//! HIR walker for walking the contents of nodes. //! //! Here are the three available patterns for the visitor strategy, //! in roughly the order of desirability: //! //! 1. **Shallow visit**: Get a simple callback for every item (or item-like thing) in the HIR. //! - Example: find all items with a `#[foo]` attribute on them. //! - How: Use the `hir_crate_items` or `hir_module_items` query to traverse over item-like ids //! (ItemId, TraitItemId, etc.) and use tcx.def_kind and `tcx.hir().item*(id)` to filter and //! access actual item-like thing, respectively. //! - Pro: Efficient; just walks the lists of item ids and gives users control whether to access //! the hir_owners themselves or not. //! - Con: Don't get information about nesting //! - Con: Don't have methods for specific bits of HIR, like "on //! every expr, do this". //! 2. **Deep visit**: Want to scan for specific kinds of HIR nodes within //! an item, but don't care about how item-like things are nested //! within one another. //! - Example: Examine each expression to look for its type and do some check or other. //! - How: Implement `intravisit::Visitor` and override the `NestedFilter` type to //! `nested_filter::OnlyBodies` (and implement `nested_visit_map`), and use //! `tcx.hir().deep_visit_all_item_likes(&mut visitor)`. Within your //! `intravisit::Visitor` impl, implement methods like `visit_expr()` (don't forget to invoke //! `intravisit::walk_expr()` to keep walking the subparts). //! - Pro: Visitor methods for any kind of HIR node, not just item-like things. //! - Pro: Integrates well into dependency tracking. //! - Con: Don't get information about nesting between items //! 3. **Nested visit**: Want to visit the whole HIR and you care about the nesting between //! item-like things. //! - Example: Lifetime resolution, which wants to bring lifetimes declared on the //! impl into scope while visiting the impl-items, and then back out again. //! - How: Implement `intravisit::Visitor` and override the `NestedFilter` type to //! `nested_filter::All` (and implement `nested_visit_map`). Walk your crate with //! `tcx.hir().walk_toplevel_module(visitor)` invoked on `tcx.hir().krate()`. //! - Pro: Visitor methods for any kind of HIR node, not just item-like things. //! - Pro: Preserves nesting information //! - Con: Does not integrate well into dependency tracking. //! //! If you have decided to use this visitor, here are some general //! notes on how to do so: //! //! Each overridden visit method has full control over what //! happens with its node, it can do its own traversal of the node's children, //! call `intravisit::walk_*` to apply the default traversal algorithm, or prevent //! deeper traversal by doing nothing. //! //! When visiting the HIR, the contents of nested items are NOT visited //! by default. This is different from the AST visitor, which does a deep walk. //! Hence this module is called `intravisit`; see the method `visit_nested_item` //! for more details. //! //! Note: it is an important invariant that the default visitor walks //! the body of a function in "execution order" - more concretely, if //! we consider the reverse post-order (RPO) of the CFG implied by the HIR, //! then a pre-order traversal of the HIR is consistent with the CFG RPO //! on the *initial CFG point* of each HIR node, while a post-order traversal //! of the HIR is consistent with the CFG RPO on each *final CFG point* of //! each CFG node. //! //! One thing that follows is that if HIR node A always starts/ends executing //! before HIR node B, then A appears in traversal pre/postorder before B, //! respectively. (This follows from RPO respecting CFG domination). //! //! This order consistency is required in a few places in rustc, for //! example generator inference, and possibly also HIR borrowck. use crate::hir::*; use rustc_ast::walk_list; use rustc_ast::{Attribute, Label}; use rustc_span::symbol::{Ident, Symbol}; use rustc_span::Span; pub trait IntoVisitor<'hir> { type Visitor: Visitor<'hir>; fn into_visitor(&self) -> Self::Visitor; } #[derive(Copy, Clone, Debug)] pub enum FnKind<'a> { /// `#[xxx] pub async/const/extern "Abi" fn foo()` ItemFn(Ident, &'a Generics<'a>, FnHeader), /// `fn foo(&self)` Method(Ident, &'a FnSig<'a>), /// `|x, y| {}` Closure, } impl<'a> FnKind<'a> { pub fn header(&self) -> Option<&FnHeader> { match *self { FnKind::ItemFn(_, _, ref header) => Some(header), FnKind::Method(_, ref sig) => Some(&sig.header), FnKind::Closure => None, } } pub fn constness(self) -> Constness { self.header().map_or(Constness::NotConst, |header| header.constness) } pub fn asyncness(self) -> IsAsync { self.header().map_or(IsAsync::NotAsync, |header| header.asyncness) } } /// An abstract representation of the HIR `rustc_middle::hir::map::Map`. pub trait Map<'hir> { /// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found. fn find(&self, hir_id: HirId) -> Option>; fn body(&self, id: BodyId) -> &'hir Body<'hir>; fn item(&self, id: ItemId) -> &'hir Item<'hir>; fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem<'hir>; fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem<'hir>; fn foreign_item(&self, id: ForeignItemId) -> &'hir ForeignItem<'hir>; } // Used when no map is actually available, forcing manual implementation of nested visitors. impl<'hir> Map<'hir> for ! { fn find(&self, _: HirId) -> Option> { *self; } fn body(&self, _: BodyId) -> &'hir Body<'hir> { *self; } fn item(&self, _: ItemId) -> &'hir Item<'hir> { *self; } fn trait_item(&self, _: TraitItemId) -> &'hir TraitItem<'hir> { *self; } fn impl_item(&self, _: ImplItemId) -> &'hir ImplItem<'hir> { *self; } fn foreign_item(&self, _: ForeignItemId) -> &'hir ForeignItem<'hir> { *self; } } pub mod nested_filter { use super::Map; /// Specifies what nested things a visitor wants to visit. By "nested /// things", we are referring to bits of HIR that are not directly embedded /// within one another but rather indirectly, through a table in the crate. /// This is done to control dependencies during incremental compilation: the /// non-inline bits of HIR can be tracked and hashed separately. /// /// The most common choice is `OnlyBodies`, which will cause the visitor to /// visit fn bodies for fns that it encounters, and closure bodies, but /// skip over nested item-like things. /// /// See the comments on `ItemLikeVisitor` for more details on the overall /// visit strategy. pub trait NestedFilter<'hir> { type Map: Map<'hir>; /// Whether the visitor visits nested "item-like" things. /// E.g., item, impl-item. const INTER: bool; /// Whether the visitor visits "intra item-like" things. /// E.g., function body, closure, `AnonConst` const INTRA: bool; } /// Do not visit any nested things. When you add a new /// "non-nested" thing, you will want to audit such uses to see if /// they remain valid. /// /// Use this if you are only walking some particular kind of tree /// (i.e., a type, or fn signature) and you don't want to thread a /// HIR map around. pub struct None(()); impl NestedFilter<'_> for None { type Map = !; const INTER: bool = false; const INTRA: bool = false; } } use nested_filter::NestedFilter; /// Each method of the Visitor trait is a hook to be potentially /// overridden. Each method's default implementation recursively visits /// the substructure of the input via the corresponding `walk` method; /// e.g., the `visit_mod` method by default calls `intravisit::walk_mod`. /// /// Note that this visitor does NOT visit nested items by default /// (this is why the module is called `intravisit`, to distinguish it /// from the AST's `visit` module, which acts differently). If you /// simply want to visit all items in the crate in some order, you /// should call `Crate::visit_all_items`. Otherwise, see the comment /// on `visit_nested_item` for details on how to visit nested items. /// /// If you want to ensure that your code handles every variant /// explicitly, you need to override each method. (And you also need /// to monitor future changes to `Visitor` in case a new method with a /// new default implementation gets introduced.) pub trait Visitor<'v>: Sized { // this type should not be overridden, it exists for convenient usage as `Self::Map` type Map: Map<'v> = >::Map; /////////////////////////////////////////////////////////////////////////// // Nested items. /// Override this type to control which nested HIR are visited; see /// [`NestedFilter`] for details. If you override this type, you /// must also override [`nested_visit_map`](Self::nested_visit_map). /// /// **If for some reason you want the nested behavior, but don't /// have a `Map` at your disposal:** then override the /// `visit_nested_XXX` methods. If a new `visit_nested_XXX` variant is /// added in the future, it will cause a panic which can be detected /// and fixed appropriately. type NestedFilter: NestedFilter<'v> = nested_filter::None; /// If `type NestedFilter` is set to visit nested items, this method /// must also be overridden to provide a map to retrieve nested items. fn nested_visit_map(&mut self) -> Self::Map { panic!( "nested_visit_map must be implemented or consider using \ `type NestedFilter = nested_filter::None` (the default)" ); } /// Invoked when a nested item is encountered. By default, when /// `Self::NestedFilter` is `nested_filter::None`, this method does /// nothing. **You probably don't want to override this method** -- /// instead, override [`Self::NestedFilter`] or use the "shallow" or /// "deep" visit patterns described on /// `itemlikevisit::ItemLikeVisitor`. The only reason to override /// this method is if you want a nested pattern but cannot supply a /// [`Map`]; see `nested_visit_map` for advice. fn visit_nested_item(&mut self, id: ItemId) { if Self::NestedFilter::INTER { let item = self.nested_visit_map().item(id); self.visit_item(item); } } /// Like `visit_nested_item()`, but for trait items. See /// `visit_nested_item()` for advice on when to override this /// method. fn visit_nested_trait_item(&mut self, id: TraitItemId) { if Self::NestedFilter::INTER { let item = self.nested_visit_map().trait_item(id); self.visit_trait_item(item); } } /// Like `visit_nested_item()`, but for impl items. See /// `visit_nested_item()` for advice on when to override this /// method. fn visit_nested_impl_item(&mut self, id: ImplItemId) { if Self::NestedFilter::INTER { let item = self.nested_visit_map().impl_item(id); self.visit_impl_item(item); } } /// Like `visit_nested_item()`, but for foreign items. See /// `visit_nested_item()` for advice on when to override this /// method. fn visit_nested_foreign_item(&mut self, id: ForeignItemId) { if Self::NestedFilter::INTER { let item = self.nested_visit_map().foreign_item(id); self.visit_foreign_item(item); } } /// Invoked to visit the body of a function, method or closure. Like /// `visit_nested_item`, does nothing by default unless you override /// `Self::NestedFilter`. fn visit_nested_body(&mut self, id: BodyId) { if Self::NestedFilter::INTRA { let body = self.nested_visit_map().body(id); self.visit_body(body); } } fn visit_param(&mut self, param: &'v Param<'v>) { walk_param(self, param) } /// Visits the top-level item and (optionally) nested items / impl items. See /// `visit_nested_item` for details. fn visit_item(&mut self, i: &'v Item<'v>) { walk_item(self, i) } fn visit_body(&mut self, b: &'v Body<'v>) { walk_body(self, b); } /////////////////////////////////////////////////////////////////////////// fn visit_id(&mut self, _hir_id: HirId) { // Nothing to do. } fn visit_name(&mut self, _span: Span, _name: Symbol) { // Nothing to do. } fn visit_ident(&mut self, ident: Ident) { walk_ident(self, ident) } fn visit_mod(&mut self, m: &'v Mod<'v>, _s: Span, n: HirId) { walk_mod(self, m, n) } fn visit_foreign_item(&mut self, i: &'v ForeignItem<'v>) { walk_foreign_item(self, i) } fn visit_local(&mut self, l: &'v Local<'v>) { walk_local(self, l) } fn visit_block(&mut self, b: &'v Block<'v>) { walk_block(self, b) } fn visit_stmt(&mut self, s: &'v Stmt<'v>) { walk_stmt(self, s) } fn visit_arm(&mut self, a: &'v Arm<'v>) { walk_arm(self, a) } fn visit_pat(&mut self, p: &'v Pat<'v>) { walk_pat(self, p) } fn visit_array_length(&mut self, len: &'v ArrayLen) { walk_array_len(self, len) } fn visit_anon_const(&mut self, c: &'v AnonConst) { walk_anon_const(self, c) } fn visit_expr(&mut self, ex: &'v Expr<'v>) { walk_expr(self, ex) } fn visit_let_expr(&mut self, lex: &'v Let<'v>) { walk_let_expr(self, lex) } fn visit_ty(&mut self, t: &'v Ty<'v>) { walk_ty(self, t) } fn visit_generic_param(&mut self, p: &'v GenericParam<'v>) { walk_generic_param(self, p) } fn visit_const_param_default(&mut self, _param: HirId, ct: &'v AnonConst) { walk_const_param_default(self, ct) } fn visit_generics(&mut self, g: &'v Generics<'v>) { walk_generics(self, g) } fn visit_where_predicate(&mut self, predicate: &'v WherePredicate<'v>) { walk_where_predicate(self, predicate) } fn visit_fn_decl(&mut self, fd: &'v FnDecl<'v>) { walk_fn_decl(self, fd) } fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl<'v>, b: BodyId, s: Span, id: HirId) { walk_fn(self, fk, fd, b, s, id) } fn visit_use(&mut self, path: &'v Path<'v>, hir_id: HirId) { walk_use(self, path, hir_id) } fn visit_trait_item(&mut self, ti: &'v TraitItem<'v>) { walk_trait_item(self, ti) } fn visit_trait_item_ref(&mut self, ii: &'v TraitItemRef) { walk_trait_item_ref(self, ii) } fn visit_impl_item(&mut self, ii: &'v ImplItem<'v>) { walk_impl_item(self, ii) } fn visit_foreign_item_ref(&mut self, ii: &'v ForeignItemRef) { walk_foreign_item_ref(self, ii) } fn visit_impl_item_ref(&mut self, ii: &'v ImplItemRef) { walk_impl_item_ref(self, ii) } fn visit_trait_ref(&mut self, t: &'v TraitRef<'v>) { walk_trait_ref(self, t) } fn visit_param_bound(&mut self, bounds: &'v GenericBound<'v>) { walk_param_bound(self, bounds) } fn visit_poly_trait_ref(&mut self, t: &'v PolyTraitRef<'v>, m: TraitBoundModifier) { walk_poly_trait_ref(self, t, m) } fn visit_variant_data( &mut self, s: &'v VariantData<'v>, _: Symbol, _: &'v Generics<'v>, _parent_id: HirId, _: Span, ) { walk_struct_def(self, s) } fn visit_field_def(&mut self, s: &'v FieldDef<'v>) { walk_field_def(self, s) } fn visit_enum_def( &mut self, enum_definition: &'v EnumDef<'v>, generics: &'v Generics<'v>, item_id: HirId, _: Span, ) { walk_enum_def(self, enum_definition, generics, item_id) } fn visit_variant(&mut self, v: &'v Variant<'v>, g: &'v Generics<'v>, item_id: HirId) { walk_variant(self, v, g, item_id) } fn visit_label(&mut self, label: &'v Label) { walk_label(self, label) } fn visit_infer(&mut self, inf: &'v InferArg) { walk_inf(self, inf); } fn visit_generic_arg(&mut self, generic_arg: &'v GenericArg<'v>) { match generic_arg { GenericArg::Lifetime(lt) => self.visit_lifetime(lt), GenericArg::Type(ty) => self.visit_ty(ty), GenericArg::Const(ct) => self.visit_anon_const(&ct.value), GenericArg::Infer(inf) => self.visit_infer(inf), } } fn visit_lifetime(&mut self, lifetime: &'v Lifetime) { walk_lifetime(self, lifetime) } fn visit_qpath(&mut self, qpath: &'v QPath<'v>, id: HirId, span: Span) { walk_qpath(self, qpath, id, span) } fn visit_path(&mut self, path: &'v Path<'v>, _id: HirId) { walk_path(self, path) } fn visit_path_segment(&mut self, path_span: Span, path_segment: &'v PathSegment<'v>) { walk_path_segment(self, path_span, path_segment) } fn visit_generic_args(&mut self, path_span: Span, generic_args: &'v GenericArgs<'v>) { walk_generic_args(self, path_span, generic_args) } fn visit_assoc_type_binding(&mut self, type_binding: &'v TypeBinding<'v>) { walk_assoc_type_binding(self, type_binding) } fn visit_attribute(&mut self, _attr: &'v Attribute) {} fn visit_associated_item_kind(&mut self, kind: &'v AssocItemKind) { walk_associated_item_kind(self, kind); } fn visit_defaultness(&mut self, defaultness: &'v Defaultness) { walk_defaultness(self, defaultness); } fn visit_inline_asm(&mut self, asm: &'v InlineAsm<'v>, id: HirId) { walk_inline_asm(self, asm, id); } } pub fn walk_mod<'v, V: Visitor<'v>>(visitor: &mut V, module: &'v Mod<'v>, mod_hir_id: HirId) { visitor.visit_id(mod_hir_id); for &item_id in module.item_ids { visitor.visit_nested_item(item_id); } } pub fn walk_body<'v, V: Visitor<'v>>(visitor: &mut V, body: &'v Body<'v>) { walk_list!(visitor, visit_param, body.params); visitor.visit_expr(&body.value); } pub fn walk_local<'v, V: Visitor<'v>>(visitor: &mut V, local: &'v Local<'v>) { // Intentionally visiting the expr first - the initialization expr // dominates the local's definition. walk_list!(visitor, visit_expr, &local.init); visitor.visit_id(local.hir_id); visitor.visit_pat(&local.pat); walk_list!(visitor, visit_ty, &local.ty); } pub fn walk_ident<'v, V: Visitor<'v>>(visitor: &mut V, ident: Ident) { visitor.visit_name(ident.span, ident.name); } pub fn walk_label<'v, V: Visitor<'v>>(visitor: &mut V, label: &'v Label) { visitor.visit_ident(label.ident); } pub fn walk_lifetime<'v, V: Visitor<'v>>(visitor: &mut V, lifetime: &'v Lifetime) { visitor.visit_id(lifetime.hir_id); match lifetime.name { LifetimeName::Param(_, ParamName::Plain(ident)) => { visitor.visit_ident(ident); } LifetimeName::Param(_, ParamName::Fresh) | LifetimeName::Param(_, ParamName::Error) | LifetimeName::Static | LifetimeName::Error | LifetimeName::Implicit | LifetimeName::ImplicitObjectLifetimeDefault | LifetimeName::Underscore => {} } } pub fn walk_poly_trait_ref<'v, V: Visitor<'v>>( visitor: &mut V, trait_ref: &'v PolyTraitRef<'v>, _modifier: TraitBoundModifier, ) { walk_list!(visitor, visit_generic_param, trait_ref.bound_generic_params); visitor.visit_trait_ref(&trait_ref.trait_ref); } pub fn walk_trait_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_ref: &'v TraitRef<'v>) { visitor.visit_id(trait_ref.hir_ref_id); visitor.visit_path(&trait_ref.path, trait_ref.hir_ref_id) } pub fn walk_param<'v, V: Visitor<'v>>(visitor: &mut V, param: &'v Param<'v>) { visitor.visit_id(param.hir_id); visitor.visit_pat(¶m.pat); } pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item<'v>) { visitor.visit_ident(item.ident); match item.kind { ItemKind::ExternCrate(orig_name) => { visitor.visit_id(item.hir_id()); if let Some(orig_name) = orig_name { visitor.visit_name(item.span, orig_name); } } ItemKind::Use(ref path, _) => { visitor.visit_use(path, item.hir_id()); } ItemKind::Static(ref typ, _, body) | ItemKind::Const(ref typ, body) => { visitor.visit_id(item.hir_id()); visitor.visit_ty(typ); visitor.visit_nested_body(body); } ItemKind::Fn(ref sig, ref generics, body_id) => visitor.visit_fn( FnKind::ItemFn(item.ident, generics, sig.header), &sig.decl, body_id, item.span, item.hir_id(), ), ItemKind::Macro(..) => { visitor.visit_id(item.hir_id()); } ItemKind::Mod(ref module) => { // `visit_mod()` takes care of visiting the `Item`'s `HirId`. visitor.visit_mod(module, item.span, item.hir_id()) } ItemKind::ForeignMod { abi: _, items } => { visitor.visit_id(item.hir_id()); walk_list!(visitor, visit_foreign_item_ref, items); } ItemKind::GlobalAsm(asm) => { visitor.visit_id(item.hir_id()); visitor.visit_inline_asm(asm, item.hir_id()); } ItemKind::TyAlias(ref ty, ref generics) => { visitor.visit_id(item.hir_id()); visitor.visit_ty(ty); visitor.visit_generics(generics) } ItemKind::OpaqueTy(OpaqueTy { ref generics, bounds, .. }) => { visitor.visit_id(item.hir_id()); walk_generics(visitor, generics); walk_list!(visitor, visit_param_bound, bounds); } ItemKind::Enum(ref enum_definition, ref generics) => { visitor.visit_generics(generics); // `visit_enum_def()` takes care of visiting the `Item`'s `HirId`. visitor.visit_enum_def(enum_definition, generics, item.hir_id(), item.span) } ItemKind::Impl(Impl { unsafety: _, defaultness: _, polarity: _, constness: _, defaultness_span: _, ref generics, ref of_trait, ref self_ty, items, }) => { visitor.visit_id(item.hir_id()); visitor.visit_generics(generics); walk_list!(visitor, visit_trait_ref, of_trait); visitor.visit_ty(self_ty); walk_list!(visitor, visit_impl_item_ref, *items); } ItemKind::Struct(ref struct_definition, ref generics) | ItemKind::Union(ref struct_definition, ref generics) => { visitor.visit_generics(generics); visitor.visit_id(item.hir_id()); visitor.visit_variant_data( struct_definition, item.ident.name, generics, item.hir_id(), item.span, ); } ItemKind::Trait(.., ref generics, bounds, trait_item_refs) => { visitor.visit_id(item.hir_id()); visitor.visit_generics(generics); walk_list!(visitor, visit_param_bound, bounds); walk_list!(visitor, visit_trait_item_ref, trait_item_refs); } ItemKind::TraitAlias(ref generics, bounds) => { visitor.visit_id(item.hir_id()); visitor.visit_generics(generics); walk_list!(visitor, visit_param_bound, bounds); } } } pub fn walk_inline_asm<'v, V: Visitor<'v>>(visitor: &mut V, asm: &'v InlineAsm<'v>, id: HirId) { for (op, op_sp) in asm.operands { match op { InlineAsmOperand::In { expr, .. } | InlineAsmOperand::InOut { expr, .. } => { visitor.visit_expr(expr) } InlineAsmOperand::Out { expr, .. } => { if let Some(expr) = expr { visitor.visit_expr(expr); } } InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => { visitor.visit_expr(in_expr); if let Some(out_expr) = out_expr { visitor.visit_expr(out_expr); } } InlineAsmOperand::Const { anon_const, .. } | InlineAsmOperand::SymFn { anon_const, .. } => visitor.visit_anon_const(anon_const), InlineAsmOperand::SymStatic { path, .. } => visitor.visit_qpath(path, id, *op_sp), } } } pub fn walk_use<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path<'v>, hir_id: HirId) { visitor.visit_id(hir_id); visitor.visit_path(path, hir_id); } pub fn walk_enum_def<'v, V: Visitor<'v>>( visitor: &mut V, enum_definition: &'v EnumDef<'v>, generics: &'v Generics<'v>, item_id: HirId, ) { visitor.visit_id(item_id); walk_list!(visitor, visit_variant, enum_definition.variants, generics, item_id); } pub fn walk_variant<'v, V: Visitor<'v>>( visitor: &mut V, variant: &'v Variant<'v>, generics: &'v Generics<'v>, parent_item_id: HirId, ) { visitor.visit_ident(variant.ident); visitor.visit_id(variant.id); visitor.visit_variant_data( &variant.data, variant.ident.name, generics, parent_item_id, variant.span, ); walk_list!(visitor, visit_anon_const, &variant.disr_expr); } pub fn walk_ty<'v, V: Visitor<'v>>(visitor: &mut V, typ: &'v Ty<'v>) { visitor.visit_id(typ.hir_id); match typ.kind { TyKind::Slice(ref ty) => visitor.visit_ty(ty), TyKind::Ptr(ref mutable_type) => visitor.visit_ty(&mutable_type.ty), TyKind::Rptr(ref lifetime, ref mutable_type) => { visitor.visit_lifetime(lifetime); visitor.visit_ty(&mutable_type.ty) } TyKind::Never => {} TyKind::Tup(tuple_element_types) => { walk_list!(visitor, visit_ty, tuple_element_types); } TyKind::BareFn(ref function_declaration) => { walk_list!(visitor, visit_generic_param, function_declaration.generic_params); visitor.visit_fn_decl(&function_declaration.decl); } TyKind::Path(ref qpath) => { visitor.visit_qpath(qpath, typ.hir_id, typ.span); } TyKind::OpaqueDef(item_id, lifetimes) => { visitor.visit_nested_item(item_id); walk_list!(visitor, visit_generic_arg, lifetimes); } TyKind::Array(ref ty, ref length) => { visitor.visit_ty(ty); visitor.visit_array_length(length) } TyKind::TraitObject(bounds, ref lifetime, _syntax) => { for bound in bounds { visitor.visit_poly_trait_ref(bound, TraitBoundModifier::None); } visitor.visit_lifetime(lifetime); } TyKind::Typeof(ref expression) => visitor.visit_anon_const(expression), TyKind::Infer | TyKind::Err => {} } } pub fn walk_inf<'v, V: Visitor<'v>>(visitor: &mut V, inf: &'v InferArg) { visitor.visit_id(inf.hir_id); } pub fn walk_qpath<'v, V: Visitor<'v>>( visitor: &mut V, qpath: &'v QPath<'v>, id: HirId, span: Span, ) { match *qpath { QPath::Resolved(ref maybe_qself, ref path) => { walk_list!(visitor, visit_ty, maybe_qself); visitor.visit_path(path, id) } QPath::TypeRelative(ref qself, ref segment) => { visitor.visit_ty(qself); visitor.visit_path_segment(span, segment); } QPath::LangItem(..) => {} } } pub fn walk_path<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path<'v>) { for segment in path.segments { visitor.visit_path_segment(path.span, segment); } } pub fn walk_path_segment<'v, V: Visitor<'v>>( visitor: &mut V, path_span: Span, segment: &'v PathSegment<'v>, ) { visitor.visit_ident(segment.ident); walk_list!(visitor, visit_id, segment.hir_id); if let Some(ref args) = segment.args { visitor.visit_generic_args(path_span, args); } } pub fn walk_generic_args<'v, V: Visitor<'v>>( visitor: &mut V, _path_span: Span, generic_args: &'v GenericArgs<'v>, ) { walk_list!(visitor, visit_generic_arg, generic_args.args); walk_list!(visitor, visit_assoc_type_binding, generic_args.bindings); } pub fn walk_assoc_type_binding<'v, V: Visitor<'v>>( visitor: &mut V, type_binding: &'v TypeBinding<'v>, ) { visitor.visit_id(type_binding.hir_id); visitor.visit_ident(type_binding.ident); visitor.visit_generic_args(type_binding.span, type_binding.gen_args); match type_binding.kind { TypeBindingKind::Equality { ref term } => match term { Term::Ty(ref ty) => visitor.visit_ty(ty), Term::Const(ref c) => visitor.visit_anon_const(c), }, TypeBindingKind::Constraint { bounds } => walk_list!(visitor, visit_param_bound, bounds), } } pub fn walk_pat<'v, V: Visitor<'v>>(visitor: &mut V, pattern: &'v Pat<'v>) { visitor.visit_id(pattern.hir_id); match pattern.kind { PatKind::TupleStruct(ref qpath, children, _) => { visitor.visit_qpath(qpath, pattern.hir_id, pattern.span); walk_list!(visitor, visit_pat, children); } PatKind::Path(ref qpath) => { visitor.visit_qpath(qpath, pattern.hir_id, pattern.span); } PatKind::Struct(ref qpath, fields, _) => { visitor.visit_qpath(qpath, pattern.hir_id, pattern.span); for field in fields { visitor.visit_id(field.hir_id); visitor.visit_ident(field.ident); visitor.visit_pat(&field.pat) } } PatKind::Or(pats) => walk_list!(visitor, visit_pat, pats), PatKind::Tuple(tuple_elements, _) => { walk_list!(visitor, visit_pat, tuple_elements); } PatKind::Box(ref subpattern) | PatKind::Ref(ref subpattern, _) => { visitor.visit_pat(subpattern) } PatKind::Binding(_, _hir_id, ident, ref optional_subpattern) => { visitor.visit_ident(ident); walk_list!(visitor, visit_pat, optional_subpattern); } PatKind::Lit(ref expression) => visitor.visit_expr(expression), PatKind::Range(ref lower_bound, ref upper_bound, _) => { walk_list!(visitor, visit_expr, lower_bound); walk_list!(visitor, visit_expr, upper_bound); } PatKind::Wild => (), PatKind::Slice(prepatterns, ref slice_pattern, postpatterns) => { walk_list!(visitor, visit_pat, prepatterns); walk_list!(visitor, visit_pat, slice_pattern); walk_list!(visitor, visit_pat, postpatterns); } } } pub fn walk_foreign_item<'v, V: Visitor<'v>>(visitor: &mut V, foreign_item: &'v ForeignItem<'v>) { visitor.visit_id(foreign_item.hir_id()); visitor.visit_ident(foreign_item.ident); match foreign_item.kind { ForeignItemKind::Fn(ref function_declaration, param_names, ref generics) => { visitor.visit_generics(generics); visitor.visit_fn_decl(function_declaration); for ¶m_name in param_names { visitor.visit_ident(param_name); } } ForeignItemKind::Static(ref typ, _) => visitor.visit_ty(typ), ForeignItemKind::Type => (), } } pub fn walk_param_bound<'v, V: Visitor<'v>>(visitor: &mut V, bound: &'v GenericBound<'v>) { match *bound { GenericBound::Trait(ref typ, modifier) => { visitor.visit_poly_trait_ref(typ, modifier); } GenericBound::LangItemTrait(_, span, hir_id, args) => { visitor.visit_id(hir_id); visitor.visit_generic_args(span, args); } GenericBound::Outlives(ref lifetime) => visitor.visit_lifetime(lifetime), } } pub fn walk_generic_param<'v, V: Visitor<'v>>(visitor: &mut V, param: &'v GenericParam<'v>) { visitor.visit_id(param.hir_id); match param.name { ParamName::Plain(ident) => visitor.visit_ident(ident), ParamName::Error | ParamName::Fresh => {} } match param.kind { GenericParamKind::Lifetime { .. } => {} GenericParamKind::Type { ref default, .. } => walk_list!(visitor, visit_ty, default), GenericParamKind::Const { ref ty, ref default } => { visitor.visit_ty(ty); if let Some(ref default) = default { visitor.visit_const_param_default(param.hir_id, default); } } } } pub fn walk_const_param_default<'v, V: Visitor<'v>>(visitor: &mut V, ct: &'v AnonConst) { visitor.visit_anon_const(ct) } pub fn walk_generics<'v, V: Visitor<'v>>(visitor: &mut V, generics: &'v Generics<'v>) { walk_list!(visitor, visit_generic_param, generics.params); walk_list!(visitor, visit_where_predicate, generics.predicates); } pub fn walk_where_predicate<'v, V: Visitor<'v>>( visitor: &mut V, predicate: &'v WherePredicate<'v>, ) { match *predicate { WherePredicate::BoundPredicate(WhereBoundPredicate { ref bounded_ty, bounds, bound_generic_params, .. }) => { visitor.visit_ty(bounded_ty); walk_list!(visitor, visit_param_bound, bounds); walk_list!(visitor, visit_generic_param, bound_generic_params); } WherePredicate::RegionPredicate(WhereRegionPredicate { ref lifetime, bounds, .. }) => { visitor.visit_lifetime(lifetime); walk_list!(visitor, visit_param_bound, bounds); } WherePredicate::EqPredicate(WhereEqPredicate { hir_id, ref lhs_ty, ref rhs_ty, .. }) => { visitor.visit_id(hir_id); visitor.visit_ty(lhs_ty); visitor.visit_ty(rhs_ty); } } } pub fn walk_fn_ret_ty<'v, V: Visitor<'v>>(visitor: &mut V, ret_ty: &'v FnRetTy<'v>) { if let FnRetTy::Return(ref output_ty) = *ret_ty { visitor.visit_ty(output_ty) } } pub fn walk_fn_decl<'v, V: Visitor<'v>>(visitor: &mut V, function_declaration: &'v FnDecl<'v>) { for ty in function_declaration.inputs { visitor.visit_ty(ty) } walk_fn_ret_ty(visitor, &function_declaration.output) } pub fn walk_fn_kind<'v, V: Visitor<'v>>(visitor: &mut V, function_kind: FnKind<'v>) { match function_kind { FnKind::ItemFn(_, generics, ..) => { visitor.visit_generics(generics); } FnKind::Method(..) | FnKind::Closure => {} } } pub fn walk_fn<'v, V: Visitor<'v>>( visitor: &mut V, function_kind: FnKind<'v>, function_declaration: &'v FnDecl<'v>, body_id: BodyId, _span: Span, id: HirId, ) { visitor.visit_id(id); visitor.visit_fn_decl(function_declaration); walk_fn_kind(visitor, function_kind); visitor.visit_nested_body(body_id) } pub fn walk_trait_item<'v, V: Visitor<'v>>(visitor: &mut V, trait_item: &'v TraitItem<'v>) { visitor.visit_ident(trait_item.ident); visitor.visit_generics(&trait_item.generics); match trait_item.kind { TraitItemKind::Const(ref ty, default) => { visitor.visit_id(trait_item.hir_id()); visitor.visit_ty(ty); walk_list!(visitor, visit_nested_body, default); } TraitItemKind::Fn(ref sig, TraitFn::Required(param_names)) => { visitor.visit_id(trait_item.hir_id()); visitor.visit_fn_decl(&sig.decl); for ¶m_name in param_names { visitor.visit_ident(param_name); } } TraitItemKind::Fn(ref sig, TraitFn::Provided(body_id)) => { visitor.visit_fn( FnKind::Method(trait_item.ident, sig), &sig.decl, body_id, trait_item.span, trait_item.hir_id(), ); } TraitItemKind::Type(bounds, ref default) => { visitor.visit_id(trait_item.hir_id()); walk_list!(visitor, visit_param_bound, bounds); walk_list!(visitor, visit_ty, default); } } } pub fn walk_trait_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, trait_item_ref: &'v TraitItemRef) { // N.B., deliberately force a compilation error if/when new fields are added. let TraitItemRef { id, ident, ref kind, span: _, ref defaultness } = *trait_item_ref; visitor.visit_nested_trait_item(id); visitor.visit_ident(ident); visitor.visit_associated_item_kind(kind); visitor.visit_defaultness(defaultness); } pub fn walk_impl_item<'v, V: Visitor<'v>>(visitor: &mut V, impl_item: &'v ImplItem<'v>) { // N.B., deliberately force a compilation error if/when new fields are added. let ImplItem { def_id: _, ident, ref generics, ref kind, span: _, vis_span: _ } = *impl_item; visitor.visit_ident(ident); visitor.visit_generics(generics); match *kind { ImplItemKind::Const(ref ty, body) => { visitor.visit_id(impl_item.hir_id()); visitor.visit_ty(ty); visitor.visit_nested_body(body); } ImplItemKind::Fn(ref sig, body_id) => { visitor.visit_fn( FnKind::Method(impl_item.ident, sig), &sig.decl, body_id, impl_item.span, impl_item.hir_id(), ); } ImplItemKind::TyAlias(ref ty) => { visitor.visit_id(impl_item.hir_id()); visitor.visit_ty(ty); } } } pub fn walk_foreign_item_ref<'v, V: Visitor<'v>>( visitor: &mut V, foreign_item_ref: &'v ForeignItemRef, ) { // N.B., deliberately force a compilation error if/when new fields are added. let ForeignItemRef { id, ident, span: _ } = *foreign_item_ref; visitor.visit_nested_foreign_item(id); visitor.visit_ident(ident); } pub fn walk_impl_item_ref<'v, V: Visitor<'v>>(visitor: &mut V, impl_item_ref: &'v ImplItemRef) { // N.B., deliberately force a compilation error if/when new fields are added. let ImplItemRef { id, ident, ref kind, span: _, ref defaultness, trait_item_def_id: _ } = *impl_item_ref; visitor.visit_nested_impl_item(id); visitor.visit_ident(ident); visitor.visit_associated_item_kind(kind); visitor.visit_defaultness(defaultness); } pub fn walk_struct_def<'v, V: Visitor<'v>>( visitor: &mut V, struct_definition: &'v VariantData<'v>, ) { walk_list!(visitor, visit_id, struct_definition.ctor_hir_id()); walk_list!(visitor, visit_field_def, struct_definition.fields()); } pub fn walk_field_def<'v, V: Visitor<'v>>(visitor: &mut V, field: &'v FieldDef<'v>) { visitor.visit_id(field.hir_id); visitor.visit_ident(field.ident); visitor.visit_ty(&field.ty); } pub fn walk_block<'v, V: Visitor<'v>>(visitor: &mut V, block: &'v Block<'v>) { visitor.visit_id(block.hir_id); walk_list!(visitor, visit_stmt, block.stmts); walk_list!(visitor, visit_expr, &block.expr); } pub fn walk_stmt<'v, V: Visitor<'v>>(visitor: &mut V, statement: &'v Stmt<'v>) { visitor.visit_id(statement.hir_id); match statement.kind { StmtKind::Local(ref local) => visitor.visit_local(local), StmtKind::Item(item) => visitor.visit_nested_item(item), StmtKind::Expr(ref expression) | StmtKind::Semi(ref expression) => { visitor.visit_expr(expression) } } } pub fn walk_array_len<'v, V: Visitor<'v>>(visitor: &mut V, len: &'v ArrayLen) { match len { &ArrayLen::Infer(hir_id, _span) => visitor.visit_id(hir_id), ArrayLen::Body(c) => visitor.visit_anon_const(c), } } pub fn walk_anon_const<'v, V: Visitor<'v>>(visitor: &mut V, constant: &'v AnonConst) { visitor.visit_id(constant.hir_id); visitor.visit_nested_body(constant.body); } pub fn walk_let_expr<'v, V: Visitor<'v>>(visitor: &mut V, let_expr: &'v Let<'v>) { // match the visit order in walk_local visitor.visit_expr(let_expr.init); visitor.visit_id(let_expr.hir_id); visitor.visit_pat(let_expr.pat); walk_list!(visitor, visit_ty, let_expr.ty); } pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr<'v>) { visitor.visit_id(expression.hir_id); match expression.kind { ExprKind::Box(ref subexpression) => visitor.visit_expr(subexpression), ExprKind::Array(subexpressions) => { walk_list!(visitor, visit_expr, subexpressions); } ExprKind::ConstBlock(ref anon_const) => visitor.visit_anon_const(anon_const), ExprKind::Repeat(ref element, ref count) => { visitor.visit_expr(element); visitor.visit_array_length(count) } ExprKind::Struct(ref qpath, fields, ref optional_base) => { visitor.visit_qpath(qpath, expression.hir_id, expression.span); for field in fields { visitor.visit_id(field.hir_id); visitor.visit_ident(field.ident); visitor.visit_expr(&field.expr) } walk_list!(visitor, visit_expr, optional_base); } ExprKind::Tup(subexpressions) => { walk_list!(visitor, visit_expr, subexpressions); } ExprKind::Call(ref callee_expression, arguments) => { visitor.visit_expr(callee_expression); walk_list!(visitor, visit_expr, arguments); } ExprKind::MethodCall(ref segment, arguments, _) => { visitor.visit_path_segment(expression.span, segment); walk_list!(visitor, visit_expr, arguments); } ExprKind::Binary(_, ref left_expression, ref right_expression) => { visitor.visit_expr(left_expression); visitor.visit_expr(right_expression) } ExprKind::AddrOf(_, _, ref subexpression) | ExprKind::Unary(_, ref subexpression) => { visitor.visit_expr(subexpression) } ExprKind::Cast(ref subexpression, ref typ) | ExprKind::Type(ref subexpression, ref typ) => { visitor.visit_expr(subexpression); visitor.visit_ty(typ) } ExprKind::DropTemps(ref subexpression) => { visitor.visit_expr(subexpression); } ExprKind::Let(ref let_expr) => visitor.visit_let_expr(let_expr), ExprKind::If(ref cond, ref then, ref else_opt) => { visitor.visit_expr(cond); visitor.visit_expr(then); walk_list!(visitor, visit_expr, else_opt); } ExprKind::Loop(ref block, ref opt_label, _, _) => { walk_list!(visitor, visit_label, opt_label); visitor.visit_block(block); } ExprKind::Match(ref subexpression, arms, _) => { visitor.visit_expr(subexpression); walk_list!(visitor, visit_arm, arms); } ExprKind::Closure { bound_generic_params, ref fn_decl, body, capture_clause: _, fn_decl_span: _, movability: _, } => { walk_list!(visitor, visit_generic_param, bound_generic_params); visitor.visit_fn(FnKind::Closure, fn_decl, body, expression.span, expression.hir_id) } ExprKind::Block(ref block, ref opt_label) => { walk_list!(visitor, visit_label, opt_label); visitor.visit_block(block); } ExprKind::Assign(ref lhs, ref rhs, _) => { visitor.visit_expr(rhs); visitor.visit_expr(lhs) } ExprKind::AssignOp(_, ref left_expression, ref right_expression) => { visitor.visit_expr(right_expression); visitor.visit_expr(left_expression); } ExprKind::Field(ref subexpression, ident) => { visitor.visit_expr(subexpression); visitor.visit_ident(ident); } ExprKind::Index(ref main_expression, ref index_expression) => { visitor.visit_expr(main_expression); visitor.visit_expr(index_expression) } ExprKind::Path(ref qpath) => { visitor.visit_qpath(qpath, expression.hir_id, expression.span); } ExprKind::Break(ref destination, ref opt_expr) => { walk_list!(visitor, visit_label, &destination.label); walk_list!(visitor, visit_expr, opt_expr); } ExprKind::Continue(ref destination) => { walk_list!(visitor, visit_label, &destination.label); } ExprKind::Ret(ref optional_expression) => { walk_list!(visitor, visit_expr, optional_expression); } ExprKind::InlineAsm(ref asm) => { visitor.visit_inline_asm(asm, expression.hir_id); } ExprKind::Yield(ref subexpression, _) => { visitor.visit_expr(subexpression); } ExprKind::Lit(_) | ExprKind::Err => {} } } pub fn walk_arm<'v, V: Visitor<'v>>(visitor: &mut V, arm: &'v Arm<'v>) { visitor.visit_id(arm.hir_id); visitor.visit_pat(&arm.pat); if let Some(ref g) = arm.guard { match g { Guard::If(ref e) => visitor.visit_expr(e), Guard::IfLet(ref l) => { visitor.visit_let_expr(l); } } } visitor.visit_expr(&arm.body); } pub fn walk_associated_item_kind<'v, V: Visitor<'v>>(_: &mut V, _: &'v AssocItemKind) { // No visitable content here: this fn exists so you can call it if // the right thing to do, should content be added in the future, // would be to walk it. } pub fn walk_defaultness<'v, V: Visitor<'v>>(_: &mut V, _: &'v Defaultness) { // No visitable content here: this fn exists so you can call it if // the right thing to do, should content be added in the future, // would be to walk it. }