Err(EvalError { kind: EvalErrorKind::NoMirFor(path), .. }) => { self.call_missing_fn( instance, destination, args, sig, path, )?; return Ok(true); } Err(other) => return Err(other), }; let (return_lvalue, return_to_block) = match destination { Some((lvalue, block)) => (lvalue, StackPopCleanup::Goto(block)), None => (Lvalue::undef(), StackPopCleanup::None), }; self.push_stack_frame( instance, span, mir, return_lvalue, return_to_block, )?; Ok(false) } fn call_c_abi( &mut self, def_id: DefId, args: &[ValTy<'tcx>], dest: Lvalue, dest_ty: Ty<'tcx>, dest_block: mir::BasicBlock, ) -> EvalResult<'tcx> { let name = self.tcx.item_name(def_id); let attrs = self.tcx.get_attrs(def_id); let link_name = attr::first_attr_value_str_by_name(&attrs, "link_name") .unwrap_or(name) .as_str(); match &link_name[..] { "malloc" => { let size = self.value_to_primval(args[0])?.to_u64()?; if size == 0 { self.write_null(dest, dest_ty)?; } else { let align = self.memory.pointer_size(); let ptr = self.memory.allocate(size, align, MemoryKind::C.into())?; self.write_primval(dest, PrimVal::Ptr(ptr), dest_ty)?; } } "free" => { let ptr = args[0].into_ptr(&mut self.memory)?; if !ptr.is_null()? { self.memory.deallocate( ptr.to_ptr()?, None, MemoryKind::C.into(), )?; } } "syscall" => { // TODO: read `syscall` ids like `sysconf` ids and // figure out some way to actually process some of them // // libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK) // is called if a `HashMap` is created the regular way. match self.value_to_primval(args[0])?.to_u64()? { 318 | 511 => { return err!(Unimplemented( "miri does not support random number generators".to_owned(), )) } id => { return err!(Unimplemented( format!("miri does not support syscall id {}", id), )) } } } "dlsym" => { let _handle = args[0].into_ptr(&mut self.memory)?; let symbol = args[1].into_ptr(&mut self.memory)?.to_ptr()?; let symbol_name = self.memory.read_c_str(symbol)?; let err = format!("bad c unicode symbol: {:?}", symbol_name); let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err); return err!(Unimplemented(format!( "miri does not support dynamically loading libraries (requested symbol: {})", symbol_name ))); } "__rust_maybe_catch_panic" => { // fn __rust_maybe_catch_panic(f: fn(*mut u8), data: *mut u8, data_ptr: *mut usize, vtable_ptr: *mut usize) -> u32 // We abort on panic, so not much is going on here, but we still have to call the closure let u8_ptr_ty = self.tcx.mk_mut_ptr(self.tcx.types.u8); let f = args[0].into_ptr(&mut self.memory)?.to_ptr()?; let data = args[1].into_ptr(&mut self.memory)?; let f_instance = self.memory.get_fn(f)?; self.write_null(dest, dest_ty)?; // Now we make a function call. TODO: Consider making this re-usable? EvalContext::step does sth. similar for the TLS dtors, // and of course eval_main. let mir = self.load_mir(f_instance.def)?; self.push_stack_frame( f_instance, mir.span, mir, Lvalue::undef(), StackPopCleanup::Goto(dest_block), )?; let arg_local = self.frame().mir.args_iter().next().ok_or( EvalErrorKind::AbiViolation( "Argument to __rust_maybe_catch_panic does not take enough arguments." .to_owned(), ), )?; let arg_dest = self.eval_lvalue(&mir::Lvalue::Local(arg_local))?; self.write_ptr(arg_dest, data, u8_ptr_ty)?; // We ourselves return 0 self.write_null(dest, dest_ty)?; // Don't fall through return Ok(()); } "__rust_start_panic" => { return err!(Panic); } "memcmp" => { let left = args[0].into_ptr(&mut self.memory)?; let right = args[1].into_ptr(&mut self.memory)?; let n = self.value_to_primval(args[2])?.to_u64()?; let result = { let left_bytes = self.memory.read_bytes(left, n)?; let right_bytes = self.memory.read_bytes(right, n)?; use std::cmp::Ordering::*; match left_bytes.cmp(right_bytes) { Less => -1i8, Equal => 0, Greater => 1, } }; self.write_primval( dest, PrimVal::Bytes(result as u128), dest_ty, )?; } "memrchr" => { let ptr = args[0].into_ptr(&mut self.memory)?; let val = self.value_to_primval(args[1])?.to_u64()? as u8; let num = self.value_to_primval(args[2])?.to_u64()?; if let Some(idx) = self.memory.read_bytes(ptr, num)?.iter().rev().position( |&c| c == val, ) { let new_ptr = ptr.offset(num - idx as u64 - 1, &self)?; self.write_ptr(dest, new_ptr, dest_ty)?; } else { self.write_null(dest, dest_ty)?; } } "memchr" => { let ptr = args[0].into_ptr(&mut self.memory)?; let val = self.value_to_primval(args[1])?.to_u64()? as u8; let num = self.value_to_primval(args[2])?.to_u64()?; if let Some(idx) = self.memory.read_bytes(ptr, num)?.iter().position( |&c| c == val, ) { let new_ptr = ptr.offset(idx as u64, &self)?; self.write_ptr(dest, new_ptr, dest_ty)?; } else { self.write_null(dest, dest_ty)?; } } "getenv" => { let result = { let name_ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?; let name = self.memory.read_c_str(name_ptr)?; match self.machine_data.env_vars.get(name) { Some(&var) => PrimVal::Ptr(var), None => PrimVal::Bytes(0), } }; self.write_primval(dest, result, dest_ty)?; } "unsetenv" => { let mut success = None; { let name_ptr = args[0].into_ptr(&mut self.memory)?; if !name_ptr.is_null()? { let name = self.memory.read_c_str(name_ptr.to_ptr()?)?; if !name.is_empty() && !name.contains(&b'=') { success = Some(self.machine_data.env_vars.remove(name)); } } } if let Some(old) = success { if let Some(var) = old { self.memory.deallocate(var, None, MemoryKind::Env.into())?; } self.write_null(dest, dest_ty)?; } else { self.write_primval(dest, PrimVal::from_i128(-1), dest_ty)?; } } "setenv" => { let mut new = None; { let name_ptr = args[0].into_ptr(&mut self.memory)?; let value_ptr = args[1].into_ptr(&mut self.memory)?.to_ptr()?; let value = self.memory.read_c_str(value_ptr)?; if !name_ptr.is_null()? { let name = self.memory.read_c_str(name_ptr.to_ptr()?)?; if !name.is_empty() && !name.contains(&b'=') { new = Some((name.to_owned(), value.to_owned())); } } } if let Some((name, value)) = new { // +1 for the null terminator let value_copy = self.memory.allocate( (value.len() + 1) as u64, 1, MemoryKind::Env.into(), )?; self.memory.write_bytes(value_copy.into(), &value)?; let trailing_zero_ptr = value_copy.offset(value.len() as u64, &self)?.into(); self.memory.write_bytes(trailing_zero_ptr, &[0])?; if let Some(var) = self.machine_data.env_vars.insert( name.to_owned(), value_copy, ) { self.memory.deallocate(var, None, MemoryKind::Env.into())?; } self.write_null(dest, dest_ty)?; } else { self.write_primval(dest, PrimVal::from_i128(-1), dest_ty)?; } } "write" => { let fd = self.value_to_primval(args[0])?.to_u64()?; let buf = args[1].into_ptr(&mut self.memory)?; let n = self.value_to_primval(args[2])?.to_u64()?; trace!("Called write({:?}, {:?}, {:?})", fd, buf, n); let result = if fd == 1 || fd == 2 { // stdout/stderr use std::io::{self, Write}; let buf_cont = self.memory.read_bytes(buf, n)?; let res = if fd == 1 { io::stdout().write(buf_cont) } else { io::stderr().write(buf_cont) }; match res { Ok(n) => n as isize, Err(_) => -1, } } else { info!("Ignored output to FD {}", fd); n as isize // pretend it all went well }; // now result is the value we return back to the program self.write_primval( dest, PrimVal::Bytes(result as u128), dest_ty, )?; } "strlen" => { let ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?; let n = self.memory.read_c_str(ptr)?.len(); self.write_primval(dest, PrimVal::Bytes(n as u128), dest_ty)?; } // Some things needed for sys::thread initialization to go through "signal" | "sigaction" | "sigaltstack" => { self.write_primval(dest, PrimVal::Bytes(0), dest_ty)?; } "sysconf" => { let name = self.value_to_primval(args[0])?.to_u64()?; trace!("sysconf() called with name {}", name); // cache the sysconf integers via miri's global cache let paths = &[ (&["libc", "_SC_PAGESIZE"], PrimVal::Bytes(4096)), (&["libc", "_SC_GETPW_R_SIZE_MAX"], PrimVal::from_i128(-1)), ]; let mut result = None; for &(path, path_value) in paths { if let Ok(instance) = self.resolve_path(path) { let cid = GlobalId { instance, promoted: None, }; // compute global if not cached let val = match self.globals.get(&cid).cloned() { Some(ptr) => self.value_to_primval(ValTy { value: Value::ByRef(ptr), ty: args[0].ty })?.to_u64()?, None => eval_body_as_primval(self.tcx, instance)?.0.to_u64()?, }; if val == name { result = Some(path_value); break; } } } if let Some(result) = result { self.write_primval(dest, result, dest_ty)?; } else { return err!(Unimplemented( format!("Unimplemented sysconf name: {}", name), )); } } // Hook pthread calls that go to the thread-local storage memory subsystem "pthread_key_create" => { let key_ptr = args[0].into_ptr(&mut self.memory)?; // Extract the function type out of the signature (that seems easier than constructing it ourselves...) let dtor = match args[1].into_ptr(&mut self.memory)?.into_inner_primval() { PrimVal::Ptr(dtor_ptr) => Some(self.memory.get_fn(dtor_ptr)?), PrimVal::Bytes(0) => None, PrimVal::Bytes(_) => return err!(ReadBytesAsPointer), PrimVal::Undef => return err!(ReadUndefBytes), }; // Figure out how large a pthread TLS key actually is. This is libc::pthread_key_t. let key_type = args[0].ty.builtin_deref(true, ty::LvaluePreference::NoPreference) .ok_or(EvalErrorKind::AbiViolation("Wrong signature used for pthread_key_create: First argument must be a raw pointer.".to_owned()))?.ty; let key_size = { let layout = self.type_layout(key_type)?; layout.size(&self.tcx.data_layout) }; // Create key and write it into the memory where key_ptr wants it let key = self.memory.create_tls_key(dtor) as u128; if key_size.bits() < 128 && key >= (1u128 << key_size.bits() as u128) { return err!(OutOfTls); } self.memory.write_primval( key_ptr.to_ptr()?, PrimVal::Bytes(key), key_size.bytes(), false, )?; // Return success (0) self.write_null(dest, dest_ty)?; } "pthread_key_delete" => { // The conversion into TlsKey here is a little fishy, but should work as long as usize >= libc::pthread_key_t let key = self.value_to_primval(args[0])?.to_u64()? as TlsKey; self.memory.delete_tls_key(key)?; // Return success (0) self.write_null(dest, dest_ty)?; } "pthread_getspecific" => { // The conversion into TlsKey here is a little fishy, but should work as long as usize >= libc::pthread_key_t let key = self.value_to_primval(args[0])?.to_u64()? as TlsKey; let ptr = self.memory.load_tls(key)?; self.write_ptr(dest, ptr, dest_ty)?; } "pthread_setspecific" => { // The conversion into TlsKey here is a little fishy, but should work as long as usize >= libc::pthread_key_t let key = self.value_to_primval(args[0])?.to_u64()? as TlsKey; let new_ptr = args[1].into_ptr(&mut self.memory)?; self.memory.store_tls(key, new_ptr)?; // Return success (0) self.write_null(dest, dest_ty)?; } // Stub out all the other pthread calls to just return 0 link_name if link_name.starts_with("pthread_") => { warn!("ignoring C ABI call: {}", link_name); self.write_null(dest, dest_ty)?; } _ => { return err!(Unimplemented( format!("can't call C ABI function: {}", link_name), )); } } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. self.dump_local(dest); self.goto_block(dest_block); Ok(()) } /// Get an instance for a path. fn resolve_path(&self, path: &[&str]) -> EvalResult<'tcx, ty::Instance<'tcx>> { let cstore = &self.tcx.sess.cstore; let crates = cstore.crates(); crates .iter() .find(|&&krate| cstore.crate_name(krate) == path[0]) .and_then(|krate| { let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX, }; let mut items = cstore.item_children(krate, self.tcx.sess); let mut path_it = path.iter().skip(1).peekable(); while let Some(segment) = path_it.next() { for item in &mem::replace(&mut items, vec![]) { if item.ident.name == *segment { if path_it.peek().is_none() { return Some(ty::Instance::mono(self.tcx, item.def.def_id())); } items = cstore.item_children(item.def.def_id(), self.tcx.sess); break; } } } None }) .ok_or_else(|| { let path = path.iter().map(|&s| s.to_owned()).collect(); EvalErrorKind::PathNotFound(path).into() }) } fn call_missing_fn( &mut self, instance: ty::Instance<'tcx>, destination: Option<(Lvalue, mir::BasicBlock)>, args: &[ValTy<'tcx>], sig: ty::FnSig<'tcx>, path: String, ) -> EvalResult<'tcx> { // In some cases in non-MIR libstd-mode, not having a destination is legit. Handle these early. match &path[..] { "std::panicking::rust_panic_with_hook" | "core::panicking::panic_fmt::::panic_impl" | "std::rt::begin_panic_fmt" => return err!(Panic), _ => {} } let dest_ty = sig.output(); let (dest, dest_block) = destination.ok_or_else( || EvalErrorKind::NoMirFor(path.clone()), )?; if sig.abi == Abi::C { // An external C function // TODO: That functions actually has a similar preamble to what follows here. May make sense to // unify these two mechanisms for "hooking into missing functions". self.call_c_abi( instance.def_id(), args, dest, dest_ty, dest_block, )?; return Ok(()); } match &path[..] { // Allocators are magic. They have no MIR, even when the rest of libstd does. "alloc::heap::::__rust_alloc" => { let size = self.value_to_primval(args[0])?.to_u64()?; let align = self.value_to_primval(args[1])?.to_u64()?; if size == 0 { return err!(HeapAllocZeroBytes); } if !align.is_power_of_two() { return err!(HeapAllocNonPowerOfTwoAlignment(align)); } let ptr = self.memory.allocate(size, align, MemoryKind::Rust.into())?; self.write_primval(dest, PrimVal::Ptr(ptr), dest_ty)?; } "alloc::heap::::__rust_alloc_zeroed" => { let size = self.value_to_primval(args[0])?.to_u64()?; let align = self.value_to_primval(args[1])?.to_u64()?; if size == 0 { return err!(HeapAllocZeroBytes); } if !align.is_power_of_two() { return err!(HeapAllocNonPowerOfTwoAlignment(align)); } let ptr = self.memory.allocate(size, align, MemoryKind::Rust.into())?; self.memory.write_repeat(ptr.into(), 0, size)?; self.write_primval(dest, PrimVal::Ptr(ptr), dest_ty)?; } "alloc::heap::::__rust_dealloc" => { let ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?; let old_size = self.value_to_primval(args[1])?.to_u64()?; let align = self.value_to_primval(args[2])?.to_u64()?; if old_size == 0 { return err!(HeapAllocZeroBytes); } if !align.is_power_of_two() { return err!(HeapAllocNonPowerOfTwoAlignment(align)); } self.memory.deallocate( ptr, Some((old_size, align)), MemoryKind::Rust.into(), )?; } "alloc::heap::::__rust_realloc" => { let ptr = args[0].into_ptr(&mut self.memory)?.to_ptr()?; let old_size = self.value_to_primval(args[1])?.to_u64()?; let old_align = self.value_to_primval(args[2])?.to_u64()?; let new_size = self.value_to_primval(args[3])?.to_u64()?; let new_align = self.value_to_primval(args[4])?.to_u64()?; if old_size == 0 || new_size == 0 { return err!(HeapAllocZeroBytes); } if !old_align.is_power_of_two() { return err!(HeapAllocNonPowerOfTwoAlignment(old_align)); } if !new_align.is_power_of_two() { return err!(HeapAllocNonPowerOfTwoAlignment(new_align)); } let new_ptr = self.memory.reallocate( ptr, old_size, old_align, new_size, new_align, MemoryKind::Rust.into(), )?; self.write_primval(dest, PrimVal::Ptr(new_ptr), dest_ty)?; } // A Rust function is missing, which means we are running with MIR missing for libstd (or other dependencies). // Still, we can make many things mostly work by "emulating" or ignoring some functions. "std::io::_print" => { trace!( "Ignoring output. To run programs that print, make sure you have a libstd with full MIR." ); } "std::thread::Builder::new" => { return err!(Unimplemented("miri does not support threading".to_owned())) } "std::env::args" => { return err!(Unimplemented( "miri does not support program arguments".to_owned(), )) } "std::panicking::panicking" | "std::rt::panicking" => { // we abort on panic -> `std::rt::panicking` always returns false let bool = self.tcx.types.bool; self.write_primval(dest, PrimVal::from_bool(false), bool)?; } _ => return err!(NoMirFor(path)), } // Since we pushed no stack frame, the main loop will act // as if the call just completed and it's returning to the // current frame. self.dump_local(dest); self.goto_block(dest_block); return Ok(()); } }