use crate::consts::{constant, Constant}; use crate::utils::paths; use crate::utils::sugg::Sugg; use crate::utils::{ expr_block, in_macro, is_allowed, is_expn_of, match_qpath, match_type, multispan_sugg, remove_blocks, snippet, snippet_with_applicability, span_lint_and_sugg, span_lint_and_then, span_note_and_lint, walk_ptrs_ty, }; use if_chain::if_chain; use rustc::hir::def::CtorKind; use rustc::hir::*; use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass}; use rustc::ty::{self, Ty, TyKind}; use rustc::{declare_tool_lint, lint_array}; use rustc_errors::Applicability; use std::cmp::Ordering; use std::collections::Bound; use std::ops::Deref; use syntax::ast::LitKind; use syntax::source_map::Span; /// **What it does:** Checks for matches with a single arm where an `if let` /// will usually suffice. /// /// **Why is this bad?** Just readability – `if let` nests less than a `match`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// match x { /// Some(ref foo) => bar(foo), /// _ => (), /// } /// ``` declare_clippy_lint! { pub SINGLE_MATCH, style, "a match statement with a single nontrivial arm (i.e. where the other arm is `_ => {}`) instead of `if let`" } /// **What it does:** Checks for matches with a two arms where an `if let else` will /// usually suffice. /// /// **Why is this bad?** Just readability – `if let` nests less than a `match`. /// /// **Known problems:** Personal style preferences may differ. /// /// **Example:** /// /// Using `match`: /// /// ```rust /// match x { /// Some(ref foo) => bar(foo), /// _ => bar(other_ref), /// } /// ``` /// /// Using `if let` with `else`: /// /// ```rust /// if let Some(ref foo) = x { /// bar(foo); /// } else { /// bar(other_ref); /// } /// ``` declare_clippy_lint! { pub SINGLE_MATCH_ELSE, pedantic, "a match statement with a two arms where the second arm's pattern is a placeholder instead of a specific match pattern" } /// **What it does:** Checks for matches where all arms match a reference, /// suggesting to remove the reference and deref the matched expression /// instead. It also checks for `if let &foo = bar` blocks. /// /// **Why is this bad?** It just makes the code less readable. That reference /// destructuring adds nothing to the code. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// match x { /// &A(ref y) => foo(y), /// &B => bar(), /// _ => frob(&x), /// } /// ``` declare_clippy_lint! { pub MATCH_REF_PATS, style, "a match or `if let` with all arms prefixed with `&` instead of deref-ing the match expression" } /// **What it does:** Checks for matches where match expression is a `bool`. It /// suggests to replace the expression with an `if...else` block. /// /// **Why is this bad?** It makes the code less readable. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let condition: bool = true; /// match condition { /// true => foo(), /// false => bar(), /// } /// ``` /// Use if/else instead: /// ```rust /// let condition: bool = true; /// if condition { /// foo(); /// } else { /// bar(); /// } /// ``` declare_clippy_lint! { pub MATCH_BOOL, style, "a match on a boolean expression instead of an `if..else` block" } /// **What it does:** Checks for overlapping match arms. /// /// **Why is this bad?** It is likely to be an error and if not, makes the code /// less obvious. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x = 5; /// match x { /// 1...10 => println!("1 ... 10"), /// 5...15 => println!("5 ... 15"), /// _ => (), /// } /// ``` declare_clippy_lint! { pub MATCH_OVERLAPPING_ARM, style, "a match with overlapping arms" } /// **What it does:** Checks for arm which matches all errors with `Err(_)` /// and take drastic actions like `panic!`. /// /// **Why is this bad?** It is generally a bad practice, just like /// catching all exceptions in java with `catch(Exception)` /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x: Result(i32, &str) = Ok(3); /// match x { /// Ok(_) => println!("ok"), /// Err(_) => panic!("err"), /// } /// ``` declare_clippy_lint! { pub MATCH_WILD_ERR_ARM, style, "a match with `Err(_)` arm and take drastic actions" } /// **What it does:** Checks for match which is used to add a reference to an /// `Option` value. /// /// **Why is this bad?** Using `as_ref()` or `as_mut()` instead is shorter. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// let x: Option<()> = None; /// let r: Option<&()> = match x { /// None => None, /// Some(ref v) => Some(v), /// }; /// ``` declare_clippy_lint! { pub MATCH_AS_REF, complexity, "a match on an Option value instead of using `as_ref()` or `as_mut`" } /// **What it does:** Checks for wildcard enum matches using `_`. /// /// **Why is this bad?** New enum variants added by library updates can be missed. /// /// **Known problems:** Suggested replacements may be incorrect if guards exhaustively cover some /// variants, and also may not use correct path to enum if it's not present in the current scope. /// /// **Example:** /// ```rust /// match x { /// A => {}, /// _ => {}, /// } /// ``` declare_clippy_lint! { pub WILDCARD_ENUM_MATCH_ARM, restriction, "a wildcard enum match arm using `_`" } #[allow(missing_copy_implementations)] pub struct MatchPass; impl LintPass for MatchPass { fn get_lints(&self) -> LintArray { lint_array!( SINGLE_MATCH, MATCH_REF_PATS, MATCH_BOOL, SINGLE_MATCH_ELSE, MATCH_OVERLAPPING_ARM, MATCH_WILD_ERR_ARM, MATCH_AS_REF, WILDCARD_ENUM_MATCH_ARM ) } fn name(&self) -> &'static str { "Matches" } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MatchPass { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { if in_external_macro(cx.sess(), expr.span) { return; } if let ExprKind::Match(ref ex, ref arms, MatchSource::Normal) = expr.node { check_single_match(cx, ex, arms, expr); check_match_bool(cx, ex, arms, expr); check_overlapping_arms(cx, ex, arms); check_wild_err_arm(cx, ex, arms); check_wild_enum_match(cx, ex, arms); check_match_as_ref(cx, ex, arms, expr); } if let ExprKind::Match(ref ex, ref arms, _) = expr.node { check_match_ref_pats(cx, ex, arms, expr); } } } #[rustfmt::skip] fn check_single_match(cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr) { if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() && arms[1].pats.len() == 1 && arms[1].guard.is_none() { let els = remove_blocks(&arms[1].body); let els = if is_unit_expr(els) { None } else if let ExprKind::Block(_, _) = els.node { // matches with blocks that contain statements are prettier as `if let + else` Some(els) } else { // allow match arms with just expressions return; }; let ty = cx.tables.expr_ty(ex); if ty.sty != ty::Bool || is_allowed(cx, MATCH_BOOL, ex.id) { check_single_match_single_pattern(cx, ex, arms, expr, els); check_single_match_opt_like(cx, ex, arms, expr, ty, els); } } } fn check_single_match_single_pattern( cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr, els: Option<&Expr>, ) { if is_wild(&arms[1].pats[0]) { report_single_match_single_pattern(cx, ex, arms, expr, els); } } fn report_single_match_single_pattern( cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr, els: Option<&Expr>, ) { let lint = if els.is_some() { SINGLE_MATCH_ELSE } else { SINGLE_MATCH }; let els_str = els.map_or(String::new(), |els| { format!(" else {}", expr_block(cx, els, None, "..")) }); span_lint_and_sugg( cx, lint, expr.span, "you seem to be trying to use match for destructuring a single pattern. Consider using `if \ let`", "try this", format!( "if let {} = {} {}{}", snippet(cx, arms[0].pats[0].span, ".."), snippet(cx, ex.span, ".."), expr_block(cx, &arms[0].body, None, ".."), els_str, ), Applicability::HasPlaceholders, ); } fn check_single_match_opt_like( cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr, ty: Ty<'_>, els: Option<&Expr>, ) { // list of candidate Enums we know will never get any more members let candidates = &[ (&paths::COW, "Borrowed"), (&paths::COW, "Cow::Borrowed"), (&paths::COW, "Cow::Owned"), (&paths::COW, "Owned"), (&paths::OPTION, "None"), (&paths::RESULT, "Err"), (&paths::RESULT, "Ok"), ]; let path = match arms[1].pats[0].node { PatKind::TupleStruct(ref path, ref inner, _) => { // contains any non wildcard patterns? e.g. Err(err) if !inner.iter().all(is_wild) { return; } print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)) }, PatKind::Binding(BindingAnnotation::Unannotated, .., ident, None) => ident.to_string(), PatKind::Path(ref path) => print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)), _ => return, }; for &(ty_path, pat_path) in candidates { if path == *pat_path && match_type(cx, ty, ty_path) { report_single_match_single_pattern(cx, ex, arms, expr, els); } } } fn check_match_bool(cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr) { // type of expression == bool if cx.tables.expr_ty(ex).sty == ty::Bool { span_lint_and_then( cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression", move |db| { if arms.len() == 2 && arms[0].pats.len() == 1 { // no guards let exprs = if let PatKind::Lit(ref arm_bool) = arms[0].pats[0].node { if let ExprKind::Lit(ref lit) = arm_bool.node { match lit.node { LitKind::Bool(true) => Some((&*arms[0].body, &*arms[1].body)), LitKind::Bool(false) => Some((&*arms[1].body, &*arms[0].body)), _ => None, } } else { None } } else { None }; if let Some((true_expr, false_expr)) = exprs { let sugg = match (is_unit_expr(true_expr), is_unit_expr(false_expr)) { (false, false) => Some(format!( "if {} {} else {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, ".."), expr_block(cx, false_expr, None, "..") )), (false, true) => Some(format!( "if {} {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, "..") )), (true, false) => { let test = Sugg::hir(cx, ex, ".."); Some(format!("if {} {}", !test, expr_block(cx, false_expr, None, ".."))) }, (true, true) => None, }; if let Some(sugg) = sugg { db.span_suggestion( expr.span, "consider using an if/else expression", sugg, Applicability::HasPlaceholders, ); } } } }, ); } } fn check_overlapping_arms<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ex: &'tcx Expr, arms: &'tcx [Arm]) { if arms.len() >= 2 && cx.tables.expr_ty(ex).is_integral() { let ranges = all_ranges(cx, arms); let type_ranges = type_ranges(&ranges); if !type_ranges.is_empty() { if let Some((start, end)) = overlapping(&type_ranges) { span_note_and_lint( cx, MATCH_OVERLAPPING_ARM, start.span, "some ranges overlap", end.span, "overlaps with this", ); } } } } fn is_wild(pat: &impl std::ops::Deref) -> bool { match pat.node { PatKind::Wild => true, _ => false, } } fn check_wild_err_arm(cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm]) { let ex_ty = walk_ptrs_ty(cx.tables.expr_ty(ex)); if match_type(cx, ex_ty, &paths::RESULT) { for arm in arms { if let PatKind::TupleStruct(ref path, ref inner, _) = arm.pats[0].node { let path_str = print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)); if_chain! { if path_str == "Err"; if inner.iter().any(is_wild); if let ExprKind::Block(ref block, _) = arm.body.node; if is_panic_block(block); then { // `Err(_)` arm with `panic!` found span_note_and_lint(cx, MATCH_WILD_ERR_ARM, arm.pats[0].span, "Err(_) will match all errors, maybe not a good idea", arm.pats[0].span, "to remove this warning, match each error separately \ or use unreachable macro"); } } } } } } fn check_wild_enum_match(cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm]) { let ty = cx.tables.expr_ty(ex); if !ty.is_enum() { // If there isn't a nice closed set of possible values that can be conveniently enumerated, // don't complain about not enumerating the mall. return; } // First pass - check for violation, but don't do much book-keeping because this is hopefully // the uncommon case, and the book-keeping is slightly expensive. let mut wildcard_span = None; let mut wildcard_ident = None; for arm in arms { for pat in &arm.pats { if let PatKind::Wild = pat.node { wildcard_span = Some(pat.span); } else if let PatKind::Binding(_, _, ident, None) = pat.node { wildcard_span = Some(pat.span); wildcard_ident = Some(ident); } } } if let Some(wildcard_span) = wildcard_span { // Accumulate the variants which should be put in place of the wildcard because they're not // already covered. let mut missing_variants = vec![]; if let TyKind::Adt(def, _) = ty.sty { for variant in &def.variants { missing_variants.push(variant); } } for arm in arms { if arm.guard.is_some() { // Guards mean that this case probably isn't exhaustively covered. Technically // this is incorrect, as we should really check whether each variant is exhaustively // covered by the set of guards that cover it, but that's really hard to do. continue; } for pat in &arm.pats { if let PatKind::Path(ref path) = pat.deref().node { if let QPath::Resolved(_, p) = path { missing_variants.retain(|e| e.did != p.def.def_id()); } } else if let PatKind::TupleStruct(ref path, ..) = pat.deref().node { if let QPath::Resolved(_, p) = path { missing_variants.retain(|e| e.did != p.def.def_id()); } } } } let suggestion: Vec = missing_variants .iter() .map(|v| { let suffix = match v.ctor_kind { CtorKind::Fn => "(..)", CtorKind::Const | CtorKind::Fictive => "", }; let ident_str = if let Some(ident) = wildcard_ident { format!("{} @ ", ident.name) } else { String::new() }; // This path assumes that the enum type is imported into scope. format!("{}{}{}", ident_str, cx.tcx.item_path_str(v.did), suffix) }) .collect(); span_lint_and_sugg( cx, WILDCARD_ENUM_MATCH_ARM, wildcard_span, "wildcard match will miss any future added variants.", "try this", suggestion.join(" | "), Applicability::MachineApplicable, ) } } // If the block contains only a `panic!` macro (as expression or statement) fn is_panic_block(block: &Block) -> bool { match (&block.expr, block.stmts.len(), block.stmts.first()) { (&Some(ref exp), 0, _) => { is_expn_of(exp.span, "panic").is_some() && is_expn_of(exp.span, "unreachable").is_none() }, (&None, 1, Some(stmt)) => { is_expn_of(stmt.span, "panic").is_some() && is_expn_of(stmt.span, "unreachable").is_none() }, _ => false, } } fn check_match_ref_pats(cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr) { if has_only_ref_pats(arms) { let mut suggs = Vec::new(); let (title, msg) = if let ExprKind::AddrOf(Mutability::MutImmutable, ref inner) = ex.node { suggs.push((ex.span, Sugg::hir(cx, inner, "..").to_string())); ( "you don't need to add `&` to both the expression and the patterns", "try", ) } else { suggs.push((ex.span, Sugg::hir(cx, ex, "..").deref().to_string())); ( "you don't need to add `&` to all patterns", "instead of prefixing all patterns with `&`, you can dereference the expression", ) }; suggs.extend(arms.iter().flat_map(|a| &a.pats).filter_map(|p| { if let PatKind::Ref(ref refp, _) = p.node { Some((p.span, snippet(cx, refp.span, "..").to_string())) } else { None } })); span_lint_and_then(cx, MATCH_REF_PATS, expr.span, title, |db| { if !in_macro(expr.span) { multispan_sugg(db, msg.to_owned(), suggs); } }); } } fn check_match_as_ref(cx: &LateContext<'_, '_>, ex: &Expr, arms: &[Arm], expr: &Expr) { if arms.len() == 2 && arms[0].pats.len() == 1 && arms[0].guard.is_none() && arms[1].pats.len() == 1 && arms[1].guard.is_none() { let arm_ref: Option = if is_none_arm(&arms[0]) { is_ref_some_arm(&arms[1]) } else if is_none_arm(&arms[1]) { is_ref_some_arm(&arms[0]) } else { None }; if let Some(rb) = arm_ref { let suggestion = if rb == BindingAnnotation::Ref { "as_ref" } else { "as_mut" }; let mut applicability = Applicability::MachineApplicable; span_lint_and_sugg( cx, MATCH_AS_REF, expr.span, &format!("use {}() instead", suggestion), "try this", format!( "{}.{}()", snippet_with_applicability(cx, ex.span, "_", &mut applicability), suggestion ), applicability, ) } } } /// Get all arms that are unbounded `PatRange`s. fn all_ranges<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, arms: &'tcx [Arm]) -> Vec> { arms.iter() .flat_map(|arm| { if let Arm { ref pats, guard: None, .. } = *arm { pats.iter() } else { [].iter() } .filter_map(|pat| { if let PatKind::Range(ref lhs, ref rhs, ref range_end) = pat.node { let lhs = constant(cx, cx.tables, lhs)?.0; let rhs = constant(cx, cx.tables, rhs)?.0; let rhs = match *range_end { RangeEnd::Included => Bound::Included(rhs), RangeEnd::Excluded => Bound::Excluded(rhs), }; return Some(SpannedRange { span: pat.span, node: (lhs, rhs), }); } if let PatKind::Lit(ref value) = pat.node { let value = constant(cx, cx.tables, value)?.0; return Some(SpannedRange { span: pat.span, node: (value.clone(), Bound::Included(value)), }); } None }) }) .collect() } #[derive(Debug, Eq, PartialEq)] pub struct SpannedRange { pub span: Span, pub node: (T, Bound), } type TypedRanges = Vec>; /// Get all `Int` ranges or all `Uint` ranges. Mixed types are an error anyway /// and other types than /// `Uint` and `Int` probably don't make sense. fn type_ranges(ranges: &[SpannedRange]) -> TypedRanges { ranges .iter() .filter_map(|range| match range.node { (Constant::Int(start), Bound::Included(Constant::Int(end))) => Some(SpannedRange { span: range.span, node: (start, Bound::Included(end)), }), (Constant::Int(start), Bound::Excluded(Constant::Int(end))) => Some(SpannedRange { span: range.span, node: (start, Bound::Excluded(end)), }), (Constant::Int(start), Bound::Unbounded) => Some(SpannedRange { span: range.span, node: (start, Bound::Unbounded), }), _ => None, }) .collect() } fn is_unit_expr(expr: &Expr) -> bool { match expr.node { ExprKind::Tup(ref v) if v.is_empty() => true, ExprKind::Block(ref b, _) if b.stmts.is_empty() && b.expr.is_none() => true, _ => false, } } // Checks if arm has the form `None => None` fn is_none_arm(arm: &Arm) -> bool { match arm.pats[0].node { PatKind::Path(ref path) if match_qpath(path, &paths::OPTION_NONE) => true, _ => false, } } // Checks if arm has the form `Some(ref v) => Some(v)` (checks for `ref` and `ref mut`) fn is_ref_some_arm(arm: &Arm) -> Option { if_chain! { if let PatKind::TupleStruct(ref path, ref pats, _) = arm.pats[0].node; if pats.len() == 1 && match_qpath(path, &paths::OPTION_SOME); if let PatKind::Binding(rb, .., ident, _) = pats[0].node; if rb == BindingAnnotation::Ref || rb == BindingAnnotation::RefMut; if let ExprKind::Call(ref e, ref args) = remove_blocks(&arm.body).node; if let ExprKind::Path(ref some_path) = e.node; if match_qpath(some_path, &paths::OPTION_SOME) && args.len() == 1; if let ExprKind::Path(ref qpath) = args[0].node; if let &QPath::Resolved(_, ref path2) = qpath; if path2.segments.len() == 1 && ident.name == path2.segments[0].ident.name; then { return Some(rb) } } None } fn has_only_ref_pats(arms: &[Arm]) -> bool { let mapped = arms .iter() .flat_map(|a| &a.pats) .map(|p| { match p.node { PatKind::Ref(..) => Some(true), // &-patterns PatKind::Wild => Some(false), // an "anything" wildcard is also fine _ => None, // any other pattern is not fine } }) .collect::>>(); // look for Some(v) where there's at least one true element mapped.map_or(false, |v| v.iter().any(|el| *el)) } pub fn overlapping(ranges: &[SpannedRange]) -> Option<(&SpannedRange, &SpannedRange)> where T: Copy + Ord, { #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum Kind<'a, T: 'a> { Start(T, &'a SpannedRange), End(Bound, &'a SpannedRange), } impl<'a, T: Copy> Kind<'a, T> { fn range(&self) -> &'a SpannedRange { match *self { Kind::Start(_, r) | Kind::End(_, r) => r, } } fn value(self) -> Bound { match self { Kind::Start(t, _) => Bound::Included(t), Kind::End(t, _) => t, } } } impl<'a, T: Copy + Ord> PartialOrd for Kind<'a, T> { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl<'a, T: Copy + Ord> Ord for Kind<'a, T> { fn cmp(&self, other: &Self) -> Ordering { match (self.value(), other.value()) { (Bound::Included(a), Bound::Included(b)) | (Bound::Excluded(a), Bound::Excluded(b)) => a.cmp(&b), // Range patterns cannot be unbounded (yet) (Bound::Unbounded, _) | (_, Bound::Unbounded) => unimplemented!(), (Bound::Included(a), Bound::Excluded(b)) => match a.cmp(&b) { Ordering::Equal => Ordering::Greater, other => other, }, (Bound::Excluded(a), Bound::Included(b)) => match a.cmp(&b) { Ordering::Equal => Ordering::Less, other => other, }, } } } let mut values = Vec::with_capacity(2 * ranges.len()); for r in ranges { values.push(Kind::Start(r.node.0, r)); values.push(Kind::End(r.node.1, r)); } values.sort(); for (a, b) in values.iter().zip(values.iter().skip(1)) { match (a, b) { (&Kind::Start(_, ra), &Kind::End(_, rb)) => { if ra.node != rb.node { return Some((ra, rb)); } }, (&Kind::End(a, _), &Kind::Start(b, _)) if a != Bound::Included(b) => (), _ => return Some((a.range(), b.range())), } } None }