//! For each definition, we track the following data. A definition //! here is defined somewhat circularly as "something with a def-id", //! but it generally corresponds to things like structs, enums, etc. //! There are also some rather random cases (like const initializer //! expressions) that are mostly just leftovers. use hir; use hir::def_id::{CrateNum, DefId, DefIndex, LOCAL_CRATE, DefIndexAddressSpace, CRATE_DEF_INDEX}; use ich::Fingerprint; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::indexed_vec::{IndexVec}; use rustc_data_structures::stable_hasher::StableHasher; use serialize::{Encodable, Decodable, Encoder, Decoder}; use session::CrateDisambiguator; use std::borrow::Borrow; use std::fmt::Write; use std::hash::Hash; use syntax::ast; use syntax::ext::hygiene::Mark; use syntax::symbol::{Symbol, InternedString}; use syntax_pos::{Span, DUMMY_SP}; use util::nodemap::NodeMap; /// The DefPathTable maps DefIndexes to DefKeys and vice versa. /// Internally the DefPathTable holds a tree of DefKeys, where each DefKey /// stores the DefIndex of its parent. /// There is one DefPathTable for each crate. #[derive(Default)] pub struct DefPathTable { index_to_key: [Vec; 2], def_path_hashes: [Vec; 2], } // Unfortunately we have to provide a manual impl of Clone because of the // fixed-sized array field. impl Clone for DefPathTable { fn clone(&self) -> Self { DefPathTable { index_to_key: [self.index_to_key[0].clone(), self.index_to_key[1].clone()], def_path_hashes: [self.def_path_hashes[0].clone(), self.def_path_hashes[1].clone()], } } } impl DefPathTable { fn allocate(&mut self, key: DefKey, def_path_hash: DefPathHash, address_space: DefIndexAddressSpace) -> DefIndex { let index = { let index_to_key = &mut self.index_to_key[address_space.index()]; let index = DefIndex::from_array_index(index_to_key.len(), address_space); debug!("DefPathTable::insert() - {:?} <-> {:?}", key, index); index_to_key.push(key); index }; self.def_path_hashes[address_space.index()].push(def_path_hash); debug_assert!(self.def_path_hashes[address_space.index()].len() == self.index_to_key[address_space.index()].len()); index } pub fn next_id(&self, address_space: DefIndexAddressSpace) -> DefIndex { DefIndex::from_array_index(self.index_to_key[address_space.index()].len(), address_space) } #[inline(always)] pub fn def_key(&self, index: DefIndex) -> DefKey { self.index_to_key[index.address_space().index()] [index.as_array_index()].clone() } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { let ret = self.def_path_hashes[index.address_space().index()] [index.as_array_index()]; debug!("def_path_hash({:?}) = {:?}", index, ret); return ret } pub fn add_def_path_hashes_to(&self, cnum: CrateNum, out: &mut FxHashMap) { for &address_space in &[DefIndexAddressSpace::Low, DefIndexAddressSpace::High] { out.extend( (&self.def_path_hashes[address_space.index()]) .iter() .enumerate() .map(|(index, &hash)| { let def_id = DefId { krate: cnum, index: DefIndex::from_array_index(index, address_space), }; (hash, def_id) }) ); } } pub fn size(&self) -> usize { self.index_to_key.iter().map(|v| v.len()).sum() } } impl Encodable for DefPathTable { fn encode(&self, s: &mut S) -> Result<(), S::Error> { // Index to key self.index_to_key[DefIndexAddressSpace::Low.index()].encode(s)?; self.index_to_key[DefIndexAddressSpace::High.index()].encode(s)?; // DefPath hashes self.def_path_hashes[DefIndexAddressSpace::Low.index()].encode(s)?; self.def_path_hashes[DefIndexAddressSpace::High.index()].encode(s)?; Ok(()) } } impl Decodable for DefPathTable { fn decode(d: &mut D) -> Result { let index_to_key_lo: Vec = Decodable::decode(d)?; let index_to_key_hi: Vec = Decodable::decode(d)?; let def_path_hashes_lo: Vec = Decodable::decode(d)?; let def_path_hashes_hi: Vec = Decodable::decode(d)?; let index_to_key = [index_to_key_lo, index_to_key_hi]; let def_path_hashes = [def_path_hashes_lo, def_path_hashes_hi]; Ok(DefPathTable { index_to_key, def_path_hashes, }) } } /// The definition table containing node definitions. /// It holds the `DefPathTable` for local `DefId`s/`DefPath`s and it also stores a /// mapping from `NodeId`s to local `DefId`s. #[derive(Clone, Default)] pub struct Definitions { table: DefPathTable, node_to_def_index: NodeMap, def_index_to_node: [Vec; 2], pub(super) node_to_hir_id: IndexVec, /// If `Mark` is an ID of some macro expansion, /// then `DefId` is the normal module (`mod`) in which the expanded macro was defined. parent_modules_of_macro_defs: FxHashMap, /// Item with a given `DefIndex` was defined during macro expansion with ID `Mark`. expansions_that_defined: FxHashMap, next_disambiguator: FxHashMap<(DefIndex, DefPathData), u32>, def_index_to_span: FxHashMap, } /// A unique identifier that we can use to lookup a definition /// precisely. It combines the index of the definition's parent (if /// any) with a `DisambiguatedDefPathData`. #[derive(Clone, PartialEq, Debug, Hash, RustcEncodable, RustcDecodable)] pub struct DefKey { /// Parent path. pub parent: Option, /// Identifier of this node. pub disambiguated_data: DisambiguatedDefPathData, } impl DefKey { fn compute_stable_hash(&self, parent_hash: DefPathHash) -> DefPathHash { let mut hasher = StableHasher::new(); // We hash a 0u8 here to disambiguate between regular DefPath hashes, // and the special "root_parent" below. 0u8.hash(&mut hasher); parent_hash.hash(&mut hasher); let DisambiguatedDefPathData { ref data, disambiguator, } = self.disambiguated_data; ::std::mem::discriminant(data).hash(&mut hasher); if let Some(name) = data.get_opt_name() { name.hash(&mut hasher); } disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } fn root_parent_stable_hash(crate_name: &str, crate_disambiguator: CrateDisambiguator) -> DefPathHash { let mut hasher = StableHasher::new(); // Disambiguate this from a regular DefPath hash, // see compute_stable_hash() above. 1u8.hash(&mut hasher); crate_name.hash(&mut hasher); crate_disambiguator.hash(&mut hasher); DefPathHash(hasher.finish()) } } /// Pair of `DefPathData` and an integer disambiguator. The integer is /// normally 0, but in the event that there are multiple defs with the /// same `parent` and `data`, we use this field to disambiguate /// between them. This introduces some artificial ordering dependency /// but means that if you have (e.g.) two impls for the same type in /// the same module, they do get distinct def-ids. #[derive(Clone, PartialEq, Debug, Hash, RustcEncodable, RustcDecodable)] pub struct DisambiguatedDefPathData { pub data: DefPathData, pub disambiguator: u32 } #[derive(Clone, Debug, Hash, RustcEncodable, RustcDecodable)] pub struct DefPath { /// the path leading from the crate root to the item pub data: Vec, /// what krate root is this path relative to? pub krate: CrateNum, } impl DefPath { pub fn is_local(&self) -> bool { self.krate == LOCAL_CRATE } pub fn make(krate: CrateNum, start_index: DefIndex, mut get_key: FN) -> DefPath where FN: FnMut(DefIndex) -> DefKey { let mut data = vec![]; let mut index = Some(start_index); loop { debug!("DefPath::make: krate={:?} index={:?}", krate, index); let p = index.unwrap(); let key = get_key(p); debug!("DefPath::make: key={:?}", key); match key.disambiguated_data.data { DefPathData::CrateRoot => { assert!(key.parent.is_none()); break; } _ => { data.push(key.disambiguated_data); index = key.parent; } } } data.reverse(); DefPath { data: data, krate: krate } } /// Returns a string representation of the DefPath without /// the crate-prefix. This method is useful if you don't have /// a TyCtxt available. pub fn to_string_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); for component in &self.data { write!(s, "::{}[{}]", component.data.as_interned_str(), component.disambiguator) .unwrap(); } s } /// Return filename friendly string of the DefPah with the /// crate-prefix. pub fn to_string_friendly(&self, crate_imported_name: F) -> String where F: FnOnce(CrateNum) -> Symbol { let crate_name_str = crate_imported_name(self.krate).as_str(); let mut s = String::with_capacity(crate_name_str.len() + self.data.len() * 16); write!(s, "::{}", crate_name_str).unwrap(); for component in &self.data { if component.disambiguator == 0 { write!(s, "::{}", component.data.as_interned_str()).unwrap(); } else { write!(s, "{}[{}]", component.data.as_interned_str(), component.disambiguator) .unwrap(); } } s } /// Return filename friendly string of the DefPah without /// the crate-prefix. This method is useful if you don't have /// a TyCtxt available. pub fn to_filename_friendly_no_crate(&self) -> String { let mut s = String::with_capacity(self.data.len() * 16); let mut opt_delimiter = None; for component in &self.data { opt_delimiter.map(|d| s.push(d)); opt_delimiter = Some('-'); if component.disambiguator == 0 { write!(s, "{}", component.data.as_interned_str()).unwrap(); } else { write!(s, "{}[{}]", component.data.as_interned_str(), component.disambiguator) .unwrap(); } } s } } #[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] pub enum DefPathData { // Root: these should only be used for the root nodes, because // they are treated specially by the `def_path` function. /// The crate root (marker) CrateRoot, // Catch-all for random DefId things like DUMMY_NODE_ID Misc, // Different kinds of items and item-like things: /// An impl Impl, /// A trait Trait(InternedString), /// An associated type **declaration** (i.e., in a trait) AssocTypeInTrait(InternedString), /// An associated type **value** (i.e., in an impl) AssocTypeInImpl(InternedString), /// An existential associated type **value** (i.e., in an impl) AssocExistentialInImpl(InternedString), /// Something in the type NS TypeNs(InternedString), /// Something in the value NS ValueNs(InternedString), /// A module declaration Module(InternedString), /// A macro rule MacroDef(InternedString), /// A closure expression ClosureExpr, // Subportions of items /// A type parameter (generic parameter) TypeParam(InternedString), /// A lifetime definition LifetimeParam(InternedString), /// A variant of a enum EnumVariant(InternedString), /// A struct field Field(InternedString), /// Implicit ctor for a tuple-like struct StructCtor, /// A constant expression (see {ast,hir}::AnonConst). AnonConst, /// An `impl Trait` type node ImplTrait, /// GlobalMetaData identifies a piece of crate metadata that is global to /// a whole crate (as opposed to just one item). GlobalMetaData components /// are only supposed to show up right below the crate root. GlobalMetaData(InternedString) } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Debug, RustcEncodable, RustcDecodable)] pub struct DefPathHash(pub Fingerprint); impl_stable_hash_for!(tuple_struct DefPathHash { fingerprint }); impl Borrow for DefPathHash { #[inline] fn borrow(&self) -> &Fingerprint { &self.0 } } impl Definitions { /// Create new empty definition map. /// /// The DefIndex returned from a new Definitions are as follows: /// 1. At DefIndexAddressSpace::Low, /// CRATE_ROOT has index 0:0, and then new indexes are allocated in /// ascending order. /// 2. At DefIndexAddressSpace::High, /// the first FIRST_FREE_HIGH_DEF_INDEX indexes are reserved for /// internal use, then 1:FIRST_FREE_HIGH_DEF_INDEX are allocated in /// ascending order. /// /// FIXME: there is probably a better place to put this comment. pub fn new() -> Self { Self::default() } pub fn def_path_table(&self) -> &DefPathTable { &self.table } /// Get the number of definitions. pub fn def_index_counts_lo_hi(&self) -> (usize, usize) { (self.table.index_to_key[DefIndexAddressSpace::Low.index()].len(), self.table.index_to_key[DefIndexAddressSpace::High.index()].len()) } pub fn def_key(&self, index: DefIndex) -> DefKey { self.table.def_key(index) } #[inline(always)] pub fn def_path_hash(&self, index: DefIndex) -> DefPathHash { self.table.def_path_hash(index) } /// Returns the path from the crate root to `index`. The root /// nodes are not included in the path (i.e., this will be an /// empty vector for the crate root). For an inlined item, this /// will be the path of the item in the external crate (but the /// path will begin with the path to the external crate). pub fn def_path(&self, index: DefIndex) -> DefPath { DefPath::make(LOCAL_CRATE, index, |p| self.def_key(p)) } #[inline] pub fn opt_def_index(&self, node: ast::NodeId) -> Option { self.node_to_def_index.get(&node).cloned() } #[inline] pub fn opt_local_def_id(&self, node: ast::NodeId) -> Option { self.opt_def_index(node).map(DefId::local) } #[inline] pub fn local_def_id(&self, node: ast::NodeId) -> DefId { self.opt_local_def_id(node).unwrap() } #[inline] pub fn as_local_node_id(&self, def_id: DefId) -> Option { if def_id.krate == LOCAL_CRATE { let space_index = def_id.index.address_space().index(); let array_index = def_id.index.as_array_index(); let node_id = self.def_index_to_node[space_index][array_index]; if node_id != ast::DUMMY_NODE_ID { Some(node_id) } else { None } } else { None } } #[inline] pub fn node_to_hir_id(&self, node_id: ast::NodeId) -> hir::HirId { self.node_to_hir_id[node_id] } #[inline] pub fn def_index_to_hir_id(&self, def_index: DefIndex) -> hir::HirId { let space_index = def_index.address_space().index(); let array_index = def_index.as_array_index(); let node_id = self.def_index_to_node[space_index][array_index]; self.node_to_hir_id[node_id] } /// Retrieve the span of the given `DefId` if `DefId` is in the local crate, the span exists and /// it's not DUMMY_SP #[inline] pub fn opt_span(&self, def_id: DefId) -> Option { if def_id.krate == LOCAL_CRATE { self.def_index_to_span.get(&def_id.index).cloned() } else { None } } /// Add a definition with a parent definition. pub fn create_root_def(&mut self, crate_name: &str, crate_disambiguator: CrateDisambiguator) -> DefIndex { let key = DefKey { parent: None, disambiguated_data: DisambiguatedDefPathData { data: DefPathData::CrateRoot, disambiguator: 0 } }; let parent_hash = DefKey::root_parent_stable_hash(crate_name, crate_disambiguator); let def_path_hash = key.compute_stable_hash(parent_hash); // Create the definition. let address_space = super::ITEM_LIKE_SPACE; let root_index = self.table.allocate(key, def_path_hash, address_space); assert_eq!(root_index, CRATE_DEF_INDEX); assert!(self.def_index_to_node[address_space.index()].is_empty()); self.def_index_to_node[address_space.index()].push(ast::CRATE_NODE_ID); self.node_to_def_index.insert(ast::CRATE_NODE_ID, root_index); // Allocate some other DefIndices that always must exist. GlobalMetaDataKind::allocate_def_indices(self); root_index } /// Add a definition with a parent definition. pub fn create_def_with_parent(&mut self, parent: DefIndex, node_id: ast::NodeId, data: DefPathData, address_space: DefIndexAddressSpace, expansion: Mark, span: Span) -> DefIndex { debug!("create_def_with_parent(parent={:?}, node_id={:?}, data={:?})", parent, node_id, data); assert!(!self.node_to_def_index.contains_key(&node_id), "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}", node_id, data, self.table.def_key(self.node_to_def_index[&node_id])); // The root node must be created with create_root_def() assert!(data != DefPathData::CrateRoot); // Find the next free disambiguator for this key. let disambiguator = { let next_disamb = self.next_disambiguator.entry((parent, data.clone())).or_insert(0); let disambiguator = *next_disamb; *next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow"); disambiguator }; let key = DefKey { parent: Some(parent), disambiguated_data: DisambiguatedDefPathData { data, disambiguator } }; let parent_hash = self.table.def_path_hash(parent); let def_path_hash = key.compute_stable_hash(parent_hash); debug!("create_def_with_parent: after disambiguation, key = {:?}", key); // Create the definition. let index = self.table.allocate(key, def_path_hash, address_space); assert_eq!(index.as_array_index(), self.def_index_to_node[address_space.index()].len()); self.def_index_to_node[address_space.index()].push(node_id); // Some things for which we allocate DefIndices don't correspond to // anything in the AST, so they don't have a NodeId. For these cases // we don't need a mapping from NodeId to DefIndex. if node_id != ast::DUMMY_NODE_ID { debug!("create_def_with_parent: def_index_to_node[{:?} <-> {:?}", index, node_id); self.node_to_def_index.insert(node_id, index); } if expansion != Mark::root() { self.expansions_that_defined.insert(index, expansion); } // The span is added if it isn't dummy if !span.is_dummy() { self.def_index_to_span.insert(index, span); } index } /// Initialize the ast::NodeId to HirId mapping once it has been generated during /// AST to HIR lowering. pub fn init_node_id_to_hir_id_mapping(&mut self, mapping: IndexVec) { assert!(self.node_to_hir_id.is_empty(), "Trying initialize NodeId -> HirId mapping twice"); self.node_to_hir_id = mapping; } pub fn expansion_that_defined(&self, index: DefIndex) -> Mark { self.expansions_that_defined.get(&index).cloned().unwrap_or(Mark::root()) } pub fn parent_module_of_macro_def(&self, mark: Mark) -> DefId { self.parent_modules_of_macro_defs[&mark] } pub fn add_parent_module_of_macro_def(&mut self, mark: Mark, module: DefId) { self.parent_modules_of_macro_defs.insert(mark, module); } } impl DefPathData { pub fn get_opt_name(&self) -> Option { use self::DefPathData::*; match *self { TypeNs(name) | Trait(name) | AssocTypeInTrait(name) | AssocTypeInImpl(name) | AssocExistentialInImpl(name) | ValueNs(name) | Module(name) | MacroDef(name) | TypeParam(name) | LifetimeParam(name) | EnumVariant(name) | Field(name) | GlobalMetaData(name) => Some(name), Impl | CrateRoot | Misc | ClosureExpr | StructCtor | AnonConst | ImplTrait => None } } pub fn as_interned_str(&self) -> InternedString { use self::DefPathData::*; let s = match *self { TypeNs(name) | Trait(name) | AssocTypeInTrait(name) | AssocTypeInImpl(name) | AssocExistentialInImpl(name) | ValueNs(name) | Module(name) | MacroDef(name) | TypeParam(name) | LifetimeParam(name) | EnumVariant(name) | Field(name) | GlobalMetaData(name) => { return name } // note that this does not show up in user printouts CrateRoot => "{{root}}", Impl => "{{impl}}", Misc => "{{?}}", ClosureExpr => "{{closure}}", StructCtor => "{{constructor}}", AnonConst => "{{constant}}", ImplTrait => "{{impl-Trait}}", }; Symbol::intern(s).as_interned_str() } pub fn to_string(&self) -> String { self.as_interned_str().to_string() } } macro_rules! count { () => (0usize); ( $x:tt $($xs:tt)* ) => (1usize + count!($($xs)*)); } // We define the GlobalMetaDataKind enum with this macro because we want to // make sure that we exhaustively iterate over all variants when registering // the corresponding DefIndices in the DefTable. macro_rules! define_global_metadata_kind { (pub enum GlobalMetaDataKind { $($variant:ident),* }) => ( #[derive(Clone, Copy, Debug, Hash, RustcEncodable, RustcDecodable)] pub enum GlobalMetaDataKind { $($variant),* } const GLOBAL_MD_ADDRESS_SPACE: DefIndexAddressSpace = DefIndexAddressSpace::High; pub const FIRST_FREE_HIGH_DEF_INDEX: usize = count!($($variant)*); impl GlobalMetaDataKind { fn allocate_def_indices(definitions: &mut Definitions) { $({ let instance = GlobalMetaDataKind::$variant; definitions.create_def_with_parent( CRATE_DEF_INDEX, ast::DUMMY_NODE_ID, DefPathData::GlobalMetaData(instance.name().as_interned_str()), GLOBAL_MD_ADDRESS_SPACE, Mark::root(), DUMMY_SP ); // Make sure calling def_index does not crash. instance.def_index(&definitions.table); })* } pub fn def_index(&self, def_path_table: &DefPathTable) -> DefIndex { let def_key = DefKey { parent: Some(CRATE_DEF_INDEX), disambiguated_data: DisambiguatedDefPathData { data: DefPathData::GlobalMetaData(self.name().as_interned_str()), disambiguator: 0, } }; // These DefKeys are all right after the root, // so a linear search is fine. let index = def_path_table.index_to_key[GLOBAL_MD_ADDRESS_SPACE.index()] .iter() .position(|k| *k == def_key) .unwrap(); DefIndex::from_array_index(index, GLOBAL_MD_ADDRESS_SPACE) } fn name(&self) -> Symbol { let string = match *self { $( GlobalMetaDataKind::$variant => { concat!("{{GlobalMetaData::", stringify!($variant), "}}") } )* }; Symbol::intern(string) } } ) } define_global_metadata_kind!(pub enum GlobalMetaDataKind { Krate, CrateDeps, DylibDependencyFormats, LangItems, LangItemsMissing, NativeLibraries, SourceMap, Impls, ExportedSymbols });