// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A pass that checks to make sure private fields and methods aren't used //! outside their scopes. This pass will also generate a set of exported items //! which are available for use externally when compiled as a library. use std::hashmap::{HashSet, HashMap}; use std::util; use middle::resolve; use middle::ty; use middle::typeck::{method_map, method_origin, method_param}; use middle::typeck::{method_static, method_object}; use syntax::ast; use syntax::ast_map; use syntax::ast_util::{is_local, def_id_of_def, local_def}; use syntax::attr; use syntax::codemap::Span; use syntax::parse::token; use syntax::opt_vec; use syntax::visit; use syntax::visit::Visitor; type Context<'a> = (&'a method_map, &'a resolve::ExportMap2); /// A set of AST nodes exported by the crate. pub type ExportedItems = HashSet; //////////////////////////////////////////////////////////////////////////////// /// The parent visitor, used to determine what's the parent of what (node-wise) //////////////////////////////////////////////////////////////////////////////// struct ParentVisitor { parents: HashMap, curparent: ast::NodeId, } impl Visitor<()> for ParentVisitor { fn visit_item(&mut self, item: &ast::item, _: ()) { self.parents.insert(item.id, self.curparent); let prev = self.curparent; match item.node { ast::item_mod(..) => { self.curparent = item.id; } // Enum variants are parented to the enum definition itself beacuse // they inherit privacy ast::item_enum(ref def, _) => { for variant in def.variants.iter() { // If variants are private, then their logical "parent" is // the enclosing module because everyone in the enclosing // module can still use the private variant if variant.node.vis == ast::private { self.parents.insert(variant.node.id, self.curparent); // Otherwise, if the variant is public, then the parent is // considered the enclosing enum because the enum will // dictate the privacy visibility of this variant instead. } else { self.parents.insert(variant.node.id, item.id); } } } // Trait methods are always considered "public", but if the trait is // private then we need some private item in the chain from the // method to the root. In this case, if the trait is private, then // parent all the methods to the trait to indicate that they're // private. ast::item_trait(_, _, ref methods) if item.vis != ast::public => { for m in methods.iter() { match *m { ast::provided(ref m) => self.parents.insert(m.id, item.id), ast::required(ref m) => self.parents.insert(m.id, item.id), }; } } _ => {} } visit::walk_item(self, item, ()); self.curparent = prev; } fn visit_foreign_item(&mut self, a: &ast::foreign_item, _: ()) { self.parents.insert(a.id, self.curparent); visit::walk_foreign_item(self, a, ()); } fn visit_fn(&mut self, a: &visit::fn_kind, b: &ast::fn_decl, c: &ast::Block, d: Span, id: ast::NodeId, _: ()) { // We already took care of some trait methods above, otherwise things // like impl methods and pub trait methods are parented to the // containing module, not the containing trait. if !self.parents.contains_key(&id) { self.parents.insert(id, self.curparent); } visit::walk_fn(self, a, b, c, d, id, ()); } fn visit_struct_def(&mut self, s: &ast::struct_def, i: ast::Ident, g: &ast::Generics, n: ast::NodeId, _: ()) { // Struct constructors are parented to their struct definitions because // they essentially are the struct definitions. match s.ctor_id { Some(id) => { self.parents.insert(id, n); } None => {} } // While we have the id of the struct definition, go ahead and parent // all the fields. for field in s.fields.iter() { let vis = match field.node.kind { ast::named_field(_, vis) => vis, ast::unnamed_field => continue }; // Private fields are scoped to this module, so parent them directly // to the module instead of the struct. This is similar to the case // of private enum variants. if vis == ast::private { self.parents.insert(field.node.id, self.curparent); // Otherwise public fields are scoped to the visibility of the // struct itself } else { self.parents.insert(field.node.id, n); } } visit::walk_struct_def(self, s, i, g, n, ()) } } //////////////////////////////////////////////////////////////////////////////// /// The embargo visitor, used to determine the exports of the ast //////////////////////////////////////////////////////////////////////////////// struct EmbargoVisitor<'a> { tcx: ty::ctxt, exp_map2: &'a resolve::ExportMap2, // This flag is an indicator of whether the previous item in the // hierarchical chain was exported or not. This is the indicator of whether // children should be exported as well. Note that this can flip from false // to true if a reexported module is entered (or an action similar). prev_exported: bool, // This is a list of all exported items in the AST. An exported item is any // function/method/item which is usable by external crates. This essentially // means that the result is "public all the way down", but the "path down" // may jump across private boundaries through reexport statements. exported_items: ExportedItems, // This sets contains all the destination nodes which are publicly // re-exported. This is *not* a set of all reexported nodes, only a set of // all nodes which are reexported *and* reachable from external crates. This // means that the destination of the reexport is exported, and hence the // destination must also be exported. reexports: HashSet, } impl<'a> EmbargoVisitor<'a> { // There are checks inside of privacy which depend on knowing whether a // trait should be exported or not. The two current consumers of this are: // // 1. Should default methods of a trait be exported? // 2. Should the methods of an implementation of a trait be exported? // // The answer to both of these questions partly rely on whether the trait // itself is exported or not. If the trait is somehow exported, then the // answers to both questions must be yes. Right now this question involves // more analysis than is currently done in rustc, so we conservatively // answer "yes" so that all traits need to be exported. fn exported_trait(&self, _id: ast::NodeId) -> bool { true } } impl<'a> Visitor<()> for EmbargoVisitor<'a> { fn visit_item(&mut self, item: &ast::item, _: ()) { let orig_all_pub = self.prev_exported; match item.node { // impls/extern blocks do not break the "public chain" because they // cannot have visibility qualifiers on them anyway ast::item_impl(..) | ast::item_foreign_mod(..) => {} // Traits are a little special in that even if they themselves are // not public they may still be exported. ast::item_trait(..) => { self.prev_exported = self.exported_trait(item.id); } // Private by default, hence we only retain the "public chain" if // `pub` is explicitly listed. _ => { self.prev_exported = (orig_all_pub && item.vis == ast::public) || self.reexports.contains(&item.id); } } let public_first = self.prev_exported && self.exported_items.insert(item.id); match item.node { // Enum variants inherit from their parent, so if the enum is // public all variants are public unless they're explicitly priv ast::item_enum(ref def, _) if public_first => { for variant in def.variants.iter() { if variant.node.vis != ast::private { self.exported_items.insert(variant.node.id); } } } // Implementations are a little tricky to determine what's exported // out of them. Here's a few cases which are currently defined: // // * Impls for private types do not need to export their methods // (either public or private methods) // // * Impls for public types only have public methods exported // // * Public trait impls for public types must have all methods // exported. // // * Private trait impls for public types can be ignored // // * Public trait impls for private types have their methods // exported. I'm not entirely certain that this is the correct // thing to do, but I have seen use cases of where this will cause // undefined symbols at linkage time if this case is not handled. // // * Private trait impls for private types can be completely ignored ast::item_impl(_, _, ref ty, ref methods) => { let public_ty = match ty.node { ast::ty_path(_, _, id) => { let def_map = self.tcx.def_map.borrow(); match def_map.get().get_copy(&id) { ast::DefPrimTy(..) => true, def => { let did = def_id_of_def(def); !is_local(did) || self.exported_items.contains(&did.node) } } } _ => true, }; let tr = ty::impl_trait_ref(self.tcx, local_def(item.id)); let public_trait = tr.map_default(false, |tr| { !is_local(tr.def_id) || self.exported_items.contains(&tr.def_id.node) }); if public_ty || public_trait { for method in methods.iter() { let meth_public = match method.explicit_self.node { ast::sty_static => public_ty, _ => true, } && method.vis == ast::public; if meth_public || tr.is_some() { self.exported_items.insert(method.id); } } } } // Default methods on traits are all public so long as the trait // is public ast::item_trait(_, _, ref methods) if public_first => { for method in methods.iter() { match *method { ast::provided(ref m) => { debug!("provided {}", m.id); self.exported_items.insert(m.id); } ast::required(ref m) => { debug!("required {}", m.id); self.exported_items.insert(m.id); } } } } // Struct constructors are public if the struct is all public. ast::item_struct(ref def, _) if public_first => { match def.ctor_id { Some(id) => { self.exported_items.insert(id); } None => {} } } _ => {} } visit::walk_item(self, item, ()); self.prev_exported = orig_all_pub; } fn visit_foreign_item(&mut self, a: &ast::foreign_item, _: ()) { if self.prev_exported && a.vis == ast::public { self.exported_items.insert(a.id); } } fn visit_mod(&mut self, m: &ast::_mod, _sp: Span, id: ast::NodeId, _: ()) { // This code is here instead of in visit_item so that the // crate module gets processed as well. if self.prev_exported { let exp_map2 = self.exp_map2.borrow(); assert!(exp_map2.get().contains_key(&id), "wut {:?}", id); for export in exp_map2.get().get(&id).iter() { if is_local(export.def_id) && export.reexport { self.reexports.insert(export.def_id.node); } } } visit::walk_mod(self, m, ()) } } //////////////////////////////////////////////////////////////////////////////// /// The privacy visitor, where privacy checks take place (violations reported) //////////////////////////////////////////////////////////////////////////////// struct PrivacyVisitor<'a> { tcx: ty::ctxt, curitem: ast::NodeId, in_fn: bool, in_foreign: bool, method_map: &'a method_map, parents: HashMap, external_exports: resolve::ExternalExports, last_private_map: resolve::LastPrivateMap, } enum PrivacyResult { Allowable, ExternallyDenied, DisallowedBy(ast::NodeId), } impl<'a> PrivacyVisitor<'a> { // used when debugging fn nodestr(&self, id: ast::NodeId) -> ~str { ast_map::node_id_to_str(self.tcx.items, id, token::get_ident_interner()) } // Determines whether the given definition is public from the point of view // of the current item. fn def_privacy(&self, did: ast::DefId) -> PrivacyResult { if !is_local(did) { if self.external_exports.contains(&did) { debug!("privacy - {:?} was externally exported", did); return Allowable; } debug!("privacy - is {:?} a public method", did); let methods = self.tcx.methods.borrow(); return match methods.get().find(&did) { Some(meth) => { debug!("privacy - well at least it's a method: {:?}", meth); match meth.container { ty::TraitContainer(id) => { debug!("privacy - recursing on trait {:?}", id); self.def_privacy(id) } ty::ImplContainer(id) => { match ty::impl_trait_ref(self.tcx, id) { Some(t) => { debug!("privacy - impl of trait {:?}", id); self.def_privacy(t.def_id) } None => { debug!("privacy - found a method {:?}", meth.vis); if meth.vis == ast::public { Allowable } else { ExternallyDenied } } } } } } None => { debug!("privacy - nope, not even a method"); ExternallyDenied } }; } debug!("privacy - local {:?} not public all the way down", did); // return quickly for things in the same module if self.parents.find(&did.node) == self.parents.find(&self.curitem) { debug!("privacy - same parent, we're done here"); return Allowable; } // We now know that there is at least one private member between the // destination and the root. let mut closest_private_id = did.node; loop { debug!("privacy - examining {}", self.nodestr(closest_private_id)); let items = self.tcx.items.borrow(); let vis = match items.get().find(&closest_private_id) { // If this item is a method, then we know for sure that it's an // actual method and not a static method. The reason for this is // that these cases are only hit in the ExprMethodCall // expression, and ExprCall will have its path checked later // (the path of the trait/impl) if it's a static method. // // With this information, then we can completely ignore all // trait methods. The privacy violation would be if the trait // couldn't get imported, not if the method couldn't be used // (all trait methods are public). // // However, if this is an impl method, then we dictate this // decision solely based on the privacy of the method // invocation. // FIXME(#10573) is this the right behavior? Why not consider // where the method was defined? Some(&ast_map::node_method(ref m, imp, _)) => { match ty::impl_trait_ref(self.tcx, imp) { Some(..) => return Allowable, _ if m.vis == ast::public => return Allowable, _ => m.vis } } Some(&ast_map::node_trait_method(..)) => { return Allowable; } // This is not a method call, extract the visibility as one // would normally look at it Some(&ast_map::node_item(it, _)) => it.vis, Some(&ast_map::node_foreign_item(_, _, v, _)) => v, Some(&ast_map::node_variant(ref v, _, _)) => { // sadly enum variants still inherit visibility, so only // break out of this is explicitly private if v.node.vis == ast::private { break } ast::public // need to move up a level (to the enum) } _ => ast::public, }; if vis != ast::public { break } // if we've reached the root, then everything was allowable and this // access is public. if closest_private_id == ast::CRATE_NODE_ID { return Allowable } closest_private_id = *self.parents.get(&closest_private_id); // If we reached the top, then we were public all the way down and // we can allow this access. if closest_private_id == ast::DUMMY_NODE_ID { return Allowable } } debug!("privacy - closest priv {}", self.nodestr(closest_private_id)); if self.private_accessible(closest_private_id) { Allowable } else { DisallowedBy(closest_private_id) } } /// For a local private node in the AST, this function will determine /// whether the node is accessible by the current module that iteration is /// inside. fn private_accessible(&self, id: ast::NodeId) -> bool { let parent = *self.parents.get(&id); debug!("privacy - accessible parent {}", self.nodestr(parent)); // After finding `did`'s closest private member, we roll ourselves back // to see if this private member's parent is anywhere in our ancestry. // By the privacy rules, we can access all of our ancestor's private // members, so that's why we test the parent, and not the did itself. let mut cur = self.curitem; loop { debug!("privacy - questioning {}", self.nodestr(cur)); match cur { // If the relevant parent is in our history, then we're allowed // to look inside any of our ancestor's immediate private items, // so this access is valid. x if x == parent => return true, // If we've reached the root, then we couldn't access this item // in the first place ast::DUMMY_NODE_ID => return false, // Keep going up _ => {} } cur = *self.parents.get(&cur); } } /// Guarantee that a particular definition is public, possibly emitting an /// error message if it's not. fn ensure_public(&self, span: Span, to_check: ast::DefId, source_did: Option, msg: &str) -> bool { match self.def_privacy(to_check) { ExternallyDenied => { self.tcx.sess.span_err(span, format!("{} is private", msg)) } DisallowedBy(id) => { if id == source_did.unwrap_or(to_check).node { self.tcx.sess.span_err(span, format!("{} is private", msg)); return false; } else { self.tcx.sess.span_err(span, format!("{} is inaccessible", msg)); } let items = self.tcx.items.borrow(); match items.get().find(&id) { Some(&ast_map::node_item(item, _)) => { let desc = match item.node { ast::item_mod(..) => "module", ast::item_trait(..) => "trait", _ => return false, }; let msg = format!("{} `{}` is private", desc, token::ident_to_str(&item.ident)); self.tcx.sess.span_note(span, msg); } Some(..) | None => {} } } Allowable => return true } return false; } // Checks that a field is in scope. // FIXME #6993: change type (and name) from Ident to Name fn check_field(&mut self, span: Span, id: ast::DefId, ident: ast::Ident) { let fields = ty::lookup_struct_fields(self.tcx, id); for field in fields.iter() { if field.name != ident.name { continue; } // public fields are public everywhere if field.vis != ast::private { break } if !is_local(field.id) || !self.private_accessible(field.id.node) { self.tcx.sess.span_err(span, format!("field `{}` is private", token::ident_to_str(&ident))); } break; } } // Given the ID of a method, checks to ensure it's in scope. fn check_static_method(&mut self, span: Span, method_id: ast::DefId, name: &ast::Ident) { // If the method is a default method, we need to use the def_id of // the default implementation. let method_id = ty::method(self.tcx, method_id).provided_source .unwrap_or(method_id); self.ensure_public(span, method_id, None, format!("method `{}`", token::ident_to_str(name))); } // Checks that a path is in scope. fn check_path(&mut self, span: Span, path_id: ast::NodeId, path: &ast::Path) { debug!("privacy - path {}", self.nodestr(path_id)); let def_map = self.tcx.def_map.borrow(); let def = def_map.get().get_copy(&path_id); let ck = |tyname: &str| { let origdid = def_id_of_def(def); match *self.last_private_map.get(&path_id) { resolve::AllPublic => {}, resolve::DependsOn(def) => { let name = token::ident_to_str(&path.segments.last() .identifier); self.ensure_public(span, def, Some(origdid), format!("{} `{}`", tyname, name)); } } }; let def_map = self.tcx.def_map.borrow(); match def_map.get().get_copy(&path_id) { ast::DefStaticMethod(..) => ck("static method"), ast::DefFn(..) => ck("function"), ast::DefStatic(..) => ck("static"), ast::DefVariant(..) => ck("variant"), ast::DefTy(..) => ck("type"), ast::DefTrait(..) => ck("trait"), ast::DefStruct(..) => ck("struct"), ast::DefMethod(_, Some(..)) => ck("trait method"), ast::DefMethod(..) => ck("method"), ast::DefMod(..) => ck("module"), _ => {} } } // Checks that a method is in scope. fn check_method(&mut self, span: Span, origin: &method_origin, ident: ast::Ident) { match *origin { method_static(method_id) => { self.check_static_method(span, method_id, &ident) } // Trait methods are always all public. The only controlling factor // is whether the trait itself is accessible or not. method_param(method_param { trait_id: trait_id, .. }) | method_object(method_object { trait_id: trait_id, .. }) => { self.ensure_public(span, trait_id, None, "source trait"); } } } } impl<'a> Visitor<()> for PrivacyVisitor<'a> { fn visit_item(&mut self, item: &ast::item, _: ()) { // Do not check privacy inside items with the resolve_unexported // attribute. This is used for the test runner. if attr::contains_name(item.attrs, "!resolve_unexported") { return; } let orig_curitem = util::replace(&mut self.curitem, item.id); visit::walk_item(self, item, ()); self.curitem = orig_curitem; } fn visit_expr(&mut self, expr: &ast::Expr, _: ()) { match expr.node { ast::ExprField(base, ident, _) => { // Method calls are now a special syntactic form, // so `a.b` should always be a field. let method_map = self.method_map.borrow(); assert!(!method_map.get().contains_key(&expr.id)); // With type_autoderef, make sure we don't // allow pointers to violate privacy let t = ty::type_autoderef(ty::expr_ty(self.tcx, base)); match ty::get(t).sty { ty::ty_struct(id, _) => { self.check_field(expr.span, id, ident); } _ => {} } } ast::ExprMethodCall(_, base, ident, _, _, _) => { // see above let t = ty::type_autoderef(ty::expr_ty(self.tcx, base)); match ty::get(t).sty { ty::ty_enum(_, _) | ty::ty_struct(_, _) => { let method_map = self.method_map.borrow(); let entry = match method_map.get().find(&expr.id) { None => { self.tcx.sess.span_bug(expr.span, "method call not in \ method map"); } Some(entry) => entry }; debug!("(privacy checking) checking impl method"); self.check_method(expr.span, &entry.origin, ident); } _ => {} } } ast::ExprStruct(_, ref fields, _) => { match ty::get(ty::expr_ty(self.tcx, expr)).sty { ty::ty_struct(id, _) => { for field in (*fields).iter() { self.check_field(expr.span, id, field.ident.node); } } ty::ty_enum(_, _) => { let def_map = self.tcx.def_map.borrow(); match def_map.get().get_copy(&expr.id) { ast::DefVariant(_, variant_id, _) => { for field in fields.iter() { self.check_field(expr.span, variant_id, field.ident.node); } } _ => self.tcx.sess.span_bug(expr.span, "resolve didn't \ map enum struct \ constructor to a \ variant def"), } } _ => self.tcx.sess.span_bug(expr.span, "struct expr \ didn't have \ struct type?!"), } } _ => {} } visit::walk_expr(self, expr, ()); } fn visit_view_item(&mut self, a: &ast::view_item, _: ()) { match a.node { ast::view_item_extern_mod(..) => {} ast::view_item_use(ref uses) => { for vpath in uses.iter() { match vpath.node { ast::view_path_simple(..) | ast::view_path_glob(..) => {} ast::view_path_list(_, ref list, _) => { for pid in list.iter() { debug!("privacy - list {}", pid.node.id); let seg = ast::PathSegment { identifier: pid.node.name, lifetimes: opt_vec::Empty, types: opt_vec::Empty, }; let segs = ~[seg]; let path = ast::Path { global: false, span: pid.span, segments: segs, }; self.check_path(pid.span, pid.node.id, &path); } } } } } } visit::walk_view_item(self, a, ()); } fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) { // Foreign functions do not have their patterns mapped in the def_map, // and there's nothing really relevant there anyway, so don't bother // checking privacy. If you can name the type then you can pass it to an // external C function anyway. if self.in_foreign { return } match pattern.node { ast::PatStruct(_, ref fields, _) => { match ty::get(ty::pat_ty(self.tcx, pattern)).sty { ty::ty_struct(id, _) => { for field in fields.iter() { self.check_field(pattern.span, id, field.ident); } } ty::ty_enum(_, _) => { let def_map = self.tcx.def_map.borrow(); match def_map.get().find(&pattern.id) { Some(&ast::DefVariant(_, variant_id, _)) => { for field in fields.iter() { self.check_field(pattern.span, variant_id, field.ident); } } _ => self.tcx.sess.span_bug(pattern.span, "resolve didn't \ map enum struct \ pattern to a \ variant def"), } } _ => self.tcx.sess.span_bug(pattern.span, "struct pattern didn't have \ struct type?!"), } } _ => {} } visit::walk_pat(self, pattern, ()); } fn visit_foreign_item(&mut self, fi: &ast::foreign_item, _: ()) { self.in_foreign = true; visit::walk_foreign_item(self, fi, ()); self.in_foreign = false; } fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId, _: ()) { self.check_path(path.span, id, path); visit::walk_path(self, path, ()); } } //////////////////////////////////////////////////////////////////////////////// /// The privacy sanity check visitor, ensures unnecessary visibility isn't here //////////////////////////////////////////////////////////////////////////////// struct SanePrivacyVisitor { tcx: ty::ctxt, in_fn: bool, } impl Visitor<()> for SanePrivacyVisitor { fn visit_item(&mut self, item: &ast::item, _: ()) { if self.in_fn { self.check_all_inherited(item); } else { self.check_sane_privacy(item); } let orig_in_fn = util::replace(&mut self.in_fn, match item.node { ast::item_mod(..) => false, // modules turn privacy back on _ => self.in_fn, // otherwise we inherit }); visit::walk_item(self, item, ()); self.in_fn = orig_in_fn; } fn visit_fn(&mut self, fk: &visit::fn_kind, fd: &ast::fn_decl, b: &ast::Block, s: Span, n: ast::NodeId, _: ()) { // This catches both functions and methods let orig_in_fn = util::replace(&mut self.in_fn, true); visit::walk_fn(self, fk, fd, b, s, n, ()); self.in_fn = orig_in_fn; } } impl SanePrivacyVisitor { /// Validates all of the visibility qualifers placed on the item given. This /// ensures that there are no extraneous qualifiers that don't actually do /// anything. In theory these qualifiers wouldn't parse, but that may happen /// later on down the road... fn check_sane_privacy(&self, item: &ast::item) { let tcx = self.tcx; let check_inherited = |sp: Span, vis: ast::visibility, note: &str| { if vis != ast::inherited { tcx.sess.span_err(sp, "unnecessary visibility qualifier"); if note.len() > 0 { tcx.sess.span_note(sp, note); } } }; let check_not_priv = |sp: Span, vis: ast::visibility, note: &str| { if vis == ast::private { tcx.sess.span_err(sp, "unnecessary `priv` qualifier"); if note.len() > 0 { tcx.sess.span_note(sp, note); } } }; let check_struct = |def: &@ast::struct_def| { for f in def.fields.iter() { match f.node.kind { ast::named_field(_, ast::public) => { tcx.sess.span_err(f.span, "unnecessary `pub` \ visibility"); } ast::named_field(_, ast::private) => { // Fields should really be private by default... } ast::named_field(..) | ast::unnamed_field => {} } } }; match item.node { // implementations of traits don't need visibility qualifiers because // that's controlled by having the trait in scope. ast::item_impl(_, Some(..), _, ref methods) => { check_inherited(item.span, item.vis, "visibility qualifiers have no effect on trait \ impls"); for m in methods.iter() { check_inherited(m.span, m.vis, ""); } } ast::item_impl(_, _, _, ref methods) => { check_inherited(item.span, item.vis, "place qualifiers on individual methods instead"); for i in methods.iter() { check_not_priv(i.span, i.vis, "functions are private by \ default"); } } ast::item_foreign_mod(ref fm) => { check_inherited(item.span, item.vis, "place qualifiers on individual functions \ instead"); for i in fm.items.iter() { check_not_priv(i.span, i.vis, "functions are private by \ default"); } } ast::item_enum(ref def, _) => { for v in def.variants.iter() { match v.node.vis { ast::public => { if item.vis == ast::public { tcx.sess.span_err(v.span, "unnecessary `pub` \ visibility"); } } ast::private => { if item.vis != ast::public { tcx.sess.span_err(v.span, "unnecessary `priv` \ visibility"); } } ast::inherited => {} } match v.node.kind { ast::struct_variant_kind(ref s) => check_struct(s), ast::tuple_variant_kind(..) => {} } } } ast::item_struct(ref def, _) => check_struct(def), ast::item_trait(_, _, ref methods) => { for m in methods.iter() { match *m { ast::provided(ref m) => { check_inherited(m.span, m.vis, "unnecessary visibility"); } ast::required(..) => {} } } } ast::item_static(..) | ast::item_fn(..) | ast::item_mod(..) | ast::item_ty(..) | ast::item_mac(..) => { check_not_priv(item.span, item.vis, "items are private by \ default"); } } } /// When inside of something like a function or a method, visibility has no /// control over anything so this forbids any mention of any visibility fn check_all_inherited(&self, item: &ast::item) { let tcx = self.tcx; let check_inherited = |sp: Span, vis: ast::visibility| { if vis != ast::inherited { tcx.sess.span_err(sp, "visibility has no effect inside functions"); } }; let check_struct = |def: &@ast::struct_def| { for f in def.fields.iter() { match f.node.kind { ast::named_field(_, p) => check_inherited(f.span, p), ast::unnamed_field => {} } } }; check_inherited(item.span, item.vis); match item.node { ast::item_impl(_, _, _, ref methods) => { for m in methods.iter() { check_inherited(m.span, m.vis); } } ast::item_foreign_mod(ref fm) => { for i in fm.items.iter() { check_inherited(i.span, i.vis); } } ast::item_enum(ref def, _) => { for v in def.variants.iter() { check_inherited(v.span, v.node.vis); match v.node.kind { ast::struct_variant_kind(ref s) => check_struct(s), ast::tuple_variant_kind(..) => {} } } } ast::item_struct(ref def, _) => check_struct(def), ast::item_trait(_, _, ref methods) => { for m in methods.iter() { match *m { ast::required(..) => {} ast::provided(ref m) => check_inherited(m.span, m.vis), } } } ast::item_static(..) | ast::item_fn(..) | ast::item_mod(..) | ast::item_ty(..) | ast::item_mac(..) => {} } } } pub fn check_crate(tcx: ty::ctxt, method_map: &method_map, exp_map2: &resolve::ExportMap2, external_exports: resolve::ExternalExports, last_private_map: resolve::LastPrivateMap, crate: &ast::Crate) -> ExportedItems { // Figure out who everyone's parent is let mut visitor = ParentVisitor { parents: HashMap::new(), curparent: ast::DUMMY_NODE_ID, }; visit::walk_crate(&mut visitor, crate, ()); // Use the parent map to check the privacy of everything let mut visitor = PrivacyVisitor { curitem: ast::DUMMY_NODE_ID, in_fn: false, in_foreign: false, tcx: tcx, parents: visitor.parents, method_map: method_map, external_exports: external_exports, last_private_map: last_private_map, }; visit::walk_crate(&mut visitor, crate, ()); // Sanity check to make sure that all privacy usage and controls are // reasonable. let mut visitor = SanePrivacyVisitor { in_fn: false, tcx: tcx, }; visit::walk_crate(&mut visitor, crate, ()); tcx.sess.abort_if_errors(); // Build up a set of all exported items in the AST. This is a set of all // items which are reachable from external crates based on visibility. let mut visitor = EmbargoVisitor { tcx: tcx, exported_items: HashSet::new(), reexports: HashSet::new(), exp_map2: exp_map2, prev_exported: true, }; loop { let before = visitor.exported_items.len(); visit::walk_crate(&mut visitor, crate, ()); if before == visitor.exported_items.len() { break } } return visitor.exported_items; }