// Require a gdb or lldb that can read DW_TAG_variant_part. //@ min-gdb-version: 8.2 //@ min-lldb-version: 1800 //@ compile-flags:-g // === GDB TESTS =================================================================================== // gdb-command:set print union on // gdb-command:run // gdb-command:print case1 // gdbr-check:$1 = tuple_style_enum::Regular::Case1(0, 31868, 31868, 31868, 31868) // gdb-command:print case2 // gdbr-check:$2 = tuple_style_enum::Regular::Case2(0, 286331153, 286331153) // gdb-command:print case3 // gdbr-check:$3 = tuple_style_enum::Regular::Case3(0, 6438275382588823897) // gdb-command:print univariant // gdbr-check:$4 = tuple_style_enum::Univariant::TheOnlyCase(-1) // === LLDB TESTS ================================================================================== // lldb-command:run // lldb-command:v case1 // lldbg-check:(tuple_style_enum::Regular) case1 = { value = { 0 = 0 1 = 31868 2 = 31868 3 = 31868 4 = 31868 } $discr$ = 0 } // lldbr-check:(tuple_style_enum::Regular::Case1) case1 = { = 0 = 31868 = 31868 = 31868 = 31868 } // lldb-command:v case2 // lldbg-check:(tuple_style_enum::Regular) case2 = { value = { 0 = 0 1 = 286331153 2 = 286331153 } $discr$ = 1 } // lldbr-check:(tuple_style_enum::Regular::Case2) case2 = Case2 { Case1: 0, Case2: 286331153, Case3: 286331153 } // lldb-command:v case3 // lldbg-check:(tuple_style_enum::Regular) case3 = { value = { 0 = 0 1 = 6438275382588823897 } $discr$ = 2 } // lldbr-check:(tuple_style_enum::Regular::Case3) case3 = Case3 { Case1: 0, Case2: 6438275382588823897 } // lldb-command:v univariant // lldbg-check:(tuple_style_enum::Univariant) univariant = { value = { 0 = -1 } } // lldbr-check:(tuple_style_enum::Univariant) univariant = { TheOnlyCase = { = -1 } } #![allow(unused_variables)] #![feature(omit_gdb_pretty_printer_section)] #![omit_gdb_pretty_printer_section] use self::Regular::{Case1, Case2, Case3}; use self::Univariant::TheOnlyCase; // The first element is to ensure proper alignment, irrespective of the machines word size. Since // the size of the discriminant value is machine dependent, this has be taken into account when // datatype layout should be predictable as in this case. enum Regular { Case1(u64, u16, u16, u16, u16), Case2(u64, u32, u32), Case3(u64, u64) } enum Univariant { TheOnlyCase(i64) } fn main() { // In order to avoid endianness trouble all of the following test values consist of a single // repeated byte. This way each interpretation of the union should look the same, no matter if // this is a big or little endian machine. // 0b0111110001111100011111000111110001111100011111000111110001111100 = 8970181431921507452 // 0b01111100011111000111110001111100 = 2088533116 // 0b0111110001111100 = 31868 // 0b01111100 = 124 let case1 = Case1(0, 31868, 31868, 31868, 31868); // 0b0001000100010001000100010001000100010001000100010001000100010001 = 1229782938247303441 // 0b00010001000100010001000100010001 = 286331153 // 0b0001000100010001 = 4369 // 0b00010001 = 17 let case2 = Case2(0, 286331153, 286331153); // 0b0101100101011001010110010101100101011001010110010101100101011001 = 6438275382588823897 // 0b01011001010110010101100101011001 = 1499027801 // 0b0101100101011001 = 22873 // 0b01011001 = 89 let case3 = Case3(0, 6438275382588823897); let univariant = TheOnlyCase(-1); zzz(); // #break } fn zzz() {()}