use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::macros::macro_backtrace; use clippy_utils::source::snippet_opt; use clippy_utils::ty::expr_sig; use clippy_utils::{is_default_equivalent, path_def_id}; use rustc_errors::Applicability; use rustc_hir::def::Res; use rustc_hir::intravisit::{walk_ty, Visitor}; use rustc_hir::{Block, Expr, ExprKind, LetStmt, Node, QPath, Ty, TyKind}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_middle::ty::print::with_forced_trimmed_paths; use rustc_middle::ty::IsSuggestable; use rustc_session::declare_lint_pass; use rustc_span::sym; declare_clippy_lint! { /// ### What it does /// checks for `Box::new(T::default())`, which is better written as /// `Box::::default()`. /// /// ### Why is this bad? /// First, it's more complex, involving two calls instead of one. /// Second, `Box::default()` can be faster /// [in certain cases](https://nnethercote.github.io/perf-book/standard-library-types.html#box). /// /// ### Example /// ```no_run /// let x: Box = Box::new(Default::default()); /// ``` /// Use instead: /// ```no_run /// let x: Box = Box::default(); /// ``` #[clippy::version = "1.66.0"] pub BOX_DEFAULT, perf, "Using Box::new(T::default()) instead of Box::default()" } declare_lint_pass!(BoxDefault => [BOX_DEFAULT]); impl LateLintPass<'_> for BoxDefault { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) { // If the expression is a call (`Box::new(...)`) if let ExprKind::Call(box_new, [arg]) = expr.kind // And call is of the form `::something` // Here, it would be `::new` && let ExprKind::Path(QPath::TypeRelative(ty, seg)) = box_new.kind // And that method is `new` && seg.ident.name == sym::new // And the call is that of a `Box` method && path_def_id(cx, ty).map_or(false, |id| Some(id) == cx.tcx.lang_items().owned_box()) // And the single argument to the call is another function call // This is the `T::default()` of `Box::new(T::default())` && let ExprKind::Call(arg_path, inner_call_args) = arg.kind // And we are not in a foreign crate's macro && !in_external_macro(cx.sess(), expr.span) // And the argument expression has the same context as the outer call expression // or that we are inside a `vec!` macro expansion && (expr.span.eq_ctxt(arg.span) || is_local_vec_expn(cx, arg, expr)) // And the argument is equivalent to `Default::default()` && is_default_equivalent(cx, arg) { span_lint_and_sugg( cx, BOX_DEFAULT, expr.span, "`Box::new(_)` of default value", "try", if is_plain_default(cx, arg_path) || given_type(cx, expr) { "Box::default()".into() } else if let Some(arg_ty) = cx.typeck_results().expr_ty(arg).make_suggestable(cx.tcx, true, None) { // Check if we can copy from the source expression in the replacement. // We need the call to have no argument (see `explicit_default_type`). if inner_call_args.is_empty() && let Some(ty) = explicit_default_type(arg_path) && let Some(s) = snippet_opt(cx, ty.span) { format!("Box::<{s}>::default()") } else { // Otherwise, use the inferred type's formatting. with_forced_trimmed_paths!(format!("Box::<{arg_ty}>::default()")) } } else { return; }, Applicability::MachineApplicable, ); } } } fn is_plain_default(cx: &LateContext<'_>, arg_path: &Expr<'_>) -> bool { // we need to match the actual path so we don't match e.g. "u8::default" if let ExprKind::Path(QPath::Resolved(None, path)) = &arg_path.kind && let Res::Def(_, def_id) = path.res { // avoid generic parameters cx.tcx.is_diagnostic_item(sym::default_fn, def_id) && path.segments.iter().all(|seg| seg.args.is_none()) } else { false } } // Checks whether the call is of the form `A::B::f()`. Returns `A::B` if it is. // // In the event we have this kind of construct, it's easy to use `A::B` as a replacement in the // quickfix. `f` must however have no parameter. Should `f` have some, then some of the type of // `A::B` may be inferred from the arguments. This would be the case for `Vec::from([0; false])`, // where the argument to `from` allows inferring this is a `Vec` fn explicit_default_type<'a>(arg_path: &'a Expr<'_>) -> Option<&'a Ty<'a>> { if let ExprKind::Path(QPath::TypeRelative(ty, _)) = &arg_path.kind { Some(ty) } else { None } } fn is_local_vec_expn(cx: &LateContext<'_>, expr: &Expr<'_>, ref_expr: &Expr<'_>) -> bool { macro_backtrace(expr.span).next().map_or(false, |call| { cx.tcx.is_diagnostic_item(sym::vec_macro, call.def_id) && call.span.eq_ctxt(ref_expr.span) }) } #[derive(Default)] struct InferVisitor(bool); impl<'tcx> Visitor<'tcx> for InferVisitor { fn visit_ty(&mut self, t: &rustc_hir::Ty<'_>) { self.0 |= matches!(t.kind, TyKind::Infer | TyKind::OpaqueDef(..) | TyKind::TraitObject(..)); if !self.0 { walk_ty(self, t); } } } fn given_type(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { match cx.tcx.parent_hir_node(expr.hir_id) { Node::LetStmt(LetStmt { ty: Some(ty), .. }) => { let mut v = InferVisitor::default(); v.visit_ty(ty); !v.0 }, Node::Expr(Expr { kind: ExprKind::Call(path, args), .. }) | Node::Block(Block { expr: Some(Expr { kind: ExprKind::Call(path, args), .. }), .. }) => { if let Some(index) = args.iter().position(|arg| arg.hir_id == expr.hir_id) && let Some(sig) = expr_sig(cx, path) && let Some(input) = sig.input(index) && !cx.typeck_results().expr_ty_adjusted(expr).boxed_ty().is_trait() { input.no_bound_vars().is_some() } else { false } }, _ => false, } }